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EXTINCTION AND EXPONENTIAL GROWTH 

IN RANDOM ENVIRONMENTS 

Summary 

The influence of randomly varying environments on unrestricted 

population growth and extinction is analyzed by means of branching 

processes with random environments (BPRE). A main theme is the inter-

play between.environmental and sampling (or "demographic") variability. 

If the two sources of variation are of comparable magnitude} the 

environmental variation will dominate except as regards the event of 

extinction. 

A diffusion approximation of BPRE is proposed to study the situ-

ation of a large population with small environmental variance and 

mean offspring size little above one. 

Comments on the ecological literature as well as on the possible 

significiance of the results in branching process theory are also 

given. 

-1-



1. Introduction 

Considerable interest has recently been devoted to studies of 

randomly varying environments in a variety of the familiar models in 

mathematical ecology as well as population genetics. For the simplest 

possible case, that of unisexual, unrestricted growth, the literature 

has developed along two almost independent lines. 

In the ecological literature, a basic point was made in the note 

by Lewontin and Cohen (1969) with the sequel by Levins (1969). These 

authors remarked that if random environments are imposed on the simple 

" 
deterministic multiplicative growth model, the condition for ultimate 

extinction of the population is not that the expected offspring size be 

less' than one, but that the expected log (offspring size) be less than 

zero. Recent contributions to this literature are diffusion modelSc'~ by 

Cappocelli and Ricciardi (1974) and Tuckwell (1974)) and May (1973) 

considers diffusion-type arguments for a large class of models for 

deterministic growth in randomly varying environments. None of these 

authors incorporate the sampling variation due to the integer-valued 

size of living populations, and it turns out that accordingly, the 

possibility of population extinction in finite time is not allowed for 

in any of these models. 

On the other hand, a generalization of the classical branching 

process models to random environments was given by Smith and 

Wilkinson (1969) and further developed by Athreya and Karlin (1971 a,b). 

The condition for certain extinction is equivalent to the condition 

given by Lewontin and Cohen as discussed above, but in this model, 
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extinction in finite time is certain in the subcritical case ~ith negative 

expected logarithmic offspring mean) and possible in the supercritical 

case as well. 

These results have been applied by Mountford (1971, 1973) but 

seem otherwise to have had little impact on the ecological literature 

so far. 

Kaplan (1973) defined Markov branching processes (continuous time) 

in random environments. 

It is the purpose of this paper to reconcile these two approaches 

and to give some further contributions to the theory of the interplay 

between environmental and sampling variation in the simple model of 

unrestricted exponential growth. 

In Section 2 we briefly review the branching process theory and 

discuss and generalize a result by Keiding and Nielsen (1973) which 

roughly states that the environmental variation outweighs the sampling 

variation except for the event of extinction, and that this latter 

event is asymptotically independent of the dominant fluctuations 

around the expected exponential growth. Section 3 contains a similar 

discussion for continuous time models. In these two Sections, the 

environmental and sampling variations are assumed to be of comparable 

size and the results are true for small populations. 

Section 4 shows that in a large population, it is possible to 

obtain a balance between the two sources of variation by letting the 

environmental variance become small. Specifically, we propose a 

diffusion approximation of branching processes with random environ-

ments generalizing the classical diffusion ap~roximation of Galton-



Watson processes due to Feller (1951). The resulting diffusion process 

also has as a special case the process recently studied by Cappocelli 

and Ricciardi (1974) and Tuckwell (1974) 'and since it is motivated by 

a discrete approximation rather than by integration of a stochastic 

differential equation, it may shed some light on the controversy 

concerning Ito or Stratonovich stochastic integration of white noise, see 

the remarks and further references by the above-mentioned authors as 

well as May (1973) and Feldman and Roughgarden (1974), who considered 

restricted population growth with randomly varying carrying capacity. 
" 

We include some remarks on the possible perspective for branching 

process theory of the proposed diffusion approximation. 

The paper is attempted as an expository introduction to the 

application of some recent developments in branching process theory 

to some concepts in population dynamics and the subjects included have 

not always awaited formal mathematical proofs. Two appendices, however, 

contain some mathematical statements and proofs concerning the material 

in Sections 2 and 3. 

An important omission from the present discussion is the relation 

of the results to parallel research in population genetics. However, 

we plan to give this discussion in,a future report. 
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2. Small populations: discrete time 

a. Sampling variation in constant environments 

The simplest stochastic model of unrestricted growth is the 

Galton-Watson braIThing process ZO' Zl' ... given by a common off-

spring distribution [p. } 
:L 

and independence of reproduction for all 

individuals. We shall assume throughout that Zo = z is fixed. 

The extinction probability q 

and only if the offspring mean 

p[Z 70} = 1 - p[Z~ooJ is 1 if 
n n 

m = L: ip. ~ 1. 
:L 

It is seen that in 

this case EZ 
n 

n zm - ;:> 00 if and only if,. q < 1. This case is called 

supercritical) and a further result asserts that under the weak assump-

tion that E(Zllog Zl)< OOJ the growth of the population, if it does 

not become extinct, is exponential, since in this case -n Zm -'7W 
n 

almost surely, where the random variable 

b. Varying environments 

W is positive if and only if ~oo. 
n 

We shall consider generalizations of this situation to varying 

environments, and we shall consider some sort of stationarity 

throughout. Consider first a periodically varying environment, giving 

rise to periodically varying offspring distributions with expectations 

t l , £2' "0, £k' £1' £2' "'J £k' .0 .. Then, it is readily seen that 

Xn = Znk is a time-homogeneous Galton-Watson process and tbus 

P[Zn>O} = 1 if and only if the offspring expectation £1'·· £k 

of the X-process is less than or equal to one, or equivalently, if 

and only if 
1 k 

I: log £'. ~ O. 
k i=l l 

It is still true that E(Z )"::;'-00 if and only if P[Z";;:'O} < 1, 
n n 

and in this case (the supercritical case), th~ random growth is 
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described by Zrrk ~ (£1 ... £k)~ ) where W > 0 if and only if 

Z "':::;'00. 
n 

c. Random environments 

The idea of introducing random environments into branching process 

theory is due to Smith and Wilkinson (1969), and later Athr~ya and 

Karlin (1971 a,b) gave a detailed account of the extinction problem 

and limiting behavior of branching processes in random environments 

(EPRE). In this model it is assumed that there is given a sequence 

(; = (~o) ~lJ.··') of random variables, representing the environments, 

" and that the offspring distributions are parametrized by the values 

of these random variables. For each given realization of the sequence 

of environments, all individuals in a given generation n reproduce 

independently and according to the particular offspring distribution 

(p. ((; )}. Marginally) however, the reproduction of different individ
l n 

uals is no longer independent, being correlated through the common 

environment. Assuming that the environmental sequence s' is stationary 

and ergodic, and under a weak regularity condition, it may be shown 

first that for almost all environments S) 

and then that p(q( S) = 1} = 0 or 1 according as E(log £ (~)} > 0 or 

~ OJ where £ (SO) = E (Zll Zo = 1, So) is the conditional offspring 

mean given that the O'th environmental variable has the value So. 

(Notice the analogy with the periodiC case. ) Therefore, a BPRE with 

E(log £(~o)} > 0 is called supercritical. 

In the particular case of independent identically distributed 

environmental variables we clearly get the expectation E(Z ) = zmn , 
n 
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Jensen's inequality, it is seen that a supercritical BPRE with independ-

ent environments has an exponentially growing mean. However) it is 

also seen that in the 

we encounter the apparent paradox that p[Z~o} == 1 but E(Z )':>00. 
n n 

The asymptotic growth of supercritical BPREs was studied by 

Keiding and Nielsen (1973) who showed that provided that 

o < VarC p; C,:O )} < 00 , 

(2.1) 

in distribution, where U and V are independent, P[U == O} == I-P[U==l} 

== p[Z --;;:,O} and V is normal (0, VarLe (c)}). The intuitive meaning 
n 

of this result might be gathered from the heuristic relation 

1 1 

Z ~ uenE[log £(~)} + n2 V + o(n2 ) 
n 

(2.2) 

It is seen that the event of extinction is governed by the indicator 

random variable U which is, in turn) determined by the sampling 

variation given the environment, as is seen from Keiding and Nielsen's 

proof. The event of extinction and the long term environmental 

fluctuations of the offspring mean are independent, and the latter 

determine, by an order of magnitude, completely the asymptotic size 

distribution of the population given that it does not become extinct. 

Finally, this asymptotic distribution is logarithmically normal with 
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It is important to realize the difference between the growth rate 

[ELe(so)}]n of the expected population size (the deterministic growth 

rate) and the median exp [nE (log 1, ( SO)} J 'of the asymptotic population 

size given non-extinction. 

It is not hard to show that an analogue of (2.1) will hold if 

instead of independent environmental variables we assume a stationary 

weakly dependent sequence of environments with some condition which 

ensures that the central limit theorem is applicable on the sequence 

log .e ( Sl) +.... + log J! ( Sn). We give one such generalization in Appendix 1. 

d. Deterministic growth in random environments 

A contribution independent of the theory of BPRE is due to Lewontin 

and Cohen (1969) who studied deterministic reproduction in a randomly 

varying environment. These authors derived the asymptotic logarithmic 

normality of the population size and noticed the apparent paradox con-

cerning the growth of the expectation and the random growth referred 

to above. We notice that the independence between U and V in 

(2.1) and (2.2) and the behavior of V confirm Lewontin and Cohen's 

results within the present more general model as far as exponential 

growth is concerned. Although Lewontin and Cohen's condition for 

extinction also holds true, we want to point out that their study, 

excluding the sampling variation, will not yield complete inferences 

on extinction of populations of integer size. The random population 

size in their model corresponds to the conditional expected population 

size given the environment in the branching process model, which is 

posi ti ve for all finite times n, so that their statement that ., the 

probability of extinction may approach unity" would be more correctly 

formulated as "the population size may converge to zero almost surely". 
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3. Small populations: continuous time 

Deterministic unrestricted growth in continuous time may in the 

simplest situation be represented by th,e differential equation 

dN 
dt 

whe~e N is the population size. 

The solution of (3.1) is 

rN (3.1) 

(3.2) 

so that this model corresponds to exponential growth with exponent 
" 

proportional to r, the intrinsic rate of natural increase or the 

Malthusian parameter, which may be positive, zero, or negative. 

a. Sampling variation in constant environments. 

A simple stochastic model for the growth of an integer-sized 

population under similar assumptions is the simple (linear) birth-

and-death Markov process Xt given by the birth and death intensities 

~ ~ 0 and ~ ~ 0 and infinitesimal transition probabilities 

i~h + o(h) j i + 1 

P (Xt +h= jIXt=i} 
1 - i(~+~)h + O(h) j i 

= 
i~h + O(h) j i - 1 

o(h) otherwise. 

In this model, 

By the obvious analogy, ~ - ~ is called the Malthusian parameter 

of the birth-and-death process. The growth of the random population 
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size is described in a much similar manner as for the discrete time 

branching process studied in Section 2 above) since when ~ > ~ (the 

supercritical case) 

almost surely) where W > 0 if and only if Xt ::::: DO Thus) if the 

population does not become extinct) it grows at an exponential rate 

wi th the Malthusian parameter as its exponent. 

Levins .(1969)) in a sequel to the above-mentioned paper by , .. 

Lewontin and Cohen) described the sampling variation "in deaths only" 

by changing the differential equation (3.1) into 

dN 
dt 

1 

rN + (v(1-v)}2 dt).JN (3.3 ) 

where v is "the mean viability" and E(t) is white noise. Apart 

from the ambiguities in integrating stochastic differential equations 

with white noise terms (cf. Feldman and Roughgarden (1974)))it is not 

clear to the present author how (3.3) was derived in the first place. 

Levins goes on to discuss solutions of the equation, and the model 

has been adopted without further discussion by later authors) see 

e.g. Tuckwell (1974). Levins' main conclusion is that 

E (N) N rt 1 (1 ) (rt 1) Oe + 4r v -v e - . 

which is quite a different result from that of the birth-and-death 

process approach above. 

b. Birth-and-death processes in random environments 

A generalization of Markov branching pro~esses to random environ-
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ments was given by Kaplan (1973). In the situation of the birth-and-

death process, this amounts to assuming that the birth and death 

intensities A(t) and ~(t) are stationary ergodic stochastic processes 

with almost surely continuous sample functions. (Kaplan's assumption 

of independence of A.(t) + ~(t) and A.(t)/C>--(t)+ ~(t)} is unimportant, 

as a careful inspection of his paper shows.) 

Kaplan shows that P(Xt~O} + P(Xt~oo} = 1 and his result con-

cerning certain extinction may be reformulated by stating that 

P(Xt-;;:.O} = 1. if and only if the expected Malthusian p~rameter 

p = E(A.(t) - ~(t)} is non-positive. 

In the supercritical case p > 0 ) ~n analogue of the result by 

Keiding and Nielsen (1973) may again be derived, provided the stochastic 

process r(t) = A.(t) - ~(t) satisfies mixing conditions sufficient 

for the central limit theorem to hold. We give in Appendix 2 one 

possible set of conditions and also an example of a positive, strongly 

mixing, stationary process with continuous sample functions, thus 

assuring the existence of such situations. The formal result is that, 

given the mixing conditions, as t~oo 

1 
""2 ' 

(Xte-Pt)t ---7UeV 

in distribution, where U and V are independent, P(U=O} = I-P(V=l} 

p(z~,O} and V is normal with zero mean and variance 
n 

2 
(J' = lim 

T7"oo 

T 
1 Var(Jr(t)dt) 
T 0 

Heuristically, this may be written as 
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and exactly the same conclusions may be drawn as in Section 2 above. 

c, Deterministic growth in random environments 

The analysis in the present Section illustrates the continuous 

time remarks by Lewontin and Cohen (1969) and Levins (1969, Section Ib) 

in a similar way as in Section 2 above. The condition for certain 

extinction is now 1p = E[r(t)} ~ 0 (so that "the discrepancy between 

the arithmetic and logarithmic mean disappears ll as Lewontin and Cohen, 

and independently Kaplan (1973) remark). {. But the role of the sampling 

variation remains the same as in the discrete model: no extinction 

in f~nite time is possible without sampling variation. 

4. Large populations: a diffusion approximation 

In this section we want to present a diffusion process, modeling 

unrestricted population growth and containing as special cases Feller's 

(1951) classical diffusion approximation of Galton-Watson processes 

as well as a model for deterministic growth in random environment 

discussed recently by Cappocelli and Ricciardi (1974) and Tuckwell 

(1974). The diffusion process is motivated by a generalization of 

Feller's approximation scheme to branching processes with random.envir-

onments. We do not at this time have a rigorous proof of the conver-

gence in distribution (incidentally, this was not published for the 

Feller scheme until the paper by Jirina (1969)),but we find the result-

ing diffusion interesting enough to warrant a discussion. 
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a. Diffusion aJ?proximation of BPRE 

Consider a sequence [Z (k), k ~ 1, 2, ... } of branching processes n 

with random environments. We assume the environmental sequences to be 

independent identically distributed thrqughout (although the results 

presumably may be generalized to some sort of weak dependence of the 

sort discussed in Sections 2 and 3 above). Assume that for the kIth 

process. Zo (k) ~ k, ELe o (k)} ~ 1+ Cilk + 0 (k-l ) , VarLe o (k)} 

w2/k + o(k-l ) and E[yar(zl (k)IZo(k) = l)} ~ T2. 

Define Yt(n) ~ Z[ntJ (n)/n. The infinitesimal mean and variance 

of Yt(n) are (strictly speaking, for t an integer multiple of 

n -1 L to the first approximation 
(. 

and, 

E (Yt+;b. (n) - Yt (nn Yt (n) ~ y) 
n 

~ E (Z[nt+lJ (n)/n IZ[ntJ (n) ~ ny} ~. y 

~ nY(l?) In - y ~ ! Ciy 
. n· n 

~ denoting the nt'thenvironmental variable "nt 

Var(Yt+;b. Cn) - Yt(n) I Yt(n) = y) 
n 

~ Var[Z[nt+lj Cn) I Z[ntJ (n) ~ ny} /n2 

~ !2 E[Var[Z[nt+1J (n) I Z[ntJ (n) ~ ny, Snt} J 
n 

+ !2 Var[E(Z[nt+lJ Cn) I Z[ntJ (n) == ny, Snt} J 
n 

1 2 1 2 2 w2 1 2 2 2 = -2 nYT + - n Y - = - (T Y + w Y ) • 2 n n n n 

Drawing the analogy to Feller's diffusion approximation, we, 

therefore, conj ecture that as n~()(), Yt (n) converges in distribution 
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to a diffusion Xt 

mean and variance 

with state space 

ax and 
222 

TX+WX. 

1 and infinitesimal 

It is clear from the definition that' a represents the mean 

growth; T2 the sampling variance (or "demographic stochasticityfl) 

cf. May 1973) and 
2 

W the environmental variance. 

b. The special cases 

If in the above scheme the environmental variance 2 
W == 0; the 

Feller diffusion approximation is recovered. This process has properties 

very similar. to discrete branching processes: if Xo == x, then 
v,' 

P[Xt == 0 for some t} == 1 - P[Xt~OO as t~oo} 

1 for 

ax 
exp[ - - x} for a > 0 

2 
T 

so that either the process becomes extinct in finite tirhe, ,or it 

grows indefinitely large) where the latter alternative is possible 

only in the supercritical case with "mean growth rate" a > O. In 

that case, the extinction probability is an exponential decreasing 

function of the initial population size x (and it is increasing in 

the sampling variance 2 
T .) 

If on the other hand, the sampling variance 
2 

T == 0, the model 

is that obtained by Ito integration of the stochastic differential 

equation 

where a == a + white noise with variance 
2 

W • This equation was dis-

cussed recently by Cappocelli and Ricciardi (1974) who, however, 

preferred to interpret it in the Stratonovich.calculus. We do not 
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want here to enter into a discussion of which stochastic integral is 

the more appropriate in this situation, but might point out that the 

discrete approximation scheme outlined ab,ove seems to lead to the Ito 

solution. 

The analysis of this latter diffusion, with infinitesiPlal mean 

and variance ax and w2x2, is facilitated by the remark made by 

Tuckwell (1974) for the Stratonovich solution, that Xt has the same 

distribution as exp(Ut ), where Ut is Brownian motion with infinite-

simal mean apd variance a - w2/2 and 
2 

w . 
2 

Thus, if a = w /2, the 

" 
process is recurrent (although Tuckwell claims that in his corres-

ponding case 

off 'to either 

1 
P[Xt-7co } = P[Xt = O} = 2'). Otherwise Xt will drift 

o or co, in fact P[X"';;'O} =1 when a<w2/2 and 
t 

P[X~CXl} = 1 when ci > w2/2. We shall comment further below on 

the facts that 0 is never attainable (P[Xt > O} = 1 in all cases) 

so that population extinction in finite time will never be possible, 

and on the perhaps surprising nature of the criticality condition 

a = W2/2 (rather than a = 0). 

c. Boundary classification 

Table 1 summarizes the boundary behavior of the diffusion 

process. 
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TABLE 1 

BOUNDARY CLASSIFICATION OF THE DIFFUSION PROCESS 

I ---- i i __ ~_. __ ~,=-=---~_.~._ ~_. _-",_""~_ 

o 00 

Attraction Absorption II Attraction Absorption 

_ Class. p(X~O} class.l~im P(X.t=~JL Class. I-;;(X£->oo}--I Class. lim P(Xt ;= oo}\ 

I
I - 2 2Ct 2 2Ct \ 2 2Ct 2 2 w 1-- . w 1-- w 1--
w> 0, ex > W /2 . attracting (1+2x) w2 :exit 1+2x ) w2 attracting ll_(l~X .. ) w2 I riatural I 0 

T' T ~ 

'/> 0 I ex ~ W2/2 I attracting 1"------:- :exit '-~~---:~pel~~-- -----~---~ natural I 0 ---I 
I '\' ! 

wS 0, I ex > W
2/2 

~2= 0 ex:== w2/2 

ex < w2/2 

repelling O' I natura+ 0 attracting \ 1 

~ ~ 
-·---------·-----~--~-i 

repelling 0 repelling ! 0 
i 

o natura 

I " 
attractingj 1 natura1 0 repelling ! 0 

I 

I natural I 0 I 
~

-----~-~-.--- .. ---.-----

natural I 0 I ---- I I - -.-~"'.~. __ ~._ •. ___ J 
natural I 0 i 

2 = 0 ex>O w 

T2 > 0 ex ~ 0-

, attracting exp ~~x) ~~~. lexp (-;:) 1 .. .::t~~acti±~~x~~~X ~_ I n_atu:~J __ .~__ J 
attractin~ 1 I exit 1 1 l: repelling I 0 natural I 0 : 
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The first question regarding the behavior of a boundary a is whether 

it is attracting or repelling, that is, whether P(X -->a} > 0 or = O. 
t 

The attraction happens (Prohorov and Rozanov (1971, p. 265 ff.)) if and 

only if the natural scale S(a) < 00, where 

and 

x 
S(x) = f R(y)dy 

x 
R (x ) exp ( - f 22 a y 2 2 dy} 

T y+w Y 

It is seen that 0 is always attracting when the sampling 

2 " 
l' = 0 and the growth parameter a is less than half the 

variance 2 
(including) of course, the a ~ 0). Th'e W case 

variance 

environmental 

other 

boundary, 00 is attracting whenever a > w2/2) regardless of the 

2 
value of T. This is the first and weakest conclusion: we have 

a "supercritical" case whenever a > w2/2,.and a subcritical case for CJ<,w2/2. 

An attracting boundary a mayor may not be attainable, that is, 

P(Xt = a for some t < oo} > 0 or = O. The boundary a is attain

able if and only if the function 

x 2 
Rl (x) = R(x) f 2 2 2 dy 

(T y+w Y ) R (y ) 

is integrable in the neighborhood of a. It turns out that for the 

processes here considered, the attracting boundaries are attainable 

if and only if the sampling variance 
2 

T > O. This illustrates in a 

rather conspicuous way the role of the sampling variance in models 

for population growth: One may shortly say that the positivity of 

the sampling variation makes the difference between absorption (finite 

time extinction) or reflecting attraction (asymptotic extinction) of 
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the boundary O. Previous authors have recognized the impossibility 

of absorption in the model without sampling variance, see Cappocelli 

and Ricciardi (1974, concluding paragraph) or May(1973, Chapter 5). 

Although they tend to blame this on deficiences in the model, they 

recommend identifying extinction with the attainment of some small 

posi~tive "threshold" value of the population, which clearly will be 

attainable. It is also interesting that May's (1973, p.121) discrete-

time numerical approximations do not retain the feature that 

P(Xt > O} = ;1. 

To complete the classification of the boundaries, we finally 

note that the repelling and unattainable boundaries are natural, and 

the 'attainable boundaries are exit, all in the sense of Feller (1952). 

This means that the diffu~ion processes are uniquely given by the 

specification of the infini tesimal mean and variance on (0,00) (no 

boundary conditions may be imposed), in particular, when 0 is an 

exit boundary, it is necessarily absorbing. 

Apart from the critical case with no sampling variance 

(T2 = 0, a = w2/2), there is always at least one attracting boundary. 

When there is only one, its probability of attraction is one, other-

wise 
00 

f R(y)dy 
'x ----00 
J R(y)dy 
o 

where the denominator is finite since both 0 and 00 are attracting. 

The values of this probability are also given in Table 1. 
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d. The criticality condition 

The criticality condition a = w2/2 of the diffusion approxima-
. . 

tion may be compared to the criticality condition E[log .£(SO)} = 0 

of BPRE. Expanding) and omitting the explicit reference to the 

environmental variable SO) we get 

log .£ =.£ - l-i (.£ -1) 2 + .•. 

so that, approximately, 

Now 

and, therefore, by the assumptions above, 

a uP a 2 1 w2 
E[log .£ (n)} ,..., - - - + - ~ - (a - ) n 2n 2 n 2 

n 

showing the agreement of the two conditions. We commented in Section 2 

above on the history of the criticality condition for discrete time 

(Lewontin and Cohen (1969), Smith and Wilkinson (1969)). In the 

form a = w2/2 the condition states that certain extinction (or at 

least certain attraction of the boundary 0) will happen not only for 

negative growth rates, but also for positive growth rates less than 

half the environmental variance. This bears a remarkable similarity 

to a conclusion by May (1973) in his study of random carrying capacity. 

e. Further consequences for the theory of BPRE. 

The result concerning the extinction probability of the super

critical case a > w2/2 

22 
qx =p[x~olxo = x} = (1 + w2 x)l-2a/W 

'T 

may prove of some general interest, in particular in view of the 
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scarcity of exact explicit results on extinction probabilities for 

BPRE) cf. Wilkinson (1969) and Keiding and Nielsen (1975). It is 

seen that, as expected) q is increasing in the sampling variance 
x 

2 2 
T and the environmental variance w but decreasing in the initial 

population size x and the growth parameter a. 

2:1 
q->exp( - - x) x 2 

T 

As 
2 
w~o) 

which is the well-known result for the Feller diffusion approximation 

of a Galton-Watson process. 

In Smith and Wilkinson's(1969)and Wilkinson's (1969)basic papers,con-

siderable attention was given to the dual process X ofa BPRE Z n n 

defi,ned by 

where is arbitrary and fixed and cp is the probability 
.~ 

generating function of the offspring distribution parametrized by 

the n'th environment ~. In particular, it WaS snown that for all 
n 

as n~oo. Thus, the extinction probability 

1 
q = pC Z ~o J Z = k} = f qk F (d q) 

k n 0 0 

where F is the stationary distribution of the dual process. We 

We remark that for the diffusion approximation 

qx = pCXt = 0 for some I 
t I Xo = 

2 
L -1 

1 2 
f x w 

q q 
o 
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which is of the 

with parameters 

with -log Q following a 

and 

E(- log Q) 

2 2 
w /r , 

VaT( - log G.) =: 4 
'r 

that is, 

4 
- w 

f-distribution 

It is apparent that this suggests the following limiting distrib-

ution results. Let 

be the extinction probability of the kIth approximating BPRE given 

its 'environmental sequence ~ (k) and an initial population size of 

nx. ThenQ (nx)~Qx in distribution as n~oo, where Q has the 
n 

distribution described above. 

It seems an interesting research problem to investigate this 

scheme further. 
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Appendix 1. The growth of supercritical branching processes with 

weakly dependent environments. 

Assume that the environmental seQuence S = (SO) Sl' ... ) is 

stationary and ergodic) let ~ = E[log£(sO)} and suppose that 

o < Var llog£ (SO)} < 00. For 

o--algebra generated by £ (S-a) ) 

. mixing coefficients 

00 

cp(n) = sup 
k 

If L cp(n) < 00) then 
n=l 

and if 

[
n-l 

Var L. 
i=O 

2 
cr > 0) 

1 
-2" 

! -n~ \) n . 
I Z e 
\ n 

cfj U V 
--7 e 

b o ~ a < b ~ 00 ) let a denote the 
a 

; .. ) £ ( Sb ) .. and define the uniform· 

1 
P(A) 

2 
cr < 00 

jP(A nB) - P(A)P(B) I. 

where Wand V are independent, P(U=O} 1 - P[U=l} p(Z ~O} 
n 

and V is normal 

Proof. The conditions ensure that Heyde's(1973) results on central 

limit theory for stationary processes may be applied, and the proof 

may, therefore, be adapted) step by step, from Keiding and Nielsen 

(1973), the only difference being the independence of U and V. 

Thus let 
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Z 
Z e-n~ ~ ___ ~n~ __ ~ ___ __ t ( ~O) ..• 1: (~n-l) 

=wy 
n n n =1:(~0) ... 1:(~) n-l en~ 

Let k--,;;>oo 
n 

such that , define Un = I[Zk > O} and 
n 

x = 1: (t2k ) ••• 1: ( S 1 ) n .1 n-
Then as in the case of independent 

n --n 2 
environments W -?> U a.s. 

n so that 

1 
n:-2 

W - U-70 
n n 

a.s. and hence 

in probability. 
·1 

Further, by Heyde's central limit results, 
n-2. V 

Yn ~e in distribution and it is easily seen that 
1 1 

n:-2 n-Z-
Xn - Yn 

~ 0 in probability. The result is, therefore, proved when we 
.' 

have shown that . X and U are asymptotically independent. But 
n n 

I p([X EA} n CU EB}) - pCX EA}PCU EB} I ~ cp(k)~ 0 . n n n n n 

00 

as n -?>-oo, since 
k 

CU EB} ECf n 
n 0 

Remark. The result as given here will remain true for strongly 

mixing environmental sequences satisfying the central limit theorem, 

cf. Ibragimov and Linnik (1970,Chapter 18). 
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Appendix 2. The growth of supercritical birth-and-death processes 

with stationary weakly dependent environments. 

In this Appendix, we use another version of the central limit 

theorem for weakly dependent stationary processes, partly to illustrate 

the remark at the end of Appendix 1 above, but mainly since only strong 

mixing as opposed to uniform mixing will apply to the example which 

we shall give below. 

Consider a birth-and-death process Xt with stationary) ergodic 

random birth·and death rates 7I.(t) and fl(t) defined according to 
l' 

Kaplan (1973) and discussed in Section 3 above. Let r(t) = 71. (t)-fl(t) 

be the random Malthusian parameter and assume that p = E(r(t)} > 0 

so that the process is supercritical. Assume also that 0 < Var(r(t)} < 00, 

and define the strong mixing coefficients of r(t) by 

0: (t) sup SUD 
AEr.>'t) E 00 

TuB (fT+t 
o 

r I 
P(A n B) - P(A)P(B)I 

where (fb is the cr-algebra generated by all vectors (r (t )) .. , J r( t ))} 
a . 1 n 

a < t. < b for all i. If for some 5 > 0 
l 

and 

then 

and if 

E I r(t)/2 + 5 < 00 

00 

J a(t)5/(2+5) dt < 00 

o 

T 
2 

cr = lim 1 Var [f r(t)dt} 
T 0 T....;;>oo 

2 
cr > 0, then 
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(A2.1) 

<00 



... v 
----::::> U e 

where U and V are independent, P[U=O} 

V is normal 
2 (0, u ). 

p(Z ->O} and 
n 

Proof. The conditions ensure that the continuous time analogue of 

theorem 18.5.3 of Ibragjmov and Linnik (1970) may be applied, and the 

rest of the proof is then analogous to the proof of Appendix 1. In 

the proof we use the existence, established by Kaplan (1973, Section 4) 

of a random variable W such that as t~?OO 

t 
Xt exp[ - J r(u) du}-?W 

o 

almost surely, where under the present conditions [W=O} = (X~O} a.s. 

Example. It may not be completely obvious at the outset that there 

at all exists a process r(t) satisfying the given requirem~nts. 

Following an idea due to Barndorff-Nielsen and Yeo (1969) who studied 

a special example of Poisson processes with random parameter (so-called 

negative binomial processes), we shall show here that if A(t) and 

~(t) are independent gamma processes, the results apply. 

Let Yl (t), ... ) Yk(t) be independent Ornstein-Uhlenbeck 

processes) that is) each Y. (t) is a stationary Gaussian process 
l 

with mean zero and covariance function 

2 i'y 
E C Yl ( s) Yl (s +t )} = R ( t) = T. exp r - -t} y 2 

2 
o < Ty < 00, 0 < ~y< 00. Let then 

A(t) = Y~(t) + ••• + Y~(t) + ~ 
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Obviously the one-dimensional distributions of ~(t)-n are gamma-

distributions with parameters (k/2, T~)' Similarly, let 

Zl(t)) ... ) Zm(t) be independent Ornstein-Uhlenbeck processes, indep-

endent of the Y. (t)l Sj with parameters 
l 

and 

22. 
~(t) = Zl(t) + ... + Zm(t) + £ • 

Let 

Then E[~(t)} = ~ T~ + ~ and E[~(t)} = ~ T~ + ~ and the positivity 

condition for p = E[r(t)} = E(:\:(t) - ~(t)} is exhibited as 

k 2 m 2 
2' 1:y + n > 2' T Z + ~. Now for an Ornstein-Uhlenbeck process 

parameters 2 
T and ~j it is a standard result (cf. Ibragimov and 

Linnik (1970, p.313)) that the mixing coefficients ay(t) satisfy 

ay(t') ~ R(t) = T2 exp [-f3t/2} Let 
b 

~ be the u-algebra 
a 

2 
generated by all vectors (y(tl )) ... ) y(t )2), a < t. < b for 

n 1. 

all i. Then clearly ~b C Bb where 
a a 

Bb is the corresponding u-algebra 
a 

for y(t), and thus the mixing coefficients a 2(t) satisfy 
y 

a 2 ( t) ~ ay ( t) ~ R ( t ) . 
y 

It is, therefore) also obvious that the mixing coefficients 

the random Malthusian parameter r(t)' are dominated 

a (t) of 
r 

(A2. 2) 

where f3 = min(f3y ' f3z) and C is a constant. All moments of r(t) 

are finite, so we may choose 0 of the condition freely, let 0 = 1. 

The finiteness of 

7 a(t)c/(2+0 )dt 
o 

-26 ... 

OCJ 1/ 
J a(t) 3 dt 
o 



is now obvious from (A2.2), and we may compute 

where 

2 
u 

T 
lim 2J (1 - ~) Rr(t) dt 
T~co 0 

2 
u by 

is the auto-covariance function of the random Malthusian parameter ret). 

Thus 

2 
u 

Let us finally notice that by a standard result for gamma- and beta-

distributions, ~(t) + ~(t) and A(t) / [~(t) + ~(t)} will be 

independent if and only if A(t) and ~(t) have common scale para

meters, that is, if 'T~ = T~. In that case, Kaplan's (1973) results 

will apply without modification, and the present example may, there-

fore, also be seen as an example pertaining directly to his analysis. 
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