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1. Introduction. 

A Brownian motion process (BM) 1S a diffusion on (-00,00) with infinitesimal 

generator 

A 

while a three-dimensional Bessel process (BES(3)) is a continuous process 

identical in law to the radial part of three-dimensional Brownian motion, 

i.e. a diffusion on [O,OO} with infinitesimal generator 

1 d2 1 d ---+ 
2 dx2 x dx 

which is the radial part of the three-dimensional Laplace operator. For 

general hackground on Brownian motion and diffusion see Breiman [2] 

Freedman [8] or Ito-McKean [11] and for information about Bessel processes 

see It~-McKean [11] and Williams [18]. The intimacy of the relationship 

between the two processes BM and BES(3) was brought out in Williams' paper 

[18], and it was Williams i striking path decomposition theorems for BES(3) 

which were the inspiration for the main result of the present paper, 

Theorem 1.3 below. This result was announced in Pitman [15]. 

To provide the reader with some background we mention first some of Williams' 

results. We shall make use of the following notation: For a continuous real-

valued process W = {We t), t ~O} 
W and a real number c, T and 
c 

the first and last times that W 1S at c, 

W 
T 

C 

W 
0" 

C 

inf {t: t > 0, Wet) = c}, inf 0 

sup {t: t > 0, Wet) c}, sup 0 

00 

0; 

W 
(J denote 

c 
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the starting position of a BM or BES(3) process is indicated by a super-

script: thus BMc stands for Brownian motion started at c. As a start 

Williams pointed out that the processes BM and BES(3) are dual in the sense 

that BES(3) is 'upward conditioned BM' while BM is 'downward conditioned 

BES(3)', a statement made precise by the following proposition: 

Proposition 1.1. (Williams [181) Let 0 < b, c < co , and suppose that 

b b X is a BM process, Y a BES (3) process. 

(i) For b < c the conditional distribution of 

X . {x(t), 0 ~ t < T } = C 
. {.,.X 

g~ven , < 
c 

~s identical to the distribution of 

(ii) Por c < b the conditional distribution of 

~s identical to the distribution of 

Part (i) of Proposition 1.1 goes back to Doob [3] . See also McKean [14], 

Knight [10] ,: and Jacobsen [9] . Williams also showed that BM and BES(3) 

are dual in another sense which is like the duality by reversal of incre-

ments for random walks (see Feller [6] ). 

Proposi tion 1. 2. (Williams [18] ) 
o 0 

Let X be a BM process, Y a BES process, 

and let 0 < c < co • Then the two processes 
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{c - X(TX - t), 
c 

{yet), 
y 

o < t < o} 
c 

are identical in distribution. 

Williams used the above results to establish his path decomposition theorems 

for BM and BES(~), and he also showed how all these results could be extended 

by use of the method of random time substitution to apply to a large class 

of pairs of dual diffusions on the line. However the connection between BM 

and BES(3) which is brought out ~n Theorem 1·3 below ~s special in that it 

is unique to the BM/BES(3) pair with no analogue for other dual pairs of 

diffusions; even so this result provides an immediate explanation of William's 

path decomposition theorems for BM and BES(3) which greatly simplifies the 

original proofs in [18]. 

For a continuous real valued process W = {Wet), t > O} let MW 

be the associated past max~mum process defined by 

sup W(s) , 
o < s ~ t 

W and let F {FW(t), 0 < t < oo}be the associated future minimum process de-

fined by 

inf W(s) . 
t < S < 00 

For real valued processes U {U(t), 0 < t < oo}and V {Vet), 0 < t < =}, 
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and real numbers rand s we denote the process {rU(t) + sV(t),O < t < oo} 

by rU + sV. 

Theorem 1.3. Suppose that X is a BMO process, Y a BESO(3) process. Then 

(i) 2MX - X ~s a BESO (3) process. 

(ii) 2FY - Y ~s a BMO process. 

(iii) The distributions X of M and Y 'd' 1 F are ~ ent~ca . 

X 
Geometrically, the path of the 2M - X process is obtained from the X 

path by reflecting this path at each time point in the level of its previous 

Y maximum, while the path of the 2F - Y process is obtained from the Y path 

by reflecting this path at each time point in the level of its future minimum. 

It should be observed that if we set Y = 2MX - X then as is obvious from a 

diagram 

a. s. , (1.4) 

the exceptional set being that on which - X lim M (t) < 00. 

t~oo 

This implies that 

X = 2MX - Y = 2FY - Y a. s . , 

which makes it clear that both (ii) and (iii) are immediate consequences of (i). 

Considering the BMO process X, it is interesting to compare the assertion (i) 

am'Ove with the welhkROW11'reStl1:v.bf\L~vy [l:3Jtha~ MX;,--iis~1feflect'i:p.gA~Brownian 
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property of 2MX - X is rather more subtle than that of MX - X since (1.4) makes 

it clear that unlike MX - X the process 2~ - X is not Markov with respect to 

the increasing sequence of .0-fields generated by the Brownian motion X, and thus 

, h ' , f X , 
~n contrast to t e s~tuat~on or M - Xi the t~me homeg~neousMarkov property 

of the process 2MX ~ X cannot be derived from that of the I bivariate Markov 

process (M,X) by a simple transformation of state space (a,ee Dynkin [4Bx.6). 

Considering now the BESO(3) process Y, if we let Xl = 2FY - Y be the associated 

BMO process then from the fact that FY 

Xl 
Xl - M 

Xl 
M we see that 

Y so that from the abovementioned ' resul t of LeNY the process Y - F must be 

a Brownian motion reflected at zero. Thus the excursions of the BESO(3) process 

Y Y above its future minimum process F are Brownian, indeed identical to the 

excursions of the associated Brownian motion Xl below its past maximum process 

X ° It is well known that the maximum process M of a BM process X can be neatly 

d 'b d f 11 h X h ' X {X() } escr~e as 0 ows: t e process M as ~nverse process A = A r , r > ° 
defined by 

inf {t 

inf {t t > 0, X(t) = r} r > 0, 

which ~s a process with stationary independent increments, namely the one 
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sided stable process with exponent! and rate V2 (see Ito - Mckean [ll]§ 1.7). 

Thus the result (iii) of Theorem 1.3 can be translated at once into the 

following striking fact concerning Brownian motion in three dimensions: a 

three-dimensional Brownian motion Z started at the origin wanders steadily 

out to infinity in the sense that Z leaves spheres centred on the orlgln for 

the last time at a rate which does not depend on the radius of the spheres; 

letting LZ(r) be the last time that Z is inside the sphere S(r) of radius r, 

sup{t Z(t) E S(r)} , r > 0, 

the process 

is a one sided stable process with exponent ! and rate V2 . 

theorem 1.3 will be proved in the following way: first a discrete analogue of 

the theorem will be established which connects two random walks that are 

assmciated in a natural way with BM and BES(3), and then the theorem for 

the diffusions will be obtained by a weak convergence argument. It will be 

seen that this method can also be used to give illuminating proofs to both 

Propositions 1.1 and 1.2, thereby providing a unified approach to all these 

different connections between BM and BES(3). 

Section 2 is denoted to the development of some notation and basic results 

concerning the weak convergence of the approximating random walks. Theorem 

1.3 is proved in Section 3, and then in Section 4 it is explained how Theorem 

1.3 can be used to establish path decomposition theorems. 
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2. The approximating random walks. 

Let C denote the space of continuous functions 

w wet) , t ~ 0, 

from [0,00) to JR= (-'P,oo). Let fR. denote the Borel a-field of JR, and 

let~ be the smallest a-field on C with respect to which the co-ordinate 

mappings X (t) from C to JR, 

X(t): w + wet), (t ~ 0) 

are -tbl Ii( measurable for each t ~ 0. 

Suppose that Y = {yet), t ~ o} ~s an (JR,@L) valued stochastic process 

with continuous paths defined on a probability triple (~,if,P). Such a 

process induces an ~IJb measurable mapping from ~ to C which we shall 

also denote by Y: 

Y: w+Y(',w) 

where Y(·,w) ~s the sample function corresponding to w E ~. By the P-

distribution of Y we mean the probability PY induced by Y on (C,~): 

PY(A) P (Y E A), A E (!, , (2.1) 

-1 
where the notation PY ~s preferred to the more conventional PY . Thus 

{X(t), t ~ 0; Py} ~ {yet), t ~ 0; p} , 
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where 'iv' means 'is identical in distribution to', or 'has the same finite 

dimensional distributions as', 

For x E JR we define a probabi li ty pX on (C,.Q,) as the distribution of a BMx 

process, that is to say pX is Wiener measure on (C,~) corresponding to 

starting position x. Also, for x ~ 0 we define a probability QX on (C,-i6) 

as the distribution of a BESx (3) process. 

Let C* be the set of functions w ~n C for which lim wet) 
t -+ 00 

00 , Of course 

* x * c~ E -fg and p (C ) * * 1. Let g denote the restriction of~ to C . 

Let Z = Zl denote the set of integers, and for 0 > 0 let Zo denote the grid 

of mUltiples of 0, Zo = {jo ,j E Z}. For m e IN {O, 1 , ... } we define a 

function (m) * Po: C -+ [0,00) as fa llows : 

inf {t 

P(m+l) 
o w inf {t 

Thus the times o < P (O)w < 
= 0 

pel) 
o w < ... are the successive times at which 

the path w reaches a fresh point on the grid Zo' Now for each m E IN define 

V (m) * 
0 

C -+ Zo by 

(8) (1)... so that Vo w, Vo w, •.• ~s the sequence of points on the grid Zo which ~s 

visited by the path w, with Vo (m+l) + Vo (m). 
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It is obvious from the strong Markov property that under either pX or QX 

the sequence (Va (m) ,m E IN) is a Markov chain with stationary transition 

probabilities. Under pX the Markov chain is a simple symmetric random walk 

on Z~ with transition probabilities from ia to ja given by p .. , where (p .. ) P 
u ~J ~J 

~s the transition matrix on Z defined by 

p .. 
~J 

! if j ~ + 1 or ~ - 1 

o otherwise, 

while under QX the Markov chain (Va (m), fit EN) has transition probabilities 

from ia to ja given by q .. , where (q .. ) = Q is the transition matrix on 
~J ~J 

the non-negative integers IN defined by 

and for ~ > 1 

q .. 
~J 

= 1 if J 1 

o otherwise, 

(-*-)(i)(j) if J 
~ 

o otherwise. 

i + 1 or i - 1, 

This identification of Q follows at once from the fact that BES(3) has scale 

function s(y) = -l/y (see Breiman[2], Freedman [8] or It6-McKean [11] for 

the meaning of this statement and how to derive it from the description of 

the infinitesimal generator of BES(3) given in the Introduction). Note that 

the lack of dependence of the transition probabilities on the grid size a 
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LS to be expected from the fact bhat the Brownian scale transformation 

So : C + C which takes the path w to the path wS o defined by 

(2.2) 

o 0 LS such that it leaves both P and Q invariant indeed for x ~ 0,0 > 0, 

(2.3) 

h x"" 1 x d h t e result for Q lJieLng a consequence of the standard resu t for P an t e 

description of BES(3) as the radial part of three dimensional Brownian motion. 

Note that the mapping notation wU with the mapping U acting on the right of 

w will always be used for mappings U from C into C. This is consistent with 

the notation (2.1) being used in (2.3) for the transformed probabilities. 

For R P or Q we shall henceforth refer to a Markov chain with transitions R 

as an R random walk. For facts concerning the frandom walk see Feller [5], 

and for the Q random walk see Section 1.12 of Freedman [7]. In view of the 

embedding described above a great many interesting properties of P and 

Q random walks are inherited from their parent processes BM and BES(3). 

For instance both BM and the P random walk are null-recurrent, while both 

BES(3) and the Q random walk are transient. 

But what concerns us here is the fact that the Qcrandom walk is related to 

the P random walk in exactly the same ways as BES(3) is related to BM. 

For instance Propositions 1.1 and 1.2 of the Introduction immediately imply 

analogous connections between the two random walks. The key observation, 
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of the present paper is that it is usually an extremely simple matter to ~c 

establish such connections between the P and Q random walks directly, and 

that it is then possible to deduce the coresponding results connecting BM 

and BES(3) by using the fact that the diffusions can be described as limits 

of their embedded random walks as the grid size 8 goes to zero. 

To make this precise we now embed the discrete time process (V8 (m) ,m E IN) 

back into contililtWUS time by defining a map V 8 

V (m) 
8 w, 

* C + C as follows: set 

* wEC,mEJN, 

and define 2 wV8 in between mUltiples of 8 by linear interpolation: For 

* 2 2 . w E:C ,mE IN, m8 1 t < (m + 1) 8 , 

(2.4) 

* * The map V8 is of course ~ /jmeasurable. For w E C the path wV8 is a con-

tinnous broken line which moves through the same sequence of points on the 

grid Z8 as w does, but at deterministic times 0,8 2 ,28 2 , instead of random 

times p 8 (O)w,p 8 (l)w,p 8 (2)w .... Notice that for x E Zo the quantity mo 2 lS 

just the px_ expectation of P8 (m) 

Now for x ~ ° define P~ and Q~ as the pX and QX distributions of Va: 
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"x x~ Thus ~8 (Qo) is the distribution on (C,') of a linearly interpolated Markov 

chain which starts distributed on the two points of Zo closest to x [right 

at x if x E Zo]' and then moves on the grid Zo at time intervals of 02 with 

transition probabilities determined by P(Q). Notice that if we denote by TU 

the composition of two mappings T and U from C to C then the mappings Vo 

fit in with the Brownian scale transformations Sdof (2.2) according to the 

formula 

and thus (2.3) implies that 

(2.5) 

s1nce for instance 

Let us now g1ve C the topology of uniform convergence on compact sets. The 

space C is then a polish space, i.e. C can be metrised as a complete separabl~ 

metric space, and the IT- field ~ generated by the co-ordinate maps is iden-

tical to the Borel IT - field of C. Let]1 and (]1n,n e 1N) be probabilities on 

(C,~). We say that the sequence (]1n) converges weakly to ]1, writing 

if as n + 00 

]1 "']1 n , 

ffd]1 + ffd]1 
n 



for every bounded continuous function f from C to JR. For background on weak 

convergence of probability measures the reader is referred to Billingsley 

[1]. See Whitt[16] for a discussion with special reference to the space C 

being considered here. 

The diffusions BM and BES(3) can now be described as weak limits of their 

embedded random walks as the grid sixe 0 converges to zero through the sequence 

(llyn, n EJN). There is also a strong version of the result now stated 

which gives a.s. convergence of paths, buttb]statement of this result is 

deferred to the end of the section since io'Uit:he applications we have in mind 

here it is the following result which is of primary importance: 

The!nrem 2.6. Fix x ~ O. As n + ~ both 

(2.6)(i) 

(2.6)(H) 

Proof. The first assertion is just a particular case of Dop.sker's theorem 

(see Billingsiey.{1J,Whitt [US]), while the second is a special case of a 

theorem on weak convergence of Markov chains to diffusions which was proved 

by Lamperti in [12]. 

Ft?E the ~eB;der wlto ;is: ~~~~:i,l;tf. l;V~tJJ~.~r convergence (2 .6)(i), strong intuitive 
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grounds for believing (2.6)(ii) should be provided by the fact that for 

x 
x E Z8 and a function f : JR -+ JR the Q8 - expectation of 

1.S just 

~[f(x + 8) + f(x - 8) - 2f(x)]/82 + l[f(x +8)-f(x - 8)]/28 , 
x 

which for twice dl-Ffferentiable f converges 8 -+ 0 to 

B.3f 1 df +-
x dx ' 

where 83 1.S the infinitesimal generator of BES(3). This is exactly analogous 

to what happens in the more familiar situation corresponding to (2.6)(i). 

This does not ofcour.seprovide proof of (2.6)(ii), but an alternative proof 

of the result along quite different lines will be mentioned at the end of 

the section. 

Our applications of Theorem 2.6 rely on the fact that if ~ is a probability 

on (C,~) and ~ : C -+ C is a $/~ measurable mapping with set of points of 

discontinuity which has ~ measure zero, then for a sequence (~ ) of pro
n 

babilities on (C,~), 

~ ~ ~ implies ~ ~ ~ ~~ , 
n n 

(2.7) 

(see Billingsley [1], Theorem 5.5). 

Let us now illustrate the use of Theorem 2.6 for establishing connections 
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between BM and BES(3) by giving a proof of part (i) of Proposition 1.1. 

In the present terminology this result states that for 0 < b < c < 00 

{X(t),O < t < T • 
= c' < TO)} ~ {X(t),O ~ t < T • 

= c' 
(2.8) 

where for x E JR the first passage function T 
x 

C + [O,ooJ 1S defined by 

T W 
X 

in:f{t t > 0, wet) x} , w E C. 

The discrete analogue of (2.8) is the following: for 0 > 0 

{X(t), 0 ~ t < T • 
= c' 

b 
Po f(Tc < TO)} ~ {X(t), 0 < t < T • 

= c' 
(2.9) 

Now it is easy to see using (2.5) that to establish (2.9) it suffices to 

consider the case when 0 = 1 with band c both integers. But under either 

the only paths for {X(t), 0 < t < T } which have posi-
= = c 

tive probability are broken lines started at b which more either up one or 

down one at each unit of time through integer values b,jl,j2"" jn' where 

b 
o < jk < c for 1 ~ k ~ n-l and jn = C; the Pl probability of this path 

given (Tc < TO) is just 

while the Q~ probability of this path is equally 

( -1:-1. ) (.~f -1. ) (.-1 .2-1 ) ::....- b-:1.q:-n 
b2· JIJ t 2 J 2 '" In-'l' c -:.~ c, 
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which establishes (2.9). Finally, standard arguments show that the mapp1ng 

~ : C + C defined by 

(w~)(t) lh < TO}W(t " T ) C C 

is ~ /~ measurable with discontinuity set which has both pX and QX probability 

zero (cf. Freedman [7], §1.7)) and (2.8) now follows quickly from Theorem 2.0 

using (2.7). 

The reader may like to check that the discrete result (2.9) works even for 

b = 0, 

o ° {X(t), ° ~ t ~ Tc; P8 1T c < TO}'""" {X.(t),O ~ t ~ Tc;Q8 }, 

though (2.8) makes no sense for b = ° Slnce the event {T 
c 

probability zero. Even so, BESO(3) prior to T behaves just as if it were 
c 

(2.10) 

MO' d"" d h" b f " '" f B con 1t10ne to 1t c e ore return1ng to ° : w1tness the appearance 0 

° BES (3) as a component 1n the decomposition of the Brownian path made by 

Williams [17]: 

where p 1S the last time at zero before TC' P w c -c 

w E C. 

(2.11) 

0 __ < t ~ T ,w(t)=o}, - c 

This identity too can be deduced from the weak convergence (2.6) after obser

ving that (2.10) implies the random walk analogue of (2.llY with pO and QO 

replaced by p~. and Q~ (cf. Freedman [7] §4 .5) .It is interesting to note that 
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the discrete result (2.10) also implies that we must have. the following 

further identity pointed out to me by David Williams: 

{X(t), 0 ~ t < T • 
= c' 

o Q } ~ {c - X(, - t), 0 ~ t 
c 

< , • 
= c' 

a fact which makes (2.11) consistent with Proposition 1.2. 

(2.12) 

Part (ii) of Proposition 1.1 and Proposition 1.2 can be established in exactly 

the same kind of way: once these statements are transformed into assertions 

.Xc X x 
Q8taneasfrybe estabH§headirectly; and tnetheorems foi pc~fid Q;" then 

folf6w'bya. tveak comrergefi~~a.rgurnerit just'a~ above; Tne' argument 1:6r ttie 

di:SC:t~tea.n.H6gueOfpatf (1~) <:)f+PtopdSiH8ilc 'ErH "alrntlst'ident:ical t6thalt 

«&sctltssed above;fcir patt' H);~ 'wnhetne corresp()nding;disc:rete'result;;~for 

'.Pfo.,bSiHon 1;;2; can . bellea~~y pto~ed"using thepath;tffifisf6finat:ion considered 
)" 

in the next section. However the details are left to the reader. 

'fo conchHie this seotion we mention the strong vers~on of the weak convergence 

theorem considered above. Recall that convergence in C means uniform convergence 

on compact sets. 

* Theorem 2.13. For the mapping Va C ~ C defined by (2.4), let 

* A = {w w E C , lim wV1! rn wL 'In 
n~ 

Then for all x ~O 

pX(A) <itA) 1. 
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Proof The result for pX ~s well known (see ItO- Mckean [11], §l.lO), and the 

assertion for QX follows quickly from the result for pX put together with (2.8) 

for x > 0 and with either (2.11) or Proposition 1.2 for x = O. 

. b d f' .. x pXV QX S~nce y e ~n~t~on P~ =. = 
u 0' . 0 

QXvo ' the assertions of Theorem 2.6 can 

be deduced at once from those of Theorem 2.12 . Thus if one ~s prepared to take 

(2.8) and either (2.11) or Proposition 1.2 for granted from the above argument 

provides an alternative proof of Theorem 2.6. 

3. Proof of Theorem 1.3. 

We shall first establish the discrete analogue of part (i) of Theorem 1.3. 

Let X = eX , n E IN) be a simple random walk on the integers Z defined on 
n 

a probability triple (rl, 'J-,Pr). Let M = (M , n E IN) be its past maximum 
n 

process, 

and let Y 

M 
n max ~ , 

O~k,;;;p 

nEJN 

(Y , n E IN) be the process defined by 
n 

Y 
n 

2M - X , 
n n 

n E IN. 

The value Y is the reflection of X in the level M . n n n 

Lemma 3.1 Suppose that the P random walk X has starting state 1. Then 

Y is a Q random walk with starting state 1. 

Proof Fix n and consider the conditional distribution of Y 1 given any 
n+ 

possible Y-history up to time n with Y 
n 

H 

j, say 

j}. 
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But consider how many X-histories up to time n could have given r~se to 

this Y-history. There are exactly j of them corresponding to the j possible 

values 1,2, ... ,j which might be taken by M : it is obvious that these and 
n 

only these values of M are compatible with this H for which Y = j, and n n 

once the value of M is known the entire X-history up to time n can be 
n 

recreated from the Y-history H by realising that 

o ~ k ~ n, 

where Mk ~s determined by Mn and the Y-history through the relation 

This relation is easily checked and is obvious from a diagram. But s~nce X 

~s a simple random walk all 2n possible X-histories up to time n are 

equally likely, and thus thecondi tional probability given the Y-history H 

of each of the possible X-histories compatible .with H is just l/j. But if 

we further condition on an X-history corresponding to M 
n 

j-l or less, 

it is clear that at the trasition from n to n+l the Y-path increases (decreases) 

by one according as the X-path decreases (increases) by one, either event 

having conditional probability 1/2 given the X-history, while given the 

X-history with M = j the Y path increases by one with certainty. Thus 
n 

the conditional probability of Y 1 ~ j+l given H ~s n+ 

(j-l)/j . 1. 
2 

+ 
1 l/j . 
2: 

while the conditional probability of Y 1 n+ 

(l/j)(I) (j+l), 

j-l given H ~s 
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(j-1) /j . ~ + II j . ° (l/j) (~) (j-1) 

But this is just to say that Y is Markov with stationary transition 

probabilities Q. 

Let us now return to the framework of Section 2. Define a map ~: 'C -+- C 

by 

(w~)(t) 2 sup w(s) - w(t). 
O~s~J 

Thus if X now denotes the identity map from C to C then ~n the notation of 

Theorem 1.3 we have that 

~ 2~ - X. 

Note that the mapping ~ is continuous. Now, in the language of Section 2 

Lemma 3.1 tells us by virtue of (2.5) that for any 8 > ° the p~ distribution 

of ~ is Q~ 

(3.2) 

But as 8 converges to zero through the sequence (l/V~, n E IN) it is an 

immediate consequence of (2.6) that both p~ ~ pO and Q~ ~ QO. Thus using (2.7) 

we have 

(3.3) 

and now (3.2) yields 

(3.4) 

which ~s just the assertion (i) of Theorem 1.3. This completes the proof 
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of Theorem 1.3 s~nce as remarked below the theorem parts (ii) and (iii) 

are immediate consequences of part (i). 

Notes. (i) The mappings ~ and Va do not commute, and thus unlike the 

situation corresponding to any of the other connections between BM and 

BES(3) which we have considered it is not immediately obvious from the 

diffusion result (3.4) that (3.4) should have such a simple discrete 

analogue as (3.2). Naturally there are also discrete analogues of parts (ii) 

and (iii) of Theorem 1.3. 

(ii) It can be shown from Theorem 1.3 that there is a continuous time 

analogue of the result which was the key to the proof of Lemma 3.1, namely 

that for a BMO process X with Y = 2MX - X the conditional distribution of 

~(t) given {Yes), ° ~ s ~ t} depends only on yet) and is in fact the 

uniform distribution on [O,Y(t)] . If this could be proved directly it 

would then be possible to establish the time-homogeneous Markov property 

of the Y process by using this result to show that the conditional distribution 

of the whole of the future of the Y process beyond t given the past history 

of the Y process up to time t depended only on yet), (though it would still 

be another matter to recognise the process as BES(3)). 

4. Path decomposition of BES(3) and BM. 

Theorem 1.3 provides a neat proof of the following path decomposition theorem 

for BES(3) which generalises results of Williams [18] . For a completely 

different approach to the extension of the present result to more general 

diffusions on the line see Jacobsen's paper [9] . Jacobsen's path decomposition 

for diffusions can be obtained from the present result by the method of random 
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time substitution (cf. Williams [18] ). 

Theorem 4.1 Fix a b ~ ° and let Y = {yet), t ~ o} be a BESb (3) process 

Y with future minimum process F . Suppose that T is an a.s. finite stopping 

time of the bivariate process (Y,FY) = {(Y(t),FY(t», t > o} such that 

Y yeT) = F (T) a.s .. Then the poSt-T proces 

{yeT + t) - yeT), t ~ o} 

~s a BESO(3) process which ~s independent of the pre-T process 

Remark. The prime examples of random times T which satisfy the conditions 

of the theorem are 

(i) T = T . 
m~n 

inf {t: yet) Y 
F (t)}, 

that is to say the first time at which the process attains its overall 

minimum,(and the theorem shows that this is a.s. the only time at which 

° the minimum is attained since the probability of a BES (3) process ever 

returning to the origin is zero). 

(ii) For c > b, 

T = 0' 
C 

o 
c 

inf {t: yet) 

sup {t: yet) c} a.s., 

(again using the theorem to see that 0' 
c 

o a. s.). 
c 
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It was in these cases that the theorem was established by Williams, and for 

these times T Williams also gave descriptions of the pre-T processes (these 

will be mentioned later). 

Proof ° It is only necessary to prove the result for a BES (3) process 

b 
s~nce for a BES (3) process the result follows at once from the case b ° 
by considering a BESO(3) process after the time Tb when it first hits b 

and using the strong Markov property at b. Suppose therefore that Y is 

a BESO(3) process, and let X = 2FY - Y be the BMO process associated with 

Y by part (ii) of Theorem 1.3. Now since Y = 2MX- X, FY = MX, we see that 

for each u ~ ° the a-fields in the underlying probability space generated 

by 

Y 
{(Y(t),F (t)), ° ~ t ~ u} and {X(t), ° < t ~ u} 

must be identical. Now we are assuming that T is a stopping time of the 

(Y,FY) process, and thus T is equally a stopping time of the X process. 

But by the strong Markov property of X at T the process 

* X {X(T + t)- X(T), ° ~ t < oo} 

~s a independent of {X(t), ° ~ t ~ T}, and hence of {yet), ° < t ~ T}. 

Thus using now the assumption that yeT) = FY(T) a.s. we have 

Y{T) a.s. , 

so that a.s. 

Y(T+ t) - yeT) 

* 
2X(T) + 2MX (t) - X(T + t) - X(T) 
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and the assertian naw fallaws frampart (i) af Thearem 1.3. 

Far T = T min 
and T = T c 

Williams shawed in [18 ] that the pre-T 

pracess also. has a simple structure which may be described as fallaws: 

far T = T we have far a BESb (3) pracess Y that 
min 

{Y(t), 0 ~ t < T . } - {X(t), 0 < t < TX} 
m~n Y 

b where X is a BM pracess,y is a unifarm [O,b] randam variable independent 

af X and 

X 
T 

Y 
inf {t: X(t) y}, 

(it is easy to. see haw this can be abtained fram the argument abave); far 

and a BESO(3) pracess Y we have already stated Williams' descriptian 

af the pre-a pracess in terms af reversed Brawnian matian in Prapasitian 1.2, 
c 

and far a BESb (3) pracess with ° < b ~ c the pre ac pracess can easily 

be pieced tagether fram the pre-T. pracess, the Po.st-T. pre-ob pracess 
m~n m~n 

and the past-ob pre-oc pracess using these results abave and the path 

decampasitians guaranteed by Thearem 4.1. Finally, the reader may like to. 

put the abave result fIDY c = b tagether with Prapasitian 1.2 and (2.11) 

ar (2.12) to. prave the remarkable decampasitian af the Brawnian path described 

by Williams in Thearem 2 af [17] 
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