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1. INTRODUCTION

Consider a branching random walk, i.e. a Galton-Watson process

205 Zl,nne with offspring distribution {pj} orn which we super-

impose the additional structure of random walk on the line. A

particle whose parent is at x, moves to xty and the y's of

different particles are 1.i.d. with common distribution function

G. Let u = fm x dx(x), of = Im x° d3 (x) and define for any
[yo'e] == CO

Borel set B Zn<B) = the number of particles in the nth generation

located in B. It was first conjectured by Harris ([9], pg. 75),

2, (12, mu + yoJm])

that in the supercritical case m = Zj,pj > 1,
should converge in probability for any y to @(y)W} where as
¥ B -
usual &(y) = j 1//27 e™* /e dx, W= lim m™"
«s OO

n
number of papers ([10], [14], [15], [19]) have appeared resolving

Zno Since then a

this conjecture and generalizing it considerably.

In an earlier paper ([1]) the above problem and some of its
generalizations and related problems was studied from the L2 point of
view. In this work we present a different technique, which is useful
in attacking Harris' conjecture and related problems. In particular
we are able to settle Harris'! conjecture assuming only that the
underlying Galton-Watson process satisfiles the well-known 'j log J'-
condition, i.e. T ] logj}{j<< o, ahd even to get a.s. convergence
under only slightly stronger conditions. Also, our technique works
equally well in various related situations. To demonstrate this,
we give a local limit theorem for branching random walks and a limit
result in continuous time for a branching diffusion, i.e. a Bellman-

Harris process, where the particles move independently according to
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standard Brownian motion. The results will be fully stated in
Section 2 and the set-up more fully explained in Sections 2 and 3.
Section 3 also outlines the method of proof, while Section 4 gives

the details in discrete time and Section 5 in continuous time.



2. STATEMENT OF RESULTS

For the branching random walk, we make the followiling assump-

tions throughout:

(1) pp=0, 1< m=2jp, < «, ] logJp, < e

% . o
(2) [ =xac(x) = o, [ %" ae(x) = 1.
s 00 - OO
(3) Zo = 1, and its position is at O.

The assumption by = O 1is not crucial but convenient since
otherwise one has to keep qualifying 'on the set of explosion!'.
Also, (2) is Jjust an appropriate scaling and (3) is no restriction

in view of the additivity and translation properties of the process.

Theorem 1. Let y = Joy + o(Jn). Then under the assumptions

(2)-(3)

PJ

, -n
(4) m Zn(]“wa yn]) —> & (y)W.
- V148
If furthermore £ J(log J) p.  » for some & » O, then the
=9 J

J
convergence in (4) holds a.s.

Theorem 2. Assume in addition to (1)-(3) that G 1is non-

lattice, | IXIB dG(x) < » and that ¢ Jj(log j)3/2+6 p.{ » for
T Lo T =2 J

some 6 » 0. Then for -o< a< b o.

(5) J??H'm"n Zﬂ([a,b]) —ééﬁimQ (b-a)W.
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The assumptions on ¢ are needed only so that an appropriate form

of the central limit theorem can be applied.

Our assumptions on {Qj} are much weaker than any we know

of and not far from being the weakest one could hope for. E.g.

+0 18 not really interesting

i

in Theorem 1 the case TJ log J pj
since then a different norming 1is needed.

We consider now the continuous-time case. Let {Zt}ﬁ>0

denote a Bellman-Harris process evolving from one particle at age
O at t = 0. A particle whose parent was at x at its time of
birth moves until it dies according to a standard Brownian motion
starting at x. The motions of different particles are assumed
independent and as above, Zt(B} denotes the number of particles
at time t in B (a Borel set).

Let {pj} be the offspring distribution and F the lifetime

distribution. We assume that (1) holds for {pj} and as usual

F is non-lattice and F(0) = 0.

N
[ON
S—

The Malthusian parameter a 1s defined as the unique solution at

o
the equation mAI e dF(y) = 1. It has recently been proved
0
a

([3]), that under (1) and (6) W= lim e~
t

t Zt exists a.s. and

P(W> 0) > 0

Theorem 3. Assume in addition to (1) and (6) that I jgpj { w,
J=2

Then for any Borel set B with [3B| =0

(7) e™® z (/T B) 222 s(B)u
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and for any bounded Borel set B with [a3B] =0

(8) JITE e B) 28 |B| W

o _ . 2
(Here #/TB = WTblbeB}, &(B) =[ 1421 7°F /de, |B] =[ dx = the
B B
Lebesgue measure of B, 3B = the boundary of B).

Though the agsumptions on B are glightly different formulated,

(7) and (8) are close analogs to Theorems 1 and 2. This follows by

standard facts on weak convergence. For a branching diffusion, it

ig posgsible to gome extent to dispense with the hypothesis laBl==O
and also the second moment hypothesis on {pj} may be weakened to
conditions corresponding to those of the discrete case for a large
class of lifetime distributions containing e.g. the exponential
distribution. For partial results in these directiong, see Lemmas

5 and 10 of Section 5. Several generalizations of Theorem 3 suggest

themselves. Thug one would expect the proportion of particles in

B, which are of age at most x, to tend to A(x), where A 1is

the stable age-distribution ([3]). We have formulated our lemmas

in sufficient generality to deal with this case as well, while we feel

that the details of the argument 1s a stralghtforward combination

of the methods of the present paper and of [3]. Also, there is no

difficulty in modifying the brownlan motion, say by considering a
more general stable procesgs or by allowing an absorbing barrier.

Processes of this last type were studied in [5], [16], [17], [20]

with methods which required a Markovian structure of {Zt}tzp
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3. Preliminaries and outline of proofs.

We now return to discrete time. Following the notation in

[9], Ch. 5, we denote any particle in the nth generation by

i, =< 191, 00 1 Let Zn(£k> denote the number of descendants

N
n’-
of i, at time ny k and X;  the position of i . Then
. ~f] -

where Yi is the displacement of iﬂo Thus the Yi 's are

i.i.d. with law G. For n » 1, letﬂEFn>: @<Z£<ik)3 k< ¢ < n)

and ﬁﬁn = U(Z{<ik), Y. 5 k (4 < n). A key observation is, that

under (3) the law of X; conditioned upon T is G, the

th T, ¢ A i
n convolution of G.

We introduce some more notation . Zn<ik5B) (k { n) denotes

the number of descendants of ik at time n in B and we let

ﬂmk) ~ w(l’l-«k‘.) 7 B)

wn(gk) = Dn(gk)g and wh(gk;B) = m n(ik5

It follows from the additivity property of the branching

process that for k< n

(9) Z,(B) = Z (i.;B)
i
~k
where = extends over all ZK particles in the kth generation.
A
Conditioned upon 33K3 the random variables on the right-hand side

of (9) are independent and the law of Zn(ik;B) "is that of Zn—k(B—w>’

where B-w = {b-w|b € B} and w = X, . For each n, we choose an
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integer kh‘< n. We then obtain the following representation

from (9), which is basic in the proof of Theorem 1:

(10) W (J=o, y, 1) = A + B+ Wkn@(y)
where
”kn
AD = m iZ {WI‘_I(:LK 3]0, yn]) - Ewn_<lk 9-]Moo’ yn])}
Nkn
-k
Bl’l = m - Z { Ewn(ik ;]"“OO: yﬂ]) - @(Y>}
Lic n
n
anhd
_kn
n n

The idea 1is now to choose Kn with kn -+ o such that both
A and Bn becomes small. For An’ we usean inequality of
Kurtz ([12]), while the analysis of Bn essentially reduces to a
study of the mean value function of the process.

For Theorem 2, a similar argument works since we are able to
obtain a representation analogous to (10) for NETTN Zﬂ([a,b]).
Also, for the branching diffusion, a similar representation will
yield convergence 1in probability. The a.s. convergence proof 1is,
however, more complicated since we are dealing with a continuum of
random variables. However, the method of proof outlined will give
the a.s. convergence for t restricted to lattices of the form
{ns}, n=0,1L,..., 8 > 0 a rational. Some technical arguments

are then used to push the convergence to the whole line. An idea

similar to this was used in [3].



I Proofs: Digerete time

We start by giving two preliminary technical lemmas.

Lemma 1. Let Xl.,a”,Xn bé independent random variableg with mean O

such that P(ile > t) gjde(x) for a distribution Q on [0,

with finite wean. Then for & » O

. ) . A l n rA .
(11) P(IX, | > 8) C elnf?da(x) + £ ["x7aa(x))
: n =0
_ 1 n
where X_ = o ¥ Xi and ¢ may depend on & and Q. but not on
i=1

n . In particular, Xh _£;> 0 ag n = .

[T(x-n)dq(x). For n large,
n

w© in part (a) of Theorem (3.1) of

Proof: Let n = ~!f x-n)dQ(x), e

b

il

n < e< & and by taking eo(u)
[12] it then follows, that

(12) P(IZ, I > 28) L PUX T > 6 + )
< 4 1)n jlzuj dQ(x)du
(28-n) 0 nu

To obtain (11), we need only to modify ¢ such that (12) holds for

all n and replace § by &/2 . Finally, the lasgt part of the

lemma followg from

Tim n f da(x) < 1lm.f xdQ(x) = 0 ,

n n
Tim ==-l-;brnxgd@z(y:) = llm.f )dQ(x) = 0,
n B o n {Kin}

where we have used the dominated convergence theorem.
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Lemma. 2. Let ZO,Zl,ea. be a supercritical Galtonnwatson

o0
process with offspring distribution {pj} and mean m = g jvpj .
. — 3=0
Define M = sup mmnzy1 . Then for o » O EM(log+M)a { » if and only if
o 1+2
T J(log J) 7 py (e
j=2 !

Proof: The case o = 0 1ig treated in [11], where also the existence

of constants A,B such that
(13) P(M > AX){ BP(W ) %)

is proven under. the assumption E(jlogcjpj<:om Thus for a » O
it follows upon integration by parts that EM(log+M)a { o if
EW(log+W)a { » and also the converse is clear. Finally in [2]

Ew(log+w)CZ { « 1is proved to be equivalent to Egi(logj)l+upj {woy

We now start the proof of Theorem 1 by choosing B with 0 g <1
such that 1/8< 1+4+% and next o » O such that ao/2.(1/8-1)>1 .

For J integer and ja/ﬁ {n < (j+l)a/ﬁ we then set khzzaj::[ja]

Lemma 3. 1im.Bn,= O a.s. without conditiong on {pj}
n

Proof: By the standard central limit theorem D = su o) X )
y c N p’(A/"ﬁ?K;

I
- Gy (x)] tends to 0 as n =+ o, Furthermore,
- n F’k
n 3 )
,Bn, = Im _Z ( n-k (ynﬂxi. ) - é(Y))l
'lk 71 ~k
~ l’l A [y ) 7 ﬂ
L yn“Xik
;n ~ n ’
Cm s |8 (———) - &(y)] +W,_D
i Jo-k, iy
x|
K Ay
{ Cm Be B oy W, D
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where C 1s a suitable constant. The last inequality follows from

elementary calculus. Thus in view of the definition of kh it suffices

to show that

%5 |
3 g
E. =
g=m T a8
Aa, 9
J
tends to O as J =~ o . But this follows by standard arguments,
since ' _—
00 ( ,:}_ﬂ ) 00 Eaj ) .aj ‘ J i
Z B(E.|T = ¥ m
. . . . 2
=1 I 23 g=1 %3 jo/ 2P
00 ~8, J 00 a . 2
T W e = W J7=—=< w a.g
.a/2
j=1 aj 3% B 5=1 aj ja_Qﬁ .
The proof of Theorem 1 ig completed by
Lemma 1. s j log jpj oo = An —£4> 0, and
j=
> o ) g ‘aas‘,\
T 3(log J)7 Tpy (e = A = 0

Proof: Since W > O a.s., also inf Z_ﬁ/mn > 0 a.s. and thus

we may replace An by

B =5 T(W(iy J-o,5. 1) =B (1 5]-e,5.1)) -
k P L n n
l’lf&k

o)

Obviously‘M%&gkhgjwm,yn]) ig stochastically smaller than Wn_kn

and thus than M = sup Zn/mn . Consequently K; 1g of the same
n
form as Yh in Lemma 1, where we can take @ as the law  of M+EM.

Clearly, @Q possesses the same moments as M . It then follows from
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Lemmas 1 and 2, that P(iﬁh’>6'£>kn) > 0 fOTZleOggjpj { w, proving
the first part of the lemma. To prove a.s. convergence, we note

that from Lemma 1

gP(lAnl > 618y ) <
n

n=1
Z A i RN 4o (%
Qﬂ){nél( k {Zy x} 77 {7y 2%) 1aQ(x) <
n 1 8)
U [“x(10g"x) P~ Laq(x)

where U < » a.s.. The last inequality follows by elementary but
LB B
tedious calculus from the fact that sup Zye ,/mrl { w, inf ZK /mn >0

n n
d4.8. . Finally, the last expression ig finite a.s. if and only if

v J(log j)l/ﬁpj { o (Lemma 2), so that the extended Borel-Cantelli

lemma ([13], pg. 151) completes the proof

The proof of Theorem 2 followg along similar lines. We shall
not carry out all the details but only indicate the main modifications

needed. We use the following expansion similar to (10):

(13) V2T m“’“zn([a,b]) = A +B + Wkn(b~a)

where now

-k
A, =v2ram Pow (0 (1 s[e,b]) - EW (1, ;[a,b]))
f%ak n n
n
-k .
B, =m S v (VA= Wh(&k,;[a,b]) - (b-a)]
Lk B
n

To define k , we first choose B such that O { B< 1 and that
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oW
<

2p { 3/2.+ 8 and next o » O such that a(l/B-1) > 1. We set
a %1 for ja/ﬁ {n< (j+1)a/5 . Thus k_ is of magnitude

noJ = [J - 1

P and that A tends to O a.s., follows along the lines of the

n
proofs of Lemmas 1 and 4 by appealing to part (a) of Theorem (3.1)

of [12]. To deal with Bpg we proceed ag follows:

o B s (B o) -G ) (s
B | =m ii% (Worn {Gnmkn(b xii Gnmkn(a\xii} (b-a))|
Nk N n L D n
n a-X
" b=X. i,
Y — o k. ~%p
Cm Py Worn (e(—=2R) -6 )3 ~(b-a)[+W, D
i A VK, n
~ K ) 81 n
X,
K &kn
m by ~— + W,_ D
,gk 1 kn kn

where D is non-random and tends to O . Here we have used the

extended central limit theorem ([8], pg. 210) for the first inequality

and elementary calculus for the second. Thus in view of the definition

of k 1t suffices to show that -
n w2
i

tends to O as J > o . But this follows from
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5 Proofs: Continuous time.

The proofs in continuous time resemble those in discrete
time, except that we have the added complication of particies dying
at different times. We prove only (8) since the proof of (7)
is similar.

We introduce first some notation. {(aigyi); i o= 1”’°’Zt}
is the chart of ages and positions of the particles alive at time t.
Let\?ftﬂ QE% be the o-algebras containing the information up to
time t on the Bellman-Harris process (including the ai s),
reSpectively»on the whole branching diffusion (that is, in addition
also on the yé s). By the additivity properties of the process

we may write for any Borel set B and St <t
(14> Zt(B) = § Zv‘, t(al)ylyB)

where Zt (ai,yi;B) is the number of descendants at time t in B

of the 1 h particle alive at time Sge We let

—a(tnst)

B) = e Ztht(aijyi;B) )

t_st(ai,yi;

(ai’yi§ﬁ>9

Here e.g. e M (ai) is the expected number of particles

alive at time t~st in a Bellman-Harris process, where the
original particle was of age &y at t = 0. We get the following

expansion similar to (10)



-at
(15) Jort e Zt(B) = A, + By + Cy
where
Zs
uast t , “
A, =21t e § {WE o (855755B) - My (ai,yi;B)}
i=1 t t
Zs
mast t .
B, = e ﬁzl L/ETE M o (8157138) - | B Mtust(al)}
Z
-8 St
Cy = lgle ¢ % M, o (ay)
§=1 bt

By taking t =mn8 (8 » 0), it now follows that

Lemma 5. For any & > 0, and any bounded Borel set B

JETaE e 0 7 (m) 2Bl |y

The proof is very similar to the ones of Section 4. Using the

easily verified fact that
Var(wtwst(ai’ yi:?B) IC}L)S-{:) )_<_ (-’

for some constant € { «, it follows that & Var(Anéliﬁe ) < o
n=1 : ¥ng

and thus that 1im A . = 0 a.s. . To handle B and C ., we
n né nd nd

need the following two lemmas, which are formulated in greater

generality than needed at present:
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Lemma 6. For any two bounded measurable functions g,h .

Zt(awy;[R) Zt(a)
E( %

B( 5 gla)hn(yy)) =

5 elay))E(h(5, (1))
i=1 ' 1=1

1

where gy is standard Brownian motion starting from y. Lemma 6
is clear once it is observed that the distribution of vy conditioned
upon ¥, 1s that of gy(t)b In particular, if g = 1 and

h =1 then

BB
M, . (a:,y:35B) = M, _ (a.)P(E (t-s.) € B)
t St 1771 t St s C

and since My _ (a;) { ¢< o, the argument in the proof of
oy = t [

Theorem 2 can be repeated verbatum to yield 1im BD = 0 a.s.
« n :

Before stating our next lemma, we introduce some notation. Let

X
[ e (1-7(y))dy
alx) = 2 I = S L
g e (1-F(y))dy
me* Iw " YWar (y) - )
V(x) = qu(x) = m g euudea(y} s
gm " (1-F(y) ) ay
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Also, for g measurable, bounded and positive,

(
Ky(a,8) = B 2 8(a)), My(ay) = <Ky (a,8)

Lemma 7. Let g(x)(1-F(x))e ™ be directly Riemann integrable.
Then
s
"‘C{,S_t Tt ) ' 0o
Llim e . M (a8) =W g g(x)dA(x) a.s.
t%mytwsﬁem i=1 S

Proof: In the usual way one can show that Kt(aﬁg) satisfies

t
(16) Ke(a,e) = glart) ATt m [ K (0,8) 97 (a)

and consequently by the renewal theorem ([4], pg. 147)

(17) lim M, (0,g) = n g(x)dA(x)
t>o00 t Ly
It follows from (16) and (17) that
(18) Tim supl|M, (a,g) - n,V(a) g(x)da(x)] = o.
. £ 1 :
w a
Also it is well-known ([3]), that
Z
4 -at & ¢
(19) lim e b nIV(a) =W a.s.
t>o0 i=1 -

The lemma follows from (18) and (19).

By taking g = 1, it follows that lim Cné = WIB] 88, Completing
n L

the proof of Lemma 5.
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Remark 1. The added generality of Lemmas 6 and 7 allows us

to prove with no extra difficulty the following variants of Lemma 5:

Variant 1. Let g satisfy the hypothesis of Lemma 7. Then for

any 8 > 0

nd 0

: -~ -—ans .
l;m J2TNg e izl g<ai)¢{yi€B} = | B g g(x)dA(x) a.s.

Variant 2. Let h be any measurable positive bounded function

such that fm Xgh(X)dX { w, Then for any & > O

=00

Z
e - ~Ol,115 ) né . ~ ® \
1lim ,/27mns e by h(yi) =W [ h(x)dx a.s.
n i=1 -
© 2
The assumption f X h(x)dx { o is needed to show 1im Bn6 = 0 a.s.

n

- We omit the details.

We are now ready to complete the proof of (8). Let € > O

and define’

B = {x|x ¢ B, p(x,38) > e}, B = {x]p(x,B) > ¢}

where 3B is the boundary of B and p(x,A) = inf |y-x|
: yeEA

for any

Borel set A. Also, we let E(§) = sup Iéo(t)f . Note that

o<t 8

lim[B | = 1im|B®| = |B] ir J|aB| = o.
e>0 e=>0
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Lemma 8. 1im /Z7F e @t z, (B) > wlB|
— o

nS(Be> An,i

Proof: Tet & » O and define for i = 1,...,7%
to be the event, that for all t e [ns,(n+l)s8] there is at least
one particle in the line of descent initiated by 1 in B. Clearly,

( ) > Zné(Be)
7. (B) by 1
E 1=1 Ap,t

for all t e [n&,(n+l)s]. As above, it follows that

1im /2708 e 08
n

Furthermore,
PA_ . > P(A_ .|i does not split before t) > P(E(s) < ¢).
D,l = n,l S —
Thus
N =05 ~ans “ng
lim J27E 2. (B) > e 1im/Zrs e 1 v pa
T v = n s=1 1T

"B, 1 P(E(s) < )

and the conclusion follows by letting first 6 and then e tend

to 0.

The proof of (8) is now completed by

°

Lemma 9. im /27t ewatzt(B) { W| B
cmma_2 : S
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Proof: Let & » 0 and define fé(aigyi;B) as the total
number of particles that ever enter B before time t = (n+l)$}
in the line of descent initiated by a particle of age a; and

position y; at time t = ns. Then for ¢t e [né, (n+1)8]

Ly

4
nsd
ZJC(B) _<' lzl 26 (alﬁylfB)

and since Var(?é(aigyi;B)) { ¢< w, it follows as above that

Zn&
(20) izﬁ JZFE e %g (B)  TIm Jomms ¢ ¥ & 7 (a;,y;3B) =
' n i=1
Z
e -ong no oA
Tim /2mns e 7 Ezs(ai,yi;B)
n i=1 :

To deal with this last expression, we note that

(21) Efa(ai,yi;B) <1+ chai(a)

(22) EZ, (a;57;5B) L cP(E(8) > ply;>B))

where Cl’ c2 are constants. Thus for e > 0

R —E.
e oy e M b, (6
Y EZ.(a.,v.5B) 7 B + cC by F 8
$=1 8 1 né 1 fo1 ay
—_ . == '
Zng (B") _ 205 (B7) — Ny =€ €
121 EZ,(as,¥;58) < ¢ lzl P(E(s) » ply;sB)) (B°=R-B") .

Tt is not difficult to show that Fx(a)(luF(x))e”aX = (F(x+8)-F(x))e”

is directly Riemann integrable and that
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00

i v P(E(s) > o(v,B))dy { « .

=00

E.g. it follows from Doob's martingale inequality ([13], pg. 133),
that P(E(8) > p(y,B)) iﬁcég/p(y,B)u. So appealing to Lemma 5

and Remark 1 we have from (20), (21) and (22)

Tim J27E e ¢° Zt(B) <
t

A N tr) F (8)da(a) + c, mj P(¥(s) > p(y,B))dy).
B

(O}

It 1s easy to see, that the two last integrals tends to 0O as
§ - 0. Thus the conclusion follows by letting first & and then

¢ ‘tend to O.

Remark 2. The assumption T jgpj { o can be weakened to the
same extent as in the discrete case providing we could prove the
continuous time analog of (13). We state without proof a partial

result.

Lemma 10. Suppose inf V(x) > O . Then there exists
x

constants A,B such that
P( sup W, > Ax) < BP(W > x)
0

The condition of the lemma is satisfied for F exponential or F
with bounded support. It would seem reasonable that the lemma

should hold with no assumptions on F.



BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

[11]

Asmussen, 8. and Kaplan, N. (1975): Branching random walks I.

To appear.

Athreya, K.B. (1971): A note on a functional equation arising
in Galton-Watson branching processes. J. Appl. Prob. 8, 589-598.
Athreya, K.B. and Kaplan, N. (1975): Convergence of the age
distribution in the one dimensional supercritical age-dependent
branching process. To appear.

Athreya, K.B. and Ney, P.E. (1972): Branching processes.
Springer-Verlag. Berlin Heldelberg New York .

Conner, H.E. (1967): Asymptotic behaviour of averaging-processes
for a branching process of restricted Brownilan particles. J.
Math. An. Appil. 20, 464-479,

Davis, A.W. (1967): Branching diffusion processes with no
absorbing boundaries I. J. Math. An., Appl. 18, 276-296.

Davig, A.W. (1967): Branching diffusion proeesées with no
absorbing boundaries II. J. Math. An. Appl. 19, 1-25.
Gnedenko, B.V. and Kolmogorov, A.N. (1954): Limit distri-
butions for sums of independent random variables. Addison-
Wesley. Reading Mass.

Harris, T.E. (1963): The theory of branching processes.
Springer-Verlag. Berlin Gottingen Heidelberg.

Joffe, A. and Moncayo, A.R. (1973): Random variables, trees
and branching random walks. Adv. Math. 10, 401-416.

Kesten, H. and Stigum, B.P. (1967): Limit theorems for decom-

posable multi-dimensional Galton-Watson processes. J. Math.

An, Appl. 17, 309-338.



~03-

[12] Rurtz, T-G. (1972): Inequalities for the law of large numbers.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Ann. Math. Stat. 43, 1874-1883.

Neveu, J. (1965): Mathematical foundations of the calculus

of probability. Holden-Day. San Francigco London Amgterdam,
Ney, P.E. (1965): The limit distribution of a binary cascade
process. J. Math. An. Appl. 10, 30-36.

Ney, P.E. (1965): The convergence of a random distribution
function associated with branching processes. J. Math. An.
App. 12, 316-327.

Sevast'yanov, B.A. (1958): Branching stochastic processes

for particles diffusing in a bounded domain with absorbing
barriers. Th. Prob. Appl. 3, 111-126.

Sevast'yanov, B.A. (1961): Extinction conditions for branching

stochastic processes with diffusion. Th. Prob. Appl. Q,

- 053-263.

Skorohod, V.V. (1964): Branching diffusion processes. Th.
Prob. Appl. 9, L45-449.

Stam, A.J. (1966): On a conjecture by Harris. Z.
Wahrscheinlichkeitstheorie wverw. Geb. 5, 202-206.
Watanabe, S. (1965): On the branching process for brownian
particles with an absorbing boundary. dJ. Math. Kyoto Un5
4, 385-398.



	forside 10, 75
	Preprint 1975 - No 10 Assmussen, Søren, Kaplan, Norman - Branching Random Walk II
	forside no 10
	no 10


