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Consider an increaging sequence of random times and a corres-
ponding ;equence of random populations. Let these be the s tarting
times and initial values of otherwise equivalent Markov branching
processes. The resulting superposition is an immigration-branching
process. Admitting a general setcdf types, let the underlying
branching process be supercritical and positively regulaf in the
sense of [1l], where the limiting behavior of such processes has been
established. It is readlly conjectured that, if only the immigra-
tion 1s dominated in some appropriate gsense by the branching, the
immigrgtion~branching process, averaged and normalized as the
branching process, converges almost surely to a superposition of
the limits for the composing braiching processes. We verify this
conjecture, thereby satisfactorily sparpening a result éf [2]. The
known theory for a finite set of types ([3], [5]) is not only con-
siderably genefalized and simultaneously extended to the continuous
time cage, it 1s also sharpened. Moreover, it becomes clear that
the finite, discrete time case redﬁces to a triviality, once the
limiting behavior of processes without immigration is known.

This seemg to have been overlooked by some authors.
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1. Let X Dbe an arbitrary set, X(n) the symmetrized n-fold

direct product of X, 6 some extra point, and X(O) = {81}. Define

A © .
2 - o x(0)
n=0
A A A A NooA
X+ y: = X3 X e X, v = 68,
= <Xl,,.,,xn, yl“.,.,,;y‘m)y

. ) A,
~ A s AN s
X = AXqy000 53X Vo= Ve .oV X,
< 172 b l’l> 9 / " 1° S m/ € 3

X[A]: = 0; X =8,
£ 1(x); %=X > e R
= vEl A(xv>’ X = (X, sX 7 € X,
Y
x[e]: = [ €(x) X[d=],
e

for A< X and every real valued function § on X.
A
Let A Dbe.a o-algebra on X and A the o-algebra induced
on X by A Let either T =N={0,1,2,...}, or T =R, = [0,u[,

and suppose to be gilven

(a) the immigration process {Tv,:§v,P}, where O S Tv ¢ o 1s a

sequence of (not necessarily finite) random times and {§v}VeN
AN

is a random sequence in (X;A), Dboth defined on the same

space with probability measure P,

s - o A -
(b) the Markov branching process {xt,PX} that is an (X,anvalued

Markov process with parameter set T and stationary transi-

tion probabilities satisfying the branching condition as in [1].
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For the case that T = R+ we shall need some topological structure,

in order to get beyond the consideration of discrete skeletons:

(c) If T = R+ the set X 1s a separable metric space, A 1is

the topological Borel algebra, and {it,PX} is right continuous.

Standard examples for the immigration process are the following.

(1) The T, are the epochs of a renewal process, and the §v are
independent and identically distributed.

(ii) The Ty form a Polsson process determined by a density Dis
and the §v are independent with the distribution of 9v
depending only on Tv,[z],

(1i1)Given a decomposable branching process consider the immigration

into one component from all other components, [4].

Iet' {%V £ t Z TV} be the branch}ng process initiated at Tv by
3
N
§v and developing according to P V. set

N, = max{v:Tv <t

The immigration-branching process {Qi,g} is then given by

2 z
v=N

R
v,
t

and the corresponding probébility measure P definéd on the
appropriate prodﬁgtﬁspace. The formal constructioni% the same as
in [2] except for the trivial adaptation. to the more general, not
necessarily Polssonian case considered here. |

Let B be the Banach algebra of all bounded, A-measurable

functions € with supremum-norm, B+ the rfon-negative cone in B.
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A,
. ‘ X . - o . s s
‘We agsume that {QﬁyP 1 is positively regular, i.e. satisfies the

following condition:

<o )
(M) The first moment semigroup {E° 2 %t[a]}teT exists and can

be repregsented in . the form

<X>A gl = o Tl (x) + Qéx>[ﬂ]; x e X, t €T, neb,

with p e ]0,w[, & € B+, and @* ‘a non~-negative bounded linear

functional on B such that

o [9] =

o >[ 1] = Qﬂ<t">[q>1 = 0,

S A
a@f
£

- *- e ; s
’Q(%X/[ﬂ” i OLJCCP MJCP(X)y X e X, f € Bq.;t > 0,

for some a: T » [0,»] satisfying

The, condition (M) implies that m*[lA] is a measure on A. We set
w*[l] = 1, where. 1(-) = 1.

For a fihite set of types our definition of positive regularity
is the usual one, in the infinite case ite motivation derives from-
branching diffuéions, [17.

As 1s well known,

wi

~is a martingale with respect to c(ﬁs; 0{ 8<t), teT, and

it follows by the martingale convergence theorem that
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W: = 1lim Wt a. s.
>0

exists. Assuming in addition that {ﬁt? PX} is supercritical,

i.e. p > 1, there exists a necessary and sufficient moment

condition for the nondegeneracy of W, [1].
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o
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©
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We assume throughout that (M) 1s satist

8

of B
e
=

and supposge

THEOREM 1. ILet T = N, or

Then — N
We= 1im p zﬁ[@]

exists and ig finite a.s., and

~ [ee}
= L o W a.s..

—

?Q,o,,)a Then, conditioned upon

- . . p A
PROOF: Let I = U(Tlng,o,v}yly

) ~ —ta B Ty,
(2.2) Wpiz P zglel = Boe W g
T Y v

is a subnmartingsle and

u.:nT ‘:.
/

sup E(W,|T) =sup £ p T, le] <= as
T t T Nt

g)
U,

Thus the first part of the theoram follows by the convergence

48]

theorem for non-negative submartingale

For the second part note that by (2.1)

-

@



For 0< s < t < o Write

*

W-W = (ﬁ_w, + I

2 7 s

V—

First let t = . Then almost surely the first and the second term

on the right tend to zero and the third to a finite limit Us > 0.

Now let s > w. Since U, 1is nonincreasing in s, U = lim Ug Z 0 a.s.
S—>c0

exlsts, and U=0 a.s., since

B(ulz) € 1im inf lim inf B( T p "W ,|T)
S>00 t>o0 <7 <t ?
\),—
= 1lim inf & pﬁTvﬁ [p] = O
S—>00 S<T v CP

" The remaining term tends to zero a.s. by (2.1). lj

PROPOSITION 1. Let TyTpse -+ De the epochs of a renewal process

and ﬁhe ?;‘ ; beJi,i.dgé Then for any A-measurable 0 2,0 the
condition |
(2.3) E log §1[n] < o

'?jis sufficient for

=

e T - ‘
T p VT,Inl <o oas.

It is necessary if the mean interarrival time m 1s finite.

PROOF: Let Y > 1.. Kolmogorov's three series criterion implies

that



if and only if (2.3) holds. Since Tv/v > m a,s8,, there is a

~T
. -V e s :
(random) y > 1 such that p ~ <y for v sufficiently large
T
and, if m<€ », a v, such that o v Q,Y;v. ]

In general, (2.1) holds at least 1f

- I NS .
(2.4) E ioe v el S o
AVENE

In the Poisson case (T = R+) this reduces to
| e8]
Jo % p M [plds < o,
0

where M9[-] = E(§v[~j]Tv = g), cf. [2]. For a decomposable
branching process with two components (2.4) is aubomatic 1Lf
P = pq > Po in the notation of [4],

We contlnue with the general theory.

LEMMA 1. Let T =N or T =R and assume in addition to (2.1)

s e ?
that
2 [ - = t/“; w1 M . » T % . oy . oy
(2.5) lim p "% [E] = We*[g] a.s. [P7] VX ¢ X
Tt !
for gsome non-negative £ ¢ qiﬁﬂ Then
(2.6) lim inf pﬁtQﬁ[i] > MWp*[E] a.s. [P].

Troo

PROOF":



-7 =(b=7_)
lim inf p” "%, [g] = 1im inf £, p Y VR LIE]
t>o0 >0 T<'t v
Ve
w =T
> L p Ywgpxe] as. . []
v=1

PROPOSITION 2. Let T = N and suppose in addition to (2.1) that

(2.7) lim p“n%ﬂ[fl;?fl = Wo*[9] a.s.

N>

for gome non-negative 79 ¢ Ll‘ . Then
Cp%
(2.8) 1im p % ] = Wex[n] a.s.

N>

PROPOSITION 2'. Let T = R, and assume in addifion to (2.1) that

A

- e 4 A
(2.9) o lim pT"R [ = Wex (V] a.sn [PT] HVR e X
t> w0
(2.10) Lin "2, [V] = Wgxpg] a.s. [P
T>oo

for some 7% e B, which is lower semi-continuous a.e. [qp 1. Then

; #*
~for any o =-a.e. continuougs mn e B,

(2.11) lim o™ fon] = Fp¥fen] a.s.
>0 ! )

PROOF OF PROFOSITIONS 2,2': We may assume O :/\_ gl S 1. By [1], (2.5)
2.6

holds with & =7y and £ =70{1l-n). Hence by (2.6)
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lim sup p_t%th}n]

1>

-ta R -tn
_<_ lim sup p tzt el - llrél inf p Zthj‘(l-‘l’]) ]
: ~>00

t>w
{ FoxRe] - For*Ry1-n)] = Wo*fsn] a.s.

Combined with (2.6) for & =7, this completes the proof. B

By Theorem 1 we certainly have (2.8) and (2.11) with %= g.
However, if inf g = 0 as for example in the case at branching
diffusions with absbrbing barriers, this is unsatisfactory, since
it leaves, e.g., the iimiting behaviour of the total population
size, Qt[l], as an open question. In Section 33 we return to this
problem, which is, in fact, the only one considered here, whose
solution is not a corollary of results for processes without immi-
gation. For a finite set of types, of course, o ié uniformly
stitive; and the problem does not arise, so that Propositions 2
aﬁd 2' settle this case. If for a finite set of types the usual
x log x condition holds, (2.1) is also necessary for ﬁ?< ©  8.S.,.
i.e. for the immigfation to be dbminated by the branching in the
sense that p—t remains the proper normalizing factor. So at least
in the finite case our theory = covers all models in which the
branching dominates in thé above sense, and specific assumptions
on the immigration process, as can-be fouﬁd in the literature,

serve only to ensure (2.1). For example, Propositions 1 and 2

combine to strengthen the convergence in probability in Theorem 4.1

of [3] to a.s. convergence.
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3. Again it i1s assumed throughout that (M) 1s satisfied with
p > 1. If inf v = 0, it is not difficult to construct examples
showing that (2.1) is not sufficient to guarantee the well-behaviour

of p*t%t[l]. We therefore sharpen (2.1) to

-7

(3.1) 0 V';;rv[lj { o a.s.

™8

v=1

The verification of (3.1) in the examples follows the discussion on

(2.1) verbally.

THEOREM 2. Let T = N. If (3.1) holds, then

. =4 _ =
lim p Zn[ﬂ] = Wep*[n] a.s.
N>

for all n € B.
To deal with T = R,, we need - as in [1]-some additional

structure, which is automatic, e.g., for branching diffusions.

Define the split times 013505500 by
. A A
oy:= inf{t:X [1] T X5[113,
I " A —- &
0 ppi= inflt 2 o R [1] £ kan[l]},

THEOREM 2'. TLet T = R_ and assume in addition to (3.1) that the

_|._
Oy V= 1,2,... are Markov times and that
P<'>(ol =t) =0 Vt)O
(3.2)

” . <> A 0 .
11% gup | E (%, [1] + El nl{0n£ﬁ<0 Y| = 1.

n n+1}
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Then

. A i)
lim p zt[n] = Wo*[n] a.s.
t>o0

for all o*- a.e. continuous n € B.

and let d,m ¢ ™\{0}. Let

IEMMA 2., Tet T =N or T

I
=

Yh s o < Ty Sﬁ(n+m)6; i= l,,..,§v[l] be non-negative random
s 3 .
variables with E(Y s, ]1) < ¥y < «. Then
A n,i,v
v, 1]
-Nné . !
lim p z z Y .,=0 a.s.
N>w néﬁbﬁ(n+m)6 i=1 n, LY
PROQF':
« =, =nbd yv[l]
z F(p z Sy, D
n=0 n6<¢vg(n+m)6 S i=1 i
| o =T
Cymp™ 8 p VH 1)< 0 as.
v=1

LEMMA 3. Let T =N and let Yn',i; n=0,1,2,2.:; 1=1,...,2[1]

3

be non-negative random variableg, 1ndependent conditloned upon

o . . , . . .
Fn = U(Zm, m i n), and such that the distribution function G<Xi>
of Yn i depends only on the type Xs of particle 1. Suppose
S : ~e LIPS patbae-c RUPPESC
(o]
p(-)e= foy dG¢.y (v) € B
Then %n[l]
lim sup p % % Yo < 1im sup p 77 %n[u] a. 8.
N> 1=1 ? n>e



% * K
PROOF: Write ’z‘n =%, + ’z‘n ,  where
N
n-1
P A * ¥ )
Z, = Z -X-\ E) % . = z: y
n v=1 TR n Nn~l<V£Nn v

By - (M) andz%‘-(B'.‘z:Lf)‘ there is a ¢, O<1{1< i, such that

K

E 2 [n] < cpp’ln] ¥n ) o

Therefore the proof of Lemma 2 of [1] goes through verbat im. to

yield
%*[l] *
-n -1 %n[lj ot =
1im sup p Ly ;= lim sup p g E(v, 41 |F,)
n>co i=1 7 n>oo i=1 ’ “‘{Yngiipn.}
. -Nn A¥ . =1l A - o
i lim sup p z, [p] S.llm sup p zn[uj a.s.
N> N—>co
Finally by Lemma 2
AKFH 1
L W
lim p B Y, 3 =0 aws. 1
n>oo i=1
PROOF OF THEOREM 2: From Lemma 1 and [1],
PR -n A r~
1im inf p Z [1] > W
N=>oo
Let m be fixed, Yn 5 the number of descendants at time ntm
2> W
at the ith particle alive at time n, and Yh 1y the number of
> 3
descendants at time n+m at the ith of the particles that immigrated

at time 7, n < T { nt+m. From (M),

u(x) < pm C$@<X) with cz > 1 as m-> .



P
Using Lemmgta 2,3 and Proposition 2

lim sup p=(n+m)/\ [1]

oo n+m

i\

z [1] -
{ 1im suppm(ner> Ny Y, 5 * lim sup p (ntm)
- oo i=1 ? n>oo

n<¢v§n+m i

. ““(l’H‘Iﬂ) K _ =iy =~ Fd o
S lim sup p zn[u} =p Wep* (11 ] S,W cp -
: N>
Letting m > « and using Proposition 2 with nJ = 1

the proof. []

PROOF OF THEOREM 2': We shall show that

A

(3.3) 1lim sup p”t%t[l] {W a.s. [P*]
t>o0

(3.4) lim sup p“t%t[l] {W a.s. [P].
t>w

completes

Admitting this for the moment, the proof is easily completed.

with 7%= 1 and next (3.4) and (2.6) with € =

(2.10) with W= 1. Thus Proposition 2" applies.

First (3.3) and Lemma 8 of [1] with %% =1, U =

1

X yields (2.9)

The proofs of (3.3) and (3.4) are similar and we treat only

the more complicated case (3.4). We first remark that for any

. H* & . . R .
5§ > 0 we can consider Z, = 2z as a discrete time immigratiocn-

nd

combine to give

*
branching process, with immigration times Ty = ([Tv/é] + 1)8 and

gz = Qv,Tﬁ’ From (3.2),
<2arqn
v = sup [ 277 2211 { =
oK t<8 ’



and therefore

~ O.O RV s L
E( L p yv%[lle) S}y o valJ Cw acs.,

=1

2

so that (3.1) holds for the skeleton procesg and Lemma 3 and Theor

apply.
th

Consilder now the 1 particle alive at time ng and let

Y be the number of descendant of 1 at time (n+l)é plus the

n, 1

number of splits in 1i's line of descent in [nd, (n+l)8]. Simi-

r ns < TV<:<h+l)6y 1 =1,...,v. (1], Y
S NESE

f descendants of 1 at time (n+1)8 plusg the nunber

=
)

T

i
4]

larly .
J s Iy L, v

O

number

splits in 1's 1line of descent in [Tvg (n+l)s]. Then for any

t e [nd, (n+l)s]

vl
. _ 5 ‘ [
(3.5) p ', (11 < p™ Ty o4 0O £ s

ns{r <(n+1)s
\Jm-

[4p!

with b, = 1 as 8., 0. Thus the
gslde of (BQB) tends to zero by Lemma 2 and using Lemma 3 and

skeleton convergence, we get from (305)

-t A o s -ng i -

lim sup p z,[1] < Lim sup p Yoo
T2 ’ oo i=1 S

< lim sup p 1 ne 110, = Whés

=00

[

As 8., 0, (3.4) follows. []

econd term on the rignt-hand

bLhe
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