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10 INTRODUCTION 

Consider a branching random walk, i.e. a Galton-Watson process 

ZO' Zl'o .. with offspring distribution [Pj} on which we super

impose the additional structure of random walk on the line. A 

particle whose parent is at x, moves to x+y and the yTs of 

different particles are i.iod. with common distribution function 

G. Let ~ = Soo x dG(x), cr 2 = SOO x2 dG(x) and define for any 
-00 

Borel set B Z (B) = the number of particles in the nth generation 
n 

located in B. It was first conjectured by Harris ([9J, pg. 75), 

that in the supercritical case m = L: j P. > 1, m,-nZ (J -00, q.J. + yaJ'D]) 
J n 

should converge in probability for any y to ~ (y )W, where as 
y 2 

usual ~(y) = S 1/J2Tr e -x /2 dx, W = lim -n Z Since then a m . n 
_00 n 

number of papers ([10], [14] , [15J, [19J) have appeared resolving 

this conjecture and generalizing it considerably. 

In an earlier paper ([1]) the above problem and some of its 

generalizations andrelateaproblems was studied from the L2 point of 

view. In this work we present a different technique, which is useful 

in attacking Harris' conjecture and related problems. In particular 

we are able to settle Harris' conjecture assuming only that the 

underlying Galton-Watson process satisfies the well-known Ij log jl

condition, i.e. L:j logjpj < 00, and even to get a.s. convergence 

under only slightly stronger conditions. Also, our technique works 

equally well in various related situations. To demonstrate this, 

we give a local limit theorem for branching random walks and a limit 

result in continuous time for a branching diffusion, i.e. a Bellman-

Harris process, where the particles move independently according to 
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standard Brownian motion. The results will be fully stated in 

Section 2 and the set-up more fully explained in Sections 2 and 3. 

Section 3 also outlines the method of proof, while Section 4 gives 

the details in discrete time and Section 5 in continuous time. 
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2. STATEMENT OF RESULTS 

For the branching random walk, we make the following assump-

tions throughout: 

( 1) PO':= 0, 1 < m = l:; j p j < 00, ~ j log j P j < 00. 

00 00 

S x 2 dG (x) = 1-(2) S x dG (x) = 0, 
-00 -00 

(3) Zo = 1, and its position is at O. 

The aSI;mmption Po = 0 is not crucial but convenient since 

otherwise one has to keep qualifying ion the set of explosion'. 

Also, (2) is just an appropriate scaling and (3) is no restriction 

in view of the additivity and translation properties of the process. 

Theorem 1. Let· y n -- iii. y + 0 (iii) . Then under the assumptions 

(1)-(3) 

(4) 

If furthermore 

convergence in 

m-n Z (]-oo, y ]) ~> ~(y)w. 
n n 

00 

!: 
j=2 

(4) 

for some 

holds a.s .. 

o > 0, then the 

Theorem 2. Assume in addition to (1)-(3) that G is non

lattice, SOO /x/ 3 dG(x) < 00 and that ~ j(log j)3/2+O P. < 00 for 
_00 j=2 J 

some 0 > O. Then for _00 < a < b < 00. 

(5 ) 
I 

J2rrn m-n Zn ([a,b]) a. s. ;> (b-a)W. 
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The assumptions on G are needed only so that an appropriate form 

of the central limit theorem can be applied. 

Our assumptions on [p 1 j 
are much weaker than any we know 

of and not far from being the weakest one could hope for. E.g. 

in Theorem 1 the case tj log j p. = +00 is not really interesting 
J 

since then a different norming is needed. 

We consider now the continuous-tims case. Let 

denote a Bellman-Harris process evolving from one particle at age 

o at t = O. A particle whose parent was at x at its time of 

birth moves until it dies according to a standard Brownian motion 

starting at x. The motions of different particles are assumed 

independent and as above, Zt(B) denotes the number of particles 

at time t in B (a Borel set). 

Let [p j l be the offspring distribution and F the lifetime 

diE:tribution. We assume that (1) holds for [Pj} and as usual 

(6) F is non-lattice and F(O) = O. 

The Malthusian parameter a is defined as the unique solution at 
00 

the equation ill S e-ay dF(Y) = 1. 
o 

([3J), that under (1) and (6) W = 

P (w > 0) > 0 . 

It has recently been proved 

-at lim e Zt exists a.s. and 
t 

00 

Theorem 3. Assume in addition to (1) and (6) that 

Then for any Borel set B with loBI :::: 0 

'<"' .2 < '" J PJ' 00. 

j=2 

(7) 
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and for any bounded Borel set B with loBI = 0 

(8) 

2 
(Here Jt B = £J'tblb E Bl, ~(B) = J 1/J2Tr e-x /2dX, IBI =J dx= the 

B B 
Lebesgue measure of B, oB = the boundary of B). 

Though the assumptions on B are slightly different formulated, 

(7) and (8) are close analogs to Theorems 1 and 2. This follows by 

standard facts on weak convergence. For a branching diffusion, it 

is possible to some extent to dispense with the hypothesis loBI = 0 

and also the second moment hypothesis on £Pj} may be weakened to 

conditions corresponding to those of the discrete case for a large 

class of lifetime distributions containing e.g. the exponential 

distribution. For partial results in these directions, see Lemmas 

5 and 10 of Section 5. Several generalizations of Theorem 3 suggest 

themselves. Thus one would expect the proportion of particles in 

B, which are of age at most x, to tend to A(x), where A is 

the stable age-distribution ([3J). We have formulated our lemmas 

in sufficient generality to deal with this case as well, while we feel 

that the details of the argument is a straightforward combination 

of the methods of the present paper and of [3J. Also, there is no 

difficulty in modifying the brownian motion, say by considering a 

more general stable process or by allowing an absQrbing barrier. 

Processes of this last type were studied in [5J, [16J, [17J, [20J 

with methods which required a Markovian structure of £Zt}t~O·· 



3, Preliminaries and outline of proofs 

We now return to discrete time. Following the notation in 

[9J, Ch. 5, we denote any particle in the nth generation by 

-- < i >. Let Z (ik ) denote the number of descendants n n ,...-

of n > k and 

where is the displacement of 

the position of 

+ Y. 

i ",n 

1 "",n 

Thus the 

i . Then ....... n 

Y. IS) 
1 ,...,n 

are 

Ll.d. with law G. For n > 1, let3=' n = a (Zt(;hk), k <.t, ~ n) 

and :J?) n = a (Zt. (,bk)' Y;hk; k < ,f., <" n). A key observation is, that 

under (3) the law of 

nth convolution of G. 

conditioned upon '3"' 
n 

We lntroduce some more notation 

is the 

the number of descendants of 

W (i ) = m-(n-k) Z (i \ and 
n ~k n ~k)' 

~k at time n in B and we let 

Wn(~k;B) = m-(n-k) Zn(,bk;B). 

It follows from the additivity property of the branching 

process that for k ~ n 

Zn(B) = 1: Zn(;hk;B) 
~k 

extends over all Zk particles in the kth generation. 

Conditioned upon :1jk' the random variables on the right-hand side 

of (9) are independent and the law of 

where B-w = (b-wlb E B} and w = X. 
~k 

Z (i 'B) n ....... k' is that of Zn_k(B-W), 

For each n, we choose an 
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We then obtain the following representation 

from (9), which is basic in the proof of Theorem 1: 

(10) W (J -00 J y ]) n n 

where 

-k 
A m n r; (Wn (1-k ;]-00, y J) EW (i .] _00, Yn J)} = -n 

~k 
n n ,....,k ,-

n n 
n 

-k 
B 

. n 
r: ( EW ( i . ]-00 Yn J) - § (y)} = m n n ,......k' , 
-hk n 

n 

and 
-k 

Wk m n 
Zk = . 

n n 

The idea is now to choose wi th k -+ 00 
n 

such that both 

B n becomes small. 

Kurtz ([12J), while the analysis of B n 

we usean inequality of 

essentially reduces to a 

study of the mean value function of the process. 

For Theorem 2, a similar argument works since we are able to 

obtain a representation analogous to (10) for J2rrn m-n Zn([a,b]). 

Also, for the branching diffusion, a similar representation will 

yield convergence in probability. The a,s, convergence proof is, 

however, more complicated since we are dealing with a continuum of 

random variables. However, the method of proof outlined will give 

the a.s. convergence for t restricted to lattices of the form 

[no}, n = 0,1, ... , 6 > 0 a rational. Some technical arguments 

are then used to push the convergence to the whole line. An idea 

similar to this was used in [3J, 
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4: Proofs: Discrete time 

We start by g.iving two preliminary technical lemmaso 

Lemma 10 Let Xl' 0 0 ., Xnbe independent random variables with mean 0 

such that p( Ixil > t) {J~dQ(x) for a distribution Q on [O,oo[ 

with finite mean. Then for 6 > 0 

( 11) 

,where 

n . 

1 n 
Xn = - I: Xi 

n i=l 

In particuJ,arJ 

and c may depend on 

- p) X - 0 as n 
n-+OO. 

and Q. but not on 

Proof: Let 'll = 1 fXl(x-n)dQ(x), 
n n 

e = JOO(x-n)dQ(x). For n large, 
n 

'll < e < 6 and by taking ~(u) = u2 in part (a) of Theorem (3. 1) of 

[12] it then follows, that 

( 12) P ( I Xn I > 26) { P ( I Xn I > 6 + e) 

~ ( 4 + l)n J 12U JoodQ(x)dU 
(26-n)2 0 nu 

= c(nJoodQ(x) + ~ J nx2dQ(X)) 
n 0 

To obtain (11), we need only to modify c such that (12) holds for 

all n and replace 0 by 6/2 0 Finally.1 the last part of the 

lemma follows from 

lim n JoodQ(x) ~ lim JooxdQ(x) = 0 , 
n n n n 

lim 1 J nx2dQ(x) = lim Joox(lS. If / }) dQ(x) = 0, 
n n nOn lX~..n o 

where we have used the dominated convergence theorem. 
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Lemma. 2~ ~ ZO,Zl'oo. be a supercritical Galton-Watson 
00 

process with offspring distribution [Pj} 

Define M = sup m-nZ . Then for a ~ 0 
n n 

and mean m = 'E j p. . 
j=O J 

EM( log + M) a < 00 if and only if 
00 

I: j( log j) I-h:xp 0 < 00 .• 

j=2 J 

Proof: The case a = 0 is treated in [llJ, where also the existence 

of constants A,B such that 

P(M > Ax)~ BP(W > x) 

is proven under.' the assumption r; j log j P . < 00. Thus for a > 0 
, J 

it t'ollows upon integration by parts that EM( log +M) a < 00 if 

EW( log +W)a < ()() 
EW(log+W)a < 00 

and also the converse is clearo 

is proved to be equivalent to 

Finally in [2J 

r: <1 (logj) I-h:xp . < 00 • 

J 

We now start the proof of Theorem 1 by choosing {3 with 0 < (3 < 1 

a/2. (1/{3-1) > 1 . sUch that 1/{3 ~ 1 + 0 and next a > 0 

For j integer and ja/{3 ~ n < (j+l)a//3 

such that 

we then set 

Lemma 3. 

Proof: 

lim B = 0 aos. without conditions on [p.} . 
n J n 

By the standard central limit theorem 

o as n ~ 00 0 Furthermore, 

Dn = sup I g? ( x ) 
-oo(x< 00 J'n-kn 
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where C is a suitable constant. The last inequality follows from 

elementary calculus. Thus in view of the definition of k it s~ffices 
n 

to show that 

-a 0 

J 

i ",-,a. 
J 

tends to 0 as j --+ CXl. But this follows by standard arguments, 

since 

The proof of Theorem 1 is completed by 

i 
CXl a.51. 

I 

CXl 

Lemma 4. ~ j log jp. < CXl > A ~> 0, and 
j=2 J n 

CXl 

~ j (log j) 1+5 p. < 00 >A a. s: > 0 . 
j=2 J n 

Proof: Since W > 0 a.s., ,also, inf Zn/mn > 0 a. s. and ttlUS 

we may replace A 
n 

by 

Obvious ly W~(2;k ; ] -00, y n ] ) is stochastically smaller than Wn _k 
n n 

A 
n 

Consequently is Of the same 

form as X in Lemma 1, where we can take Q as the·. law - of M+EM. 
n 

Clearly, Q possesses the same moments as M. It then follows from 
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Lemmas 1 and 2, that p( IAn l)/) I B k ) -+ 0 for I: j log j p. < 00, proving 
n J 

the first part of the lemma. To prove a.s. convergence, we note 

that from Lemma 1 
00 

L:p(l An l)/)18k ) ~ 
n=l n 

00 2 
cS oo

[ l.: (Zk lrZ Ix} + zXk lrZ "x} )}dQ(x) ~ 
o n=l n 1. k " 1. k L 

n n n 

where U < 00 a.s .. The last inequality follows by elementary but 
n(3 , n(3 

tedious calculus from the fact that sup Zk 1m < 00, inf Zk 1m > 0 
n n 

a. s. . Finally, the last expression is finite a .. s. if and only if 

Z j(log j)l/(3po < 00 (Lemma 2), so that the extended Borel-Cant~lli 
J 

lemma ([ 13], pg. 151) completes the proof 

The proof of Theorem 2 follows along similar lines. We shall 

not carry out all the details but only indicate the main modifications 

needed. We use the following expansion similar to (10): 

(13) J21rn m~nZn([a,bJ) = An + 'Bn + Wk (b-a) 
n 

where now 

-k 
An = J 21rn m n L: (w C~k; [a, bJ) - EW (~k 9 [a, bJ ) ) 

. n n n n 

B 
n 

=m 
-k 

n 

To define k , 
n 

llc 
"'-'11 

-L 
L: E[J21r1n W (ik' ; [a, bJ) - (b-a) ] 

o n ...... 
2k n 

n 

we first choose (3 such that 0 < (3 < 1 and that 
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3/2{3 ~ 3/2 + 6 and next a > 0 such that a ( 1/ (3 - 1) > l. We set 

k = a 0 
= [ja J for ja/{3 ~ n < ( j+l)a/{3 . Thus k is of magnitude n ,J n 

n{3 and that A n tends to 0 a. s. , follows along the lines of the 

proofs of Lemmas 1 and 4 by appealing to part (a) of Theorem (3.1) 

of' [12J. To deal with Bn J we proceed as follows: 

= m 
,2;k 

n 

where D is non-random and tends to 0 Here we have used the 
n 

extended central limit theorem ([8J, pg. 210) for the first inequality 

and elementary calculus for the second. Thus in view of the definitiop 

it suffices to show that 2 
Xi 

-a ° ....... a ° 

E j = m J ° ~ :a7t 
l J rva j 

tends to 0 as j ~ 00. But this follows from 

00 00 ao 
o ~ E ( EJo I if a ° ) 

J=l J 
= oL:lWa 0 ~ < 00 

J= J J J-> 
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5: Proofs: Continuous time. 

The proofs in continuous time resemble those in discrete 

time, except that we have the added complication of particles dying 

at different times. We prove only (8) since the proof of (7) 

is similar. 

We introduce first some notation. [(ai'Yi); i = 1, •.• ,Zt} 

is the chart of ages and positions of the particles alive at time t. 

Let :F t' 1)t be the a-algebra,s containing the information up to 

time t on the Bellman-Harris process (including the 

respectively on the whole branching diffusion (that is, in addition 
I 

also on the Yi s). By the additivity properties of the process 

we may write for any Borel 
Z 
St 

set Band St < t 

(14) 

where 

of the 
~, 

..L 

== Z 
i=l 

Zt-St(ai,Yi;B) is the number of descendants at time 

ith particle alive at time St' We let 

Mt (a.) == E (Wt (a. ) I 9J ) etc. 
-St 1 -St 1 St 

t in 

a(t-st) 
e Mt (a1,) is the expected number of particles 

-St 
Here e.g. 

alive at time t-St in a Bellman-Harris process, where the 

original particle was of age a i at t = O. We get the following 

expansion similar to (10) 

B 
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[J2rrt Mt (a"Y.j;B) - IBI Mt (a~)} -St ~ ~ -St ~ 

-as 
Ct = IBle t 

By taking t = no (0 > 0), it now follows that 

Lemma 5. For any 0 > 0, and any bounded Borel set B 

The proof is very similar to the ones of Section 4. Using the 

easily verified fact that 

co 

for some constant C < co, it follows that 2: Var(A J:1J3 ) < co 

and thus that lim A J: = ° a.s. 
n nu 

i 

n=l nu s'no 

To handle Bno and Cna , we 

need the following two lemmas, which' are formulated in greater 

generality than needed at present: 
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Lemma 6. For any two b,o,unded .;measurable functi ons g,JD. 

Zt(a) 
= E ( l: 

i=l 

where ~y is standard Brownian motion s~arting from y. Lenuna 6 

is clear once it is observed that the distribution of Yi conditioned 

upon If t is that of ~y(t) 0 In particular, if g;!!l 1 and 

h = IB' then 

Mt ( a . , y . ; B) 
-St l l 

and since the argument in the proof of 
'" 

Theorem 2 can be repeated verbatum to yield lim 
n 

B = 0 n a. s. 

Before stating our next lemma, we introduce some notation. Let 

x 

£ A(x) = -------
00 

, 
I e-aY(l-F(y))dy 
'0 

00 

meax S e-aYdF(y) 
V (x) = ____ -::;x~;-r--~ __ = m r 

I-F(x) 'b 

00 

J e-aY(l .. F(y))dy 

EW = 0 n l = 
00 

m'b 
ye-aYdF(y) 

00 

= F(a+x)-F(a) 
I-F(a) 

, 
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Also, for g measurable, bounded and positive, 

Zt(a) 
= E( t g(ai )), 

i=l 

Lemma 7. Letg(x) (l_F(x))e-ax be directly Riemann integrable. 

Then 

lim 
t-+oo , t - S.L-+ oo 

l; 

-as 
e t Mt _ c (a 4 ,g) - w r 

-Ut .L b 

00 

g(x)dA(x) a. s. 

Proof: In the usual way one can show that Kt(a,g) satisfies 

t 
(16) Kt(a,g) == g(a+t)(l-Fa(t))+m'b Kt_u(O,g)dFa,(u) 

and consequently by the renewal theorem ([4J, pg, 147) 

(17) lim 
t-+oo 

It follows from (16) and (17) that 

00 

g(x)dA(x) . 

00 

(18) lim SupIMt(a,g) - nlv(a) ,r g(x)dA(x)I = 0. 
t-+oo a b 

Also it is well-known ([3J), that 

(19) lim 
t-+oo 

-at e 
Zt 
~ n1V(a) = W a.s. 

i=l 

The lemma follows from (18) and (19). 
r 

By taking g = 1, it follows that lim C J: :;: WIBI 
n nu 

the proof of Lemma 5. 

a. s., completing 
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Remark 1. The added generality of Lemmas 6 and 7 allow s us 

to prove with no extra difficulty the following variants of Lemma 5: 

Variant 1. Let g satisfy the hypothesis of Lemma 7· Then for 

any o > 0 

Zn5 00 

lim J2rrno -ano 2: g(ai)l[y.EB} wi BI J g(x)dA(x) . a. s. e = 
n i=l 1- 0 

Variant 2. Let h be any measurable positive bounded function 

such that .1'00 x2h(X)dX < 00. Then for any 0 > 0 
-00 

Z no 00 

t h(Yi) = w S h(x)dx 
i=l -00 

a. s. 

00 

The assumption J is needed to show lim Bno = 0 a.s, 
n -00 

We omit the details. 

We are now ready to complete the proof of (8). Let e: > o. 

and define" I 

B = [xix E B, p(x,dB) > e}, Be = [xlp(x,B) > e} 
e 

where dB is the boundary of Band p(x,A) = inf Iy-xl for any 
yEA 

Borel set A. Also, we let 

limlB I = 
e-->-O e 

if 

sup I ~o(t) I 0< t<: 0 

I dBI = o. 

• Note that 
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o > 0 and define for i = 1, ... ,Z ~(B) 
nu € 

A . n,l. 

to be the event, that for all t E [no, (n+l)o] there is at least 

one particle in the line of descent initiated by i 

Z o(B ) n € 

Zt (B) > r; lA 0 

i=l n,l. 

for all t E [no, (n+l)o]. As above, it follows that 

-ano lim J21Tno e 
n 

Furthermore, 

in B. Clearly, 

PA . > P(A l." Ii does not split before t) > p(~(o) < 8). n, l. - n, 

Thus 

PA ,> n, l. -

and the conclusion follows by letting first 0 and then € tend 

to O. 

The proof of (8) is now completed by 
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Proof: Let 0 > 0 and define zo(ai,Yi;B) as th& total 

number of particles that ever enter B before time t = (n+l)o 

in the line of descent initiated by a particle of age a i and 

position Yi at time t = no. Then for t E [no, (n+l)0] 

Zno 
Zt(B) < i~l z6(ai ,Yi ;B) 

and since Var(zo (ai' Yi; B)) < c < 00, ,it follows as above that 

( 20) lim .J2Trt e-atzt(B) < lim J2Trno 
t n 

-ano e 

To deal with this last expression, we note that 

(21) 

(22) 

where cl ' c2 are constants. Thus for 8 > 0 

Zno (BE:) Z (BE:) 
no 

r: EZo(ai,yi;B) < Zno(BE:) + cl L: F (0) 
i=l i=l a i 

Zno (BE:) Zno (BE:) 
r; EZo(ai,Yi;B) < c2 r: p(%( 6) > p(yi,B)) 

i=l i=l 
(.BE:=lR_BE: ) 

It is not difficult to show that Fx(o)(l-F(x))e-ax = (F(x+o)-F(x))e-ax 

is directly Riemann integrable and that 
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00 

y2p(~(O) > p(y,B))dy < 00 • .r 
-00 

E.g. it follows from DoobYs martingale inequality ([13J, pg. 133), 

that P({(6) > p(y,B)) < co 2jp(y,B)4. So appealing to Lemma 5 

and Remark 1 we have from (20), (21) and (22) 

Fa(o)dA(a) + c2 S P({(6) > p(y,B))dy). 
-8 B 

It is easy to see, that the two last integrals tends to 0 as 

6 ~ O. Thus the conclusion follows by letting first 6 and then 

8 tend to O. 

Remark 2. The assumption can be weakened to the 

same extent as in the discrete case providing we could prove the 

continuous time analog of (13). We state without proof a parti~l 

result. 

Lemma 10. Suppose inf V(x) > O. Then there exists 
x 

constants A,B such that 

p( sup Wt > Ax) < BP(W > x) 
t>O 

The condition of the lemma is satisfied for F exponential or F 

with bounded support. It would seem reasonable that the lemma 

should hold with no assumptions on F. 
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