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Abstract 

As noted by various authors) the notion of sufficiency is to weak 

for problems in connection with statistical inference in stochastic 

processes. Various attempts have been made to impose extra conditions 

and in the present paper we shall discuss a few of these, with the 

purpose of discovering in which sense the concepts so defined differ 

and in which sense they are alike. 
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1. Introduction. 

The literature on sufficiency is extensive and it is not the aim of 

the present paper to give a complete survey of this. We shall discuss 

the relationship between a number of notions introduced by various authors 

with different problems in mind) but all of them being of the same nature 

as sufficiency. Some of these notions were defined in terms of subfields 

of abstract probability spaces) but we shall restate all definitions in 

terms of statistics and discrete probabilities as our interest is directed 

more towards structural properties than technical ones. 

2. Sufficiency) adequacy and summarizing statistics. 

In the present section we shall investigate three different properties 

of statistics with the same basic idea) namely that they express the 

intuitive statement that a statistic contains all "relevant" information. 

First the classical notion of a sufficient statistic as introduced 

by Fisher (1920). We shall define it the following way: 

Let X be a random variable on a discrete) at most denunlerable space 

E and t a mapping from E into another discrete space F. Let ~ 

be a falllily of probabilities on E and let Y = t(X). 

Definition 2.1. t is said to be sui'ficient for P if there is a fixed 

non negative real function cp on E X F so that for all P E ~ and all 

x E E: 

p{y = y} > 0 

~ p[X xjy y} 
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A slightly stronger notion was introduced by Freedman (1962) with 

the pure probabilistic motivation of generalizing de Finettis theorem 

for exchangeable 0-1 random variables. The notion is however closely 

related to sufficiency) as we shall soon see. Again let X be a random 

variable on a discrete space E and t a mapping from E to a discrete 

space F. 

Definition 2.2. A probability measure P on E is said to be summarized 

by t if for all x) x D E E 

t(x) t(x') ~ p{X xl p{X 

In contrast to definition 2.1) we are not dealing with a family of 

probabilities but only with one probability measure. To be able to see 

the relation between a sufficient statistic and a summarizing statistic 

we have to define a summarizing statistic for a family of probabilities 

JP. In the previous notation we define 

Definition 2.3. t is said to summarize p if all PEP are summarized 

by t. 

Remark: Note that the term 11 summarizing" is essentially related to 

discrete random variables as opposed to other concepts dealt with in the 

present paper. 

This is stronger than sufficiency: 

Proposition 2.1. If P is a family of probability measures on E and 

t: E -l> F summarizes p} then t is sufficient for p. 

2 



Proof. We shall just specify the function ~ in definition 1. 

Define cp as 

° if t(x) ~ y 

( 1) cp(x,y) 

1 
N(y) for t(x) = y , 

where N(y) is the total number of XIS so that t(x); y, 0< N(y) S 00, 

If p(y = y) > 0, we have 

p(x = xjy = y) 

(2) 

= p(X = x ~ Y = y} = X 1 (x) 
pey = y} t- (y) 

p{X = xl 
L p(X = z) 

zEt-l(y) 

where XA is the indiGator function of the set A: 

X E A 

x i A 

If t(x) = y, we have 

(3) p(x = z) = p(x = xj for all zEt-l(y), 

since t was a summarizing statistic. Hence 
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(4) 

So 

and 

(6) 

p(y = y} L 1 P(X z} 
Z€t - (y) 

= p (x = xl' . N{ y ) . 

p(y y} > 0 --> N{y) < 00 

p(X x/y = y} = X (x), p(X = x} 
t-l{y) pix = x}N(y) 

1 = X -1 (x)· N{y) = ~(x,y) , 
t (y) 

which was to· be proved. 

So the notion of a summarizing statistic is stronger than that of 

a sufficient statistic in the sense that not only is the conditional 

distribution of X given t{X) supposed to be known, but this 

distribution is supposed to have the specific form (6), i.e. uniform 

on the set t-l(t{X)). 

Barndorff-Nielsen and Skibinsky (1963) considered the problem of 

how much one could reduce a data set and still have all relevant infor-

mation for the prediction of an unobserved random variable when the joint 

distribution of the data and the unobserved random variable was completely 

known and defined the notion adequacy. This definition was later extended 

to the case, where this joint distribution was only known to be a member 

of a specified family of distributions by Skibinsky (1967)· 
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Let X and Z be random variables on discrete) at most denumerable 

spaces E and G. Let rP be a family of distributions on E X G an'd 

let ~E denote the induced family of marginal distributions of X. 

Let t be a mapping from E to an at most denumerable space F. 

Definition 2.4. t is said to be adeguate for Z if 

t is sufficient for ~ 
ii) for all PE:P: p{X=x]>O 

==> p{Z = z)X = x} = p{Z z)t(X) t (x) . 

This definition suggests that the classical notion of sufficiency 

is not satisfactory to the theory of statistical inference in stochastic 

processes as the prediction of unobserved random variables (the future 

of the process observed) in most cases will be relevant. In the next 

section we shall consider some extra conditions that have been 

imposed on a sequence of statistics by various authors. 

3. Sequences of statistics. 

In the present section we shall let XI )X2 ) ... be a sequence of 

random variables on discrete at most denumerable spaces EI ,E2) ... and 

let ~ be a family of probability measures on EI X E2 X··· . Let 

!p(n) denote the family of marginal distributions of Xl) "'jXn 

induced by j'. We shall consider a sequence t lj t 2 , ... of mappings. 

where F are discrete) at most denumerable) and let Y = t (X ) "')X ). 
n n n I n 
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Bahadur (1954) introduced the term of a sufficient and transitive 

sequence of statistics in connection with sequential decision theory) 

which can be stated as follows. 

Definition 3.1. The sequence t l ,t2, .0. is said to be sufficient and 

transitive if for all n l tn is adequate for Yn+l , 

In other words) t l ,t2, ... is sufficient and transitive iff it at 

each step n contains all information relevant for the prediction of 

the value of the next statistic. This is related to but different from 

the notion of a totally sufficient statistic, introduced by Lauritzen 

(1972) in terms of abstract measure spaces and restated in terms of 

discrete probability spaces in Lauritzen (1974). 

Jrefinition 3.2. tn is said to be totally sufficient if it is adequate 

for Xn+l"",Xn+k for all k = 1,2, .... 

That the two notions are different can be seen by the following 

example: 

Example 1. Let Xl ,X2 be independent Poisson distributed with mean 

A. > 0, and let x = X + Z +.,.+ Z 
n 2 1 n-2 for where 

are independent of Xl ,X2 and independent identically Poisson distributed 

with mean 1. The sequence t l ,t2, .. - of mappings defined by 

tl(x) = x and 

is sufficient and transitive, whereas e.g. t2 is not totally sufficient 

as (Xl ,X2 ) and X3 = X2 + Xl are not conditionally independent. 
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(8) 

On the other hand, the sequence sl,s2' •.. defined as 

s3(Xl ,X2,X3 ) = (Xl 'X2'X3 ) 

s4(xl ,x2,x3 ,x4) = (Xl,x2,x4) 

s5(Xl ,X2,X3 ,X4'X5) = (Xl ,x2,x3 'X5) and 

sn(Xl""'xn) = (xl ,x2,Xn ) for n ~ 6 

is totally sufficient but not sufficient and transitive, because 

(Xl 'X2'X3 'X4 ) and s5(Xl , •.• ,X5 ) = (Xl ,X2'X3,X5 ) are not conditionally 

independent given s4 (Xl' ..• ,X4 ) = (Xl ,X2,X4 )· 

If one wants to insure a sequence of totally sufficient statistics 

to be sufficient and transitive, an extra condition has to be imposed. 

TPe following algebraic property of a sequence of statistics is a 

slight weakening of "S-structure" as defined by Freedman (1962) • 

Definition 3.3. t l ,t2,··· is said to have L -structure if for all 

m,n 

t (xl'" .,X ) = t (Yl'" .,y ) n n n n 

In other words, t l ,t2, ..• has r -structure if for all m and n, 

there is a mapping ~ nm 
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1jr : F X E X' . 'X E ~ F 
nm n n+l n+m n+m 

so that 

t + (xl"'" x + ) = 1jr (t (xl"'" x ), X +1' ..• , x + ) . nm nm nm n n n nm 

The term 1 -structure is chosen to emphasise that t is a " generalized n+m 

sum" of t ( ) xl' .•. ,x n n as is e.g. the case in 

classical exponential families, where we have 

t (x , •.. ,x ) = t(xl ) + ... + t(x ) 
n 1 n n 

for t being some function from E into k-dimensional Euclidean space. 

We' can now show the following result: 

Proposition ,.1. If for any n, t 
n 

is totally sufficient and if 

t l , t 2 , •• . has 1 -structure, then t l , t 2 , • • . is sufficient and transitive. 

Proof. t is clearly sufficient for j)(n) for all n. We have to show 
n 

that are conditionally independent given 

get 

p{Yn+l = ylXl = xl"",Xn = xn} 

(9) P{tn+l(xl,···,xn'Xn+l) = ylxl = xl"",xn = xn} 

P{1jrn,n+l(tn(xl,···}xn)'Xn+l) = yjxl = xl"",xn 

where 1jr satisfies n,n+l 
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As tn is totally sufficient, Xn+l and Xl' ""Xn are conditionally 

independent given Y , 
n 

and we get from (9) that 

p(Yn+l = y/Xl = xl"",Xn = xn} 

(11) = P(vn+l(tn(xl , •.. ,xn),Xn+l ) = y/Yn t (xl" .. ,x )} n n 

t (xl"'" x ») , n n 

which was to be proved. 

Martin-Lof (1973) defined an algebraic consistency condition for a 

sequence of statistics which is slightly weaker than r-structure. We 

shall call it [*-structure: 

Definition 3.4. t l ,t2, ... is said to have I*-structure if for all 

n,m ther~ is a function 

N : F XF ~(O,l, ••• ) n,m n m 

= N (t (xl"'" x ), y) n,m n n 

Remark: The discreteness of the sample space is also essential here, 

as the number of points corresponding to given values of the statistics 

occur in the definition in a fundamental manner. 

It is immediate that we have 

Proposition 3.2. has * r - structure, then it has . L -structure. 

Proof. Trivial. 
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* I -structure becomes an important property when the conditional 

distributions given the statistics are determined by the numbers 

(12) #{(Xl '" .,x ) E El X"'X E : t (xl" OO,X ) = y) n n n n 

and we have 

Propo~ition 3.3. If for all n, ~(n) is summarized by tn and if 

* t l ,t2, •.. has l -structure, then t l ,t2, ... is sufficient and 

transitive. 

Proof. We already know that t is sufficient for ~(n) 
n 

from proposition 

2.1, As in proposition 3.1 it remains to be shown that Yn+l and 

n 

(13 ) 

are conditionally independent given Y . 
n 

We have for all 

= p[Xl = xl, ... ,X = x /Y n n n t (xl'" .,x )J . p[y n n n t (xl' 00 .,x ) 1 n n 

p[y = t (xl' •.. ,x )} n n n 
= N (t (Xl' ... ,x )) n n n 

, 

according to proposition 2.1. 

Furthermore 

= 
(14 ) 

y) 

p[Yn+l = y} 
N +l(t (xl,oo.,x» . N () n,n n n n+l y 
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Hence from (13) and (14) we get 

(15 ) 
p{y +1 = y}N (t (xl,···,x » 
N n( )PlY n t n( n)] N (t (x , ... ,x ». 

+1 y = xl' ••. ,x n,n+l n 1 n n n n n 

Since this only depends on xl' ... ,x through t (xl, ... ,x), we must n n n 

have 

( 16)· 

= p{y +1 = ylY = t (xl' ..• ,x )} , n n n n 

which was to be proved. 

If we assume 1 -structure instead of I * -structure, we have the 

even stronger result: 

Proposition 3.4. If for all n,!p is summarized by tn and if 

n. 

Proof. 

has . r -structure, then t is totally sufficient for all 
n 

As in the previous proof, we only have to establish that 

and Xn+l ,··· ,Xn+k are conditionally independent given Y 
n 

for all nand k. We have 
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p[Xl = xl' . ",Xn+k = Xn+k/Yn 

Xl (xl,···,x)op(Y 
t: (y) n n+k 

y} 

t (x J" .,x )J n+k 1 n+k 

X -1 (xl'" ')x ) . pey +k = 1/1 k(Ylx +1)" .}X +k)} t ( ) n n n) n n 
n Y 

where is given by 

(18 ) 

But for fixed y, the expression (17) is a product in (Xl) ... ,xn ) and 

(xn+l , ... ;xn+k )· Hence Xl' ",;Xn and Xn+l , ""Xn+k are conditionally 

independent given Y = y, 
n 

which was to be proved. 

Apparently the property of being summarizing with I - structure 

is very strong. Another way of strengthening total sufficiency is to 

assume minimality. As in Lauritzen (1974) we say that t is minimal 
n 

totally sufficient if it is a function of any other totally sufficient 

statistic. We then have 

Proposition 3.5. If for all n, t is minimal totally sufficient then 
n 

Proof. The result follows directly from corollary 1 of Lauritzen (1974). 

If we include the notion of a minimal sufficient statistic in our 

considerations, we can "summarize" the results in the following diagram: 

12 



minimal totally 
sufficient , 

totally sufficient 
with L - structure 

totally 
sufficient 

minimal 
sufficient 

" sufficient 
and transitive ==~> sufficient 

summarizing ~ summarizing ~ 
~ * summarizing with L - structure. with I -structure 

(The implications that are not proved in the previous are trivial). 

At this point the author feels uncomfortable as a statistician. Is 

it really so that all these various notions are relevant? It is certainly 

true that in many examples at least some of the notions coincide. So far 

we have dealt with ~ being an arbitrary family of probability measures 

which in some sense is unreasonable from a statistical point of view. 

In the last section we shall impose regularity conditions on ~ and see 

how many of the implications in the diagram turn into equivalences. 

4. Independence and universality. 

Let us assume that for all P € fi>} Xl} X2} . . . are independent 

random variables. It is then immediate that total sufficiency and 

sufficiency coincide and the same is of course true for minimal total 

sufficiency and minimal sufficiency. Hence it appears from the diagram 

that e.g. "minimal sufficiency" implies everything but "summarizing" 

and is thus a very strong property. 
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Barndorff-Nielsen (1973) discussed the notion of a universal family 

of probability measures in connection with the notion of M-ancillarity. 

Let X be a random variable on a discrete, at most denumerable set E 

and P a family of probability measures on E. 

Definition 4.1. 6P is said to be universal if for all x E E there is 

a PE~ so that 

p(X x} ~ pix y} 

for all y E E. 

The following result, given in e.g. Barndorff-Nielsen (1973) shows 

a relation to the discussion in the preceding sections: 

Proposition 4.1. If fP is universal and t is sufficient for ;p, 
then t summarizes {f. 

Proof. The proof is exactly as in Barndorff-Nielsen (1973), theorem 2.1. 

Although E is assumed to be finite in that paper, this assumption is 

irrelevant for the validity of the proof. 

Hence, if jP(n) in the previous section is assumed to be universal 

for all n, "sufficient" implies" summarizing" and "totally sufficient 

with r. -structure" implies" summarizing with 2: - structure". Hence from 

the diagram it appears that "minimal totally sufficient" implies every-

thing but minimal sufficient. Finally, if Xl 'X2, ... are all assumed 

to be independent and at the same time ~(n) assumed to be universal 

for all n, "minimal sufficient" implies everything else. 
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