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Consider an increasing sequence of rsmdom times and a corre.s
'1 

ponding sequence of random populations. Let these be the starting 

times and initial values of otherwise equivalent Markov branching 

processes. The resulting superposition is an ~igration-branching 

proces.s . Admitting a general sete df types, let the underlying 

branching process be supercritical and positively regular in the 

sense of [lJ~ where the limiting behavior of such processes has been 

established. It is readily conjectured that, if only the irmnigra-

tion is dominated in some appropriate sense by the branching, the 

immigration-branching process, averaged and normalized as the 

branching process, converges almost surely to a superposition of 

the limits for the composing brariching processes, We verify this 

conjecture, thereby satisfactorily Sharpening a result of [2Jo The 

known theory for a finite $~et of types ([3J, [5J) ,is not only con

siderably generalized and-simultaneously extended to the continuous 

time case-, it is also sharpened, Moreover, it becomes clear that 

the finite, discrete, time case reduces to a triviality, once the 

limiting behavior of processes without immigration is known, 

This seems to have been overlooked by some authors, 
, , 

, ; 
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L Let X be an arbi.trary set, x(n) the symmetrized n~fold 

dire ct product of x , 8 some extra point, and 

1\ 00 

X: = e 
n=O 

1\ A A 
X + y: = x; 

1\ 
X ::= 

~[AJ: = 

n 
= t 

v=l 
1 .(x ). A '\)i' 

~[sJ: == J J'< 

S (x) x[d~ 
X 

= e:~ 

= 

f\ ' A 
X - <Xl'" .,x) e X, n 

for A C X and every real valued function S on X. 

i" 

Define 

Let A be: a o~algebra on X and A the a~algebra induced 
J'\ 

on X by A. Let either T = N = [Oyl,2, 0" L or T:;::: R+ = [O,oo[j) 

and suppose to be given 

( a) 
A / ~ 

the immigration process ['T '\)' :Y\)J P}, where 0 " 'T \I I 00 is a 

sequence of (not necessariJ.y finite) random times and [ }\leN 
A '" is a random sequence in (X, A), both defined on the same 

sp~ce with probability measure P 
,..., 

(b) the Markov branching process eXt' pX} that i.s an 

Markov process wi.th parameter set T and stationary transi~ 

tionprobabili ties satisfying the branching condition as in [1 J, 
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For the case that T = R+ we shall need some topological structure, 

in order to get beyond the consideration of discrete skeletons: 

(c) If T = R + 
the set X is a separable metric space, A is 

A 

the topological Borel algebra, and [xt ,px1 is right continuous. 

Standard examples for the immigration process are the following. 

(i) The are the epochs of a renewal process" and the are 

independent and identically distributed. 

(ii) The rv form a poisson process determined by a density Pt' 

and the are independent with the distribution of 

depending only on r v' [2J. 

(iii)Given a decomposable branching process consider the immigration 

into one component from all other compqnents, [4J. 

Let (x t; t > 'T } be the branching process initiated at v, - v ;.., 
Yv 

and developing according to P . Set 

The immigration-branching process 

!: 
v~Nt 

is then given by 

and the corresponding probability measure P defined on the 
'I 

Tby v 

appropriate prod-y.ct space. The formal constructioni-s the same as 

in [2] except f,ot' the trivial adaptation:eb the more general, not 
: 

necessarily.Poissonian case considered here. 

Let B be the Banach algebra of ~ll bounded, A~measurable 

functions ~ with supremum-norm, B+ tlliE non-negative cone in B. 
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We assume that [~t' pX} is positively regtl.lar, 1. e. satisfies the 

following condition: 

(M) The ,first moment semigroup [E<'> ~t[o ]}tET 

be represented in ,the form 

exists and can 

* with P € JO,oo[, fP € B+, and ep a non~negative bounded linear 

functional on B such that 

* cp [ep] == l~ 

cp * [ Q~' > [. JJ eo, 

I ~i> ['I'd I <atCfl * [TjJep (x), 
, 

x X Bif t > 0, 
€ ''l1 E I' 

for some a: T ~ [O,oo[ satisfying 

t ) 00, 

The, condition (M) implies that is a measure on A. We set 
* . cp [1) "" 1, where, 1 (" ) = 1. 

For a finite set of types our definition of positive regularity 

is the usual one, in the infinite case its motivation derives from 

branch'ing diffus'ions, [1]. 

As is well known, 

t E T, 

is a martingale with respect to t:i(~st 0 < s < t)"; t E T, and 

it follows by the 'martingale convergence theorem that 
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W: = lim 
t~oo 

a. s. 

A 

exists. Assuming in addition that [£t' pX) is supercritica1, 

i;e. p > 1, there exists a necessary and sufficient moment 

condition for the nondegeneracy of W, [lJ. 



WE; aS3Ulne 

Define 

'T ) 

THEOREM 1. Let T 

(2,1) 

vJ: =' 1 p 

ex:Lsts and is finite (:to 8 e and 

PIWOP; Le t I - a ( 'T 19 T 2 J ' " 'J 1 Y :2"" 0 0 ), 

(2, 2) Wt := P t ] = 

and 

""T 

SllP 
t 

II) - E P 
t r t 

'Thus the firs t p of 

theorem nOll'~,negat 

For the second p 

'r 

P"~"* 
(}:) ~T 

\Ii/ ; ~~ E {J 

\1=1 

p , t t 

d,o :3" 

2m 

( 2" 1) 

p L 

i,ti 
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For 0 < s < t < 00 write 

First let t ~ 00. Then almost surely the first and the second term 

on the right tend to zero and the third to a finite limlt U > O. 
I S -

Now let s ~ 00. Since Us is nonincreasing in s, U = lim U > 0 ~.s. s -
s~oo 

exists, and U = 0 a. s., since 

E(uII) < lim inf lim inf E( E p-rVWv,t/I) 
s~oo t~oo s<r~t 

=.lim inf 
s~oo 

, 

The remaining term tends to zero a.s. by (2.1). 0 

condition 

';is sUfficiertt for 
")J!" . 

a. s. . 

It is necessary if the mean interarrival time 
-- ------ ill is finite. 

PROOF: ~~tIY > ';1.; '.: Kolmogor®v I s three series criterion implies 

that 

.' 
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if and only if (2.3) holds. Since 1" I,v ~ m a. s. , there is a 

(random) Y > 1 such that 
- T \) 

\) < -v for v P - y 

and, i,f m< 00, a YI 
-'T 

such that P \) > -v - Yl . 

In general, (2.1) holds at least if 

(2.4) 

In the Poisson case (T == R+) this reduces to 

00 

J P -6 P sMS [~]ds < 00, 

o 

sufficiently 

0 

where MS [' ] == E(Yv[' .Ji'rv = s), cf. [2J. For a decomposable 

branching process with two components (2.4) is automatic if 

P = PI > P2 in the notation of [4J. 

We continue with the general theory. 

large 

LEMMA 1. Let T == N ~ T ==~, and assume in addition to (2,1) 

that 

(2.5) lim p~tXt[sJ == W~*[;J a.s. 
t~oo 

A 

[pX] V~ € X 

for some non-negative 1 
S E L~*, 

(2.6) a.s. [PJ. 

PROOF: 



lim inf p-t~t[sJ == 
t~oo 

> 

lim inf 
t~oo 
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00 -'j' 

1: P \)W \)Cj) * [S ] 
\)=1 

a. s. o 

PROPOSITION 2. Let T == N and suppose in addition to (2.1) that 

(2.7) a. s. 

1 
for ~ ££!l-negative L3' E Lcp*' Then 

(2.8) a. s. . 

for all T\ E B. 

PROPOSITION 2 I. Let T == R+ and assume in a,d.dition to (2.1) ,~ 

1\ 

p-t~t[()j (2.9) lim =: Wcp* [v-] a. S', [px] ~'vQ 
t~oo 

-tl\ 
,... """ 

(2.10 ) lim p Zt l1JJ == Wcp* [~J a. s. [PJ 
t~oo 

i'ol, ,~, 1J' E B+ which is lower semi-continuous a. e. 

'* ",fop any cp -a. e. continuous T\ E B, 

(2.11) 

"" E X 

* [t;p J. Then 

PROOF OF PROPOSITIONS 2,2 1 : We may assume 0 < T\ < 1. By [lJ, (2.5) 

holds with ~ =V'r] and s ='1J'(1-'ll), Hence by (2.6) 



lim sup 'p-t~t [iJ'n] 
t~oo 
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< lim sup p -t~t rt9-] - lim inf p -~t M I-Tl) ] 
t~oo t~oo 

Combined with (2.6) for e; = 'lJ1), this completes the proof. 0 

By Theorem 1 we certainly have (2.8) and (2.11) with 1.Y= cpo 

However, if "ihf ~'= 0 as for example in the case at branching 

diffusions with absorbing barriers, this is unsatisfactory, since 

it leaves, e.g., the limiting behaviour of the total population 

size, ~t[l], as an open question. In Section 3, we return to this 
\ 

problem, which is, in fact, the only one considered here, whose 

solution is not a corollary of results for processes without immi-

gation. For a finite set of types, of course, ~ is uniformly 

positive; and the problem does not arise, so that Propositions 2 

and 2' settle this case. If for a finite set of types the usual 

x log x ( ) " wl'oJ< 00 condition holds, 2.1 is also necessary for a. s. , . 

i.e. for the immigration to be dominated by the branching in the 

sense that -t P remains the proper normalizing factor. So at least 

in the finite case our theory covers all" models in which the 

branching dominates. in the above sense, and specific assumptions 

on the immigration process, as can be found in the literature, " 

serve only to ensure (2.1). For example, Propositions 1 and 2 

combine to strengthen the convergence in probability in Theorem 4.1 

of [3] to a.s. convergence. 
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3. Ag~in it is assumed throughout that (M) is satisfied with 

p > 1. If inf cp = 0, it is not difficult to construct examples 

showing that (2.1) is not sufficient to guarantee the well-behaviour 

... t" of p zt[l]. We therefore sharpen (2.1) to 

(3.1) 
00 -'T' 
~ \) 1\ [1] < l.l P Y \) 00 a. s. . 

\)=1 

The verification of (3.1) in the examples follows the discussion on 

(2.1) verbally. 

THEOREM 2. Let T = N. If (3.1) holds, then 

a. s. 

for all 'II 6: B. 
-,..--.,.. --.--

To deal with T = R+, we need - as in [l)-seme additional 

structure, which is automatic, e.g., for branching diffusions. 

THEOREM 21. Let T ::i: R + ~ assume in .§.ddition to (3.1) that ~ 

0\); \) =1,2, ... ~ Markov times and that 

(3.2) 
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Then 

-tA .... 
lim p Zt[ll] = WCP*[IlJ a.s. 
t-+oo 

for all cp*- a. e. continuous 1l E B. 

LEJY:JM.A 2. Let T = N or T = R+ and let a,m E ~[O}. Let 

~ . ; no < ~,,< (n+m)0; i = 1, ... ,Y,,[1] be non-negative random n,l,v . v - v 

variables with E(Y ":'. I r) < y < 00. Then 
---------~- ----. n,l,v -

lim p-no E 
n-+oo no<~«n+m)6 

Y '" = 0 n,l,v a. s. . 

PROOF: 

YV[l] 

i~l Yn , i, vi I) 

.jJ" .... . , 
-'it 

i' a. s. 

LEMl'-1A ·3. Let T = N and let n = 0,1,2,: .. \; i = l, ... ,in[l] 

be ~-negative random variables, independent conditioned upon 
,.... 
F = a (~ ;. m < n), n m- ~ such that the distribution function 

of Yn,i depends only 2£ the type xi of particle i. Suppose 

Then 

00 

~(.):= J y dG<.) (y) E B. 
o 

-n lim sup p 
n-+oo 



PROOF: Write /\ <1\* ,,** 
Z =z + z n n n' 

* 'Zn:::;:: 
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where 

\ 

Therefore the proof of Lemma 2 of [lJ goes through verbatiml to 

yield 

-n lim sup p 
n~oo 

* Z [lJ n 
~ y 0 = 

i=l n,l 
lim sup 

n~oo 

* 1 [lJ 
p-n nt E(Y .~ IF ) 

i=l n, l, {Y . ~n} n 
n,l 

< lim sup p-n ~~[IlJ < lim sup p-n ~n[I-lJ, a. s .. 
n...;:.oo n...;:.oo 

Finally by Lemma 2 
** ~ [lJ n 

lim -n ~ y . = 0 a-:s,~" IT p 
n-?>-oo i=l n,l 

PROOF OF THEOREM 2: From Lemma 1 and [lJ, 

. lim inf p-n ~n[lJ > i . 
n-?>-oo 

Let m be fixed, Y . the number of descendants at time n+m n,l 
at the ith particle alive at time 

descendants at time n+m at the ith 

n, and Y. the number of n,l,\) 

of the particles that immigrated 

at time n < 1" < n+m. 
\) - From (M), 
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Using Lemmata 2,3 and Proposition 2 

lim sup p-(n+m) ~ [lJ 
n+m 

~ [lJ 
< lim supp-(n+m) n~ y . + lim sup p-(n+m) t 

n+oo i=l n, l n-+oo n<.,. $n+m 

< (n+m) p-m ~.rn*[IIJ < ~W c+m lim sup p- ~n[\-lJ = VV~ ~ 
n-+oo 

Letting m -+ 00 and using Proposition 2 with rtJ- = 1 completes 

the proof. 0 

PROOF OF THEOREM 2'; We shall show that 

(3.3) -t"l. 
1\ 

A 
lim sup p xt[lJ < W a, s. [px] ~E X 

t-+oo 

-t~t[lJ < W ..... 
lim sup p a, s. [PJ . 

t-+oo 
(3.4) 

Admitting this for the moment, the proof is easily completed. 

First (3.3) and Lemma 8 of [lJ with 1.9"" = 1, U = X yields (2.9) 

wi th """ff = 1 and next (3.4) and (2.6) with S = 1 combine to give 

(2.10) with lY= 1. Thus Proposition 2' applies. 

The proofs of (3.3) and (3.4) are similar and "lATe treat only 

the more complicated case (3.4). We first remark that for any 

6 > 0 
. A* A 

we can conslder Zn = Zn6 as a discrete time immigration-

* branching process, with immigration times .,.~ = (["'~/6J + 1)6 and 

From (3.2), 

Y = 



snd therefore 

* ..... 00 -T 00 -T 

E( r: P \)Y\)*[lJII) < y :E p VY):lJ < co aoso, 
v=1 \)=1 

so that (3. 1) holds for the skeleton p roc e s s and Lemma 3 and 

apply. 

Consider now the .th 
1 particle alive at time n6 

Y . be the number of descendant of i at time (n+l)6 plus the n,l 

number of splits in irs line of descent i.n [n6 y (n+l)oJo Simi~ 

larly, let for no < T\) < (n+1)6, Y. be ttlc n, l? \) 

number of descendants of i at time (n+l) 6 plus the rm.nlber of 

splits in ils line of descent in [T\), (n+l)OJ. Then for any 

t E [no, (n+1)6] 

(3.5) 

By (3.2), 

with h ....,.. 1 
6 

as 6 ~ 0. 

'2n6 [1] 
E Y. + ~n6 

n,l P i=l 
E 

nO<T,'«n+l)6 
r-

y 0 

n~ 11 \J 

;rhus the second term on the rigllt-Land 

side of (3.5) tends to zero by Lemma 2 and using Lemma 3 and the 

skeleton convergence, we get from (3.5) 

Y . < 
(1)1 

< 

As 0 \~ 0, (3.4) follows. 0 
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