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1. INTRODUCTION 

Let 

E(Zlizo 

1 < m < 

Z /mn , 
n 

ZO' Zl"" be a Galton-Watson process with mean m = 

= 1); we shall consider the supercritical case, where 

00 A classical result on the process is, that if W 
n 

then W = lim W exists and is finite a.s •• In the re
n 

n 
cent years, som~ finer limit theorems (e.g. certain results on 

asymptotic normality ([2]) and a law of the iterated logarithm 

([3] and [4])) has been proved under the assumption cr 2 

< 00' , these results, which may be seen as pa-

rallels to classical results for sequences of sums of i.i.d. 

random variables, completely solves the problem of determining 

the order of magnitude of the deviations W - W under the as-
n 

sumption cited. In the present paper we shall be concerned 

with giving some rates of the convergence W + W for the GaI-
n 

ton-Watson process and some more general branching processes 

under weaker assumption than cr 2 < 00; here again, the results 

have wellknown analogues in some refinements of the law of lar

ge numbers (compare [9], prop. IV. 7.1 and the remarks at the 

beginning of section 2). 

Our main result will be g~ven ~n the multitype case and 

before stating the theorem, we introduce the basic notation 

and set-up, which is essentially that of [6] Let k be the 

number of types and F .. , i,j = 1, ... ,k, the offspring distri-
~,J k 

Then Z is a k-vector, Z = (Zl Z) and given 
n n n n ' 

butions. 

Z ZJ 
n' n+l is distributed as 

k 
Z~ 

n 
xi,j L L 

i=l v=l 
n,V 

where the XIS are independent and X~,J is distributed accor
n,V 

ding to F. M denotes the matrix with elements 
00 ~ , J 

m ... = 
~ , J 

JOxdF .. (x)such that 
~,J 

E(Z liz) = Z M. We assume M to be posi-n+ n n 
tively regular, that ~s, all elements of Mt are strictly posi-

tive for some integer t > 0; it is then well-known (see appen

dix 2 of [5]), that M has a largest positive eigenvalue p with 

associated right and left eigenvectors u and v with strictly 

positive coordinates. We assume p > 1 and normalize u and v 
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by vu f = 1. By a result of Kesten & Stigum ([6]), there exists 

a one-dimensional random variable W such that lim Z Ipn = w . v 
n 

a.s •. We shall prove: n 

Theorem 1 

(i) If 

<» 

J ( )CX+l x."log x dF .. (x) < 00, 

o ~,J 
i,j = l, •.. ,k ( 1.1) 

for some CX > 0, then a. s. 

n CX (W 

Furthermore, the series 

00 

2: (W 
n=l 

converges a.s. for cx > 1 

(ii) If 

00 

J . x P dF. . ex) 
o ~, J 

. 

. 

v -

v -

< 00 , 

Z 
2) -+ 0 
pn 

Z 
-E) 
pn 

i,j = l, ... ,k 

for some p with 1 < P < 2, then a.s. 

h Ill were - + -+ = • 
p q 

(1. 2) 

(1. 3) 

(1. 4) 

(1. 5) 

The author has some. rather complete results on the conver-

se of the theorem in the one-dimensional case. Thus it may be 

proved, that (1.5) implies (1.4), while on the contrary a coun

terexample shows, that (1.1) is not necessary for (1. 2) to hold. 

However, if (1.1) fails to hold, then for any £ > 0 n CX +£ 

(W-W ) -+ - 00 on the set {W > a}. Also, it 
n 

should be noted that (1. 5 ) could not be replaced by pn/q(W • v 

- Zn/pn) -+ 0; this may be seen from the results in [7] on the 
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magnitude of Z a' for vectors with va' = o. The proofs of Ci) 
n 

and (ii) are entirely analogous and only the proof of (i) will 

be given. The proof of theorem 1 carries with some modificati-

ons over to continuous-time Markov branching processes; see 

further the end of section 2, where a proof of this fact 1S 

outlined. 

Finally, 1n section 3, we shall glve an application of the

orem 1 to show a refinement of a limit theorem of Kesten & Sti

gum ([8]) for decomposable mUltitype Galton-Watson processes; 

the announcement of the result is postponed until section 3. 

2. SOME LEMMAS; PROOF OF THEOREM 1 

As mentioned 1n the introduction, theorem 1 has a counter

part in some sharp versions of the law of large numbers and al

so its proof is based on an idea similar to the one employed 

here. If Yl , Y2 , ••• are i. i. d. with mean zero, the law of lar

ge numbers, (Y l + ••. +Y n ) In -4 0, may be shown by first proving 
00 

the convergence of the ser1es L 
n=l 

Y In and next combine this 
n 

fact with summation by parts 

to obtain the desired result. 

(in form of the Kronecker lemma) 

What we shall do, 1S (in the 

one-dimensional case) first to prove the convergence of the se

ries Lma(W l-W) by some arguments inspired by those of Ke-m+ m 
sten and Stigum ([6] and [7])., and next use summation by parts 

00 

to estimate the tail sums L(W l-W) = W - W of the series 

L(W -W). 
m+l m 

n 
m+ m n 

Let Y. ; j = 1,2, •.• ; in = 1,2, .•. be i.Ld. ran
Jm 

Lemma 1. 

dom variables with EY jm = 0 and let ~O'~l"'. be an increasing 

sequence of a-algebras such that the Y. 's are ~ -measurable 
Jm n 

for m < n and independent of ~ for m 
- n 

> n. Further, let for 

each m Z be a ~ I-measurable random variable with 
m m-

. {o, 1, 2, ••• } such that M = sup Z 18m <·00 a. s •. 
m 

00 

f ( x) a+ 1 () x. log dF x < 00, 

o 

If 

values in 
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where F is the common distribution function of the Iy. I's. 
Jm 

then the series 
z 

00 a m 
I m I Y. 

m=l pm j=l Jm 

converges a.s. for p > 1. 

Proof. Let y~ = Y. l{/y. I<pm/ma}. ---- Jm Jm 
Z Jm -

a m 
S ' 

m 
I y! . 

m m 
j=l .lm p 

S 
m 

a 
m 

m 
p 

Z 
m 

I 
j=l 

y. and 
Jm 

Since obviously Sand S' are B -measurable, it is easy to 
m m m 

see by referring to [9], prop. V. 6.2 and the corollary of 

prop. V.6.3, that it suffices to show the convergence of each 

of the serl.es 

00 00 00 

I Var(S'IB 1). 
1 m m-m= . 

However, let for any x 2. 0 p = p (x) = sup{m/ pm /ma<x}. Then p 

O(1og x), pp = O(x(1og x)a) and thus 

and 

00 00 00 

I peS *s'lB 1) < I Z 
m=l m m m- m=l m 

f dF(x) < 
ml a p m 

00 00 

00 

M f O(x(log x)a)dF(x) < 00, 

o 

00 00 a 

00 

I IE(S'IB )1 = 
m=l m m m:l ;m ZmIEYlml{IYlml>pm/ma}/ < 

00 00 00 p a a f f M I m x dF ex) = M !x ImdF(x) 
m=l m I a 0 1 

P m 
00 

x)a+l)dF(x) M f x,O«(1og < 00 

0 

finally, 

00 00 2a 

I Var(S' IB 1) I 
m Z Var y' < = 2Iii m 1m m m- m=l p m=l 
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2Q', m Q', 00 p. 1m 
M L 

m I 2 
dF(x) x m m=l p 0 

00 00 2Q', 
M I 2 O(I t dt)dF(x) x 

t 
0 P P 

00 2. t 2Q',00 
M I x 0(0(-[-] »dF(x) 

0 tp 
P 

00 

M I O(x(logx)Q',)dF(x) < 00, 
o 

2Q', 00 00 
< M I 2 

L 
m 

x m 
0 m=p p 

00 2 Q', 
= MIx O(E-)dF(x)= 

o x 

dF (x) 

completing the proof. 

Now consider a positively regular Galton-Watson process ZO' 

Zl"'. with M,p,u,v etc. as defined in the introduction. 

L e mm a 2. Un d era s s um p t ion ( 1. 1), the s e r i e s 

00 Q', 
L E-( Z -Z 1M) (2.1) 

n=l pn n n-

converges a.s •• 
"I 

Proof. Write zq = 
n 

k 
L zp,q where zp,q denotes the number 

n ' n p=l 
of type q-individuals 

type p. Now 

in the nfth generation with parents of 

k 
(Z -Z lM)q 

n n-
L (Zp,q - Zp m ) 

n n-l p,q p=l 

k 
L 

p=l 

zP 
n-l 

L O.:~, q m ) 
J n - p,q' j = 1 . , 

where for each p and q the X~,qls are i.i.d. with common di
J,n 

stribution F and independent of the first n-l generations. p,q 
Since lemma 1 immediately gives the convergence of each of the 

sums 

Q', Zp 
00 n-1 
L 

n L (X~, q mp,q)' -
n=l n j=l J ,n p 

the convergence of (2.1) is clear. 
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It is obvious from the proofs of lemma 1 and 2, that lem

ma 2 is still valid if (2.1) is replaced by 

co ex. 
2: n (Z -Z M)A(n) 

n=l pn n n-l ' 

where the sequence of matrices A(n) = (a~n~) satisfies supla~n~ I 
1,J n 1,J 

< co for all i and j. We shall make use of this remark in the 

proof of 

Lemma 3. Under assumption (1.1) the series 

co 

Z a I 

n 

converges a.s. for any a with va' = o. 

Proof. It 1S well-known ([5]), that 

for some PI with 0 < PI < P; thus 

Now 

N ex. N ex. 
2: 

n Z a' 2: E-cz -Z Mn)a' Zo = + 
n=l n n n=l 

n n 0 
P P 

N ex. 
2: 

n Mna' 
n=lp n 

(2. 2) 

(2.3) 

and here by (2.3) the second term has a limit as N ~ 00. For 

each r 

exists and for each 1,J < co. 
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Since 

Nan 
L n L (Z -Z lM)Mn-ra ' 

n r r-
n=l p r=l 

N 
L 

a 
r 

(Z -Z 1M) r r r
r=l p 

it suffices by the remark following the proof of lemma 2 to 

show that 

N a 00 t \0, n 
L 

r (Z -Z M) L cn + r ~ 
r r r-l \ r) n r= 1 p n=N-r+l p 

00 N a ( )0, n, 
L ( L 

r (Z -Z M) '. n+r )~ 
n=l r=N-n+l 

r r r-l r n 
p p 

tends to zero; but since 

N a 
II L r r 
r=N-n+l p 

a 
n(n+l) 

(z -Z M)(,n+r\a'i 
r r-l 'r j < 

where thesttptends to zero by leinma2-, and,_the_ s~ries 
ex) -~," . ,.,,,-' 

L na+1Mna'/pn is absolute convergent, this follows by the 

n=l 
dominated convergence theorem. 

Let a be an increasing sequence of non-ne
m 

Lemma 4. (0 
gative numbers tending to + 00. 

00 

so does L S and furthermore 
m=l m 

00 

If the series 

s ..,. 0, N ..,. 00 

m 

00 

LaS converges, 
m=l m m 

(2.4) 
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00 00 

(ii) The existence of I mS implies that of L 
m=l m m=l 

Proof. 
N 
I a Sand KN 

m=l m m 

For p,q > N 

q 

I I B / m m=p+l 
~(s -s )/ 
a m m-l 

m=p+l m 

q 
I 

q (1 q ( 1 1 )) I I -- + I - - -- (s -s ) / 
a a a m m-l m=p+l q+l r=m r r+l 

< 

___ I_Is -s I + I i (-1 - ___ l_.)(S -s ) I < 
a~+I q p r=p+l a r a r + l r p 

1 
a q+l 

K -:I" (_1 __ 1 )K 
N a 1 a 1 N p+ q+ a p+l 

00 

00 

L S . 
n n=m 

then KN -+ 0, 

KN 
Since - -+ 

aN 
0, N -+ 00, the convergence of I B is clear and 

m=l m 
by letting p Nand q -+ 00 in the inequality just derived, we 

see that 

00 

/ I B I 
m=N+l m 

from which (2.4) follows. Finally, (ii) follows immediately 

from (i) by taking a = m and observing that the last term in 
m 

the identity 

tends to zero. 

N 
L 

m=l 

co 00 

sN + N • L B 
n=N+l n 

Proof of theorem 1. Under assumption (1.1), 

by lemma 3 for any a with va f = 0. Furthermore, since 
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z Z U ' Z ti' 

(W' 2)u' lim 
m Jl. (2.5) . v - - ---n m n p m-+co p p 

co Z u ' Z u' co 

L 
m+l m 

L 1 (Z -Z M)u' 
m+l m· m+l m+l m ' m=n p p m=n p 

nQ(Z Ipn - W • v)u' -+ 0 by lemma 2 and 4. 
n 

Now (1.2) follows 

from the fact that the vectors orthogonal to v together with u 
k 

spans R • For Q > 1, the convergence af 

co 

L ~(Z -Z M) 
m=l pm m m-l 

(lemma 2) implies that of 

co co 

L {W • v 

co 
1 -----(Z -Z M)u' m+l m+l m 

n=O 
L 

n=O m=n p 

by (2.5) and part (ii) of lemma 4. 

ganal to v 

co Z 
L ( ~ - wv)· a I 

n=O p 

Since also for any a ortho-

co 

L 
n=O 

exists, the desired convergence follows as before. 

In the remainder of this section, we briefly indicate the 

main modifications of the proof of theorem 1 needed in the ca

se of a continuous-time Markov branching process {Zt; t ~ oJ. 
We use here the minimal process and the split times (compare 

[1], sec..IIl.9). That is, the jumps ~l' ~2"" of the process 

are i.i.d. such that ~. + 1 is distributed according to the 
1 

offspring distribution F(we shall only consider the case of a 

single type); as pointed out in [1], it is no restriction to 

take F({l}) = 0 and we shall also for simplicity assume F({O}) 

= O. Further, the time T between the n-l'th and the n'th 
n 

Jump has the form T = X Is l' where S 1 = 1 + ~l + •.. +~ 1 n n n- n- n-

(we assume ZO=l) and the X's are independent of the ~'s and 

i.i.d. with exponential distribution with mean liS. Then, if 
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Tn = Tl + ••• + Tn denotes the time of the n'th jump and A = 
00 

Sf (x-I) dF (x) 
o 

exists a.s. 

and that Zt 

(A>O), it is well-known ([1]) that lim(T -log n/A) 
n 

n 
under assumption (2.6) below, that hence T t 00 a.s. 

n 
= Sn for any t with Tn < t < Tn + l • Let Wt 

-At 
e Zt and W = l~m Wto In order to show that taCW-W t ) ~ 0 a.s. 

under the assumption 

00 

f a+l 
x.Clog x) dF(x) < 00 (2.6) 

o 

it suffices by integrating by parts as 1n lemma 4 to show the 

existence of 

lim 
T 

Now dW t 1S the measure with atoms of weight 

h d · h d . i -AtS . h eac T an W1t ens1ty -Ae W1t respect 
n n 

sure dt on each of the intervals [Tn,Tn + l [ and 

< T n + l , 

where 

= U 
n 

T 

- AS 'f t a -At n e dt 
T, 

Ii 

-AT 
ens in 

n 
to Lebesgue mea-

thus, if T < T 
n 

(2. 7) 

U 
n 

T 
n 

f 
n -AT. T. a - 1 1 
L (T.e s·-AS. 1 f a -ltd" '\ t e c.,' t ... 

o . 1 1 1 1-
1= T i - l 

The sequence Ul 'U2 ' ... is easily seen to form a martingale 

with respect to 13 1 ,13 2"", where 13 n = cr(Sl,Tl'''''Sn,Tn ), and 

the existence of lim U may be established in the spirit of 
n 

n 
the proof of lemma 1 by truncating S at n/(log n)a; we leave 

n 
the calculations to the reader. We need thus only show, that 

the last term of (2.7) tends to zero. But let c be some num
a -At 

ber such that t e is decreasing for t > c. Then 

T 
n 



-11-

C/, -At 
t e r 0 

Since T t 00, the 
n 

last term tends to zero, and we conclude 

the proof by remarking 
C/, -AT C/, 

that Ten = 0 «(log n) In) and that 
n 

Xn+l(log n)C/,/n tends to zero by an simple application of the 

Borel-Cantelli lemma. 

3. REFINEMENT OF A LIMIT THEORKMFOR DKCOMPOSABLE MULTITYPE 

GALTON-WATSON PROCESSES. 

In the present section we consider a multitype Galton-Wat

son process with mean matrix M: k x k, which can be partitioned 

_ (M(l,l) 0 ) 
M - M(2,1) M(2,2) 

where M(l, 1): kl x kl and M(2, 2): k2 x k2 are positively regu

lar (for further discussion of the set-up, see [8]), and where 

the largest positive eigenvalues PI and P2 associated with 

M(l,l) and M(2,2) by the Frobenius theorem are equal to some 

common number p~i. Let for i = 1,2 u(i) and v(i) be the right 

and left eigenvectors of M(i,i) corresponding to P and write 

corresponding to the partition of M Z = (Z (l) Z (2». Since 
n ,n· n 

the individuals of the first kl types cannot produce offspring 

of the last k2 types, the Zn(2)-process is positively regular 

and by [6 J, there exists a (one-dimensional) random variable W 

such that Z (2) Ipn -+ Wv(2) a. s.. The main result in [8] for 
n 

the situation considered is, that if 

00 

J xologxdF .. (x) <00, i,j 
o ~, J 

l, •.. ,k, 

then 

Z (1) 
n 

n np 

a. S. 
~-r-

-+ 
W P v(2)M(2, l)u' (l)v(l). 

We shall prove the following refinement of this result: 

Theorem 2. Under the assumption 

00 

2 
Jx,.(logx) dF .. (x) <00, i,j 
o ~.J 

1 •... , k, (3.1) 
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there is a one-dimensional random variable U such that 

Z (1) W U·v(1) + W·b = lime n - n - v(2)M(2,1)u' (1)v(1» n p 
n~ p 

Z (1) Z (2) 
lime n n 

M(2, l)u' (1)v(1» = - n n n+l n+oo p 

where b is the kl-vector 

lv ( 2) M ( 2 , 1) 
p 

00 

L 
m=O 

p 

m 
(M(1,l) _ u'(1)v(1». 

pm 

The theorem contains as corollary some results on the a

symptotic behaviour of Zn(l)a', where a 1S some kl-vector. If 

v(1)a' :1= 0, obviously Z (1)'a'/np n + W/pv(2)M(2,1)u'(1)v(1)a', 
n 

while for v(l)a' = 0 Z (l)a'/pn + Wba'. We shall not here dis
n 

cuss the complications of the case v(l)a' = ba ' o in detail. 

However, some phenomena similar to those of the positively re-

gular case (compare [7J, section 2) seems to occur. E.g. it 

may be proved by a rather straightforward combination of the 

proof of theorem 1 and theorem 2.1 of [7], that if y and Pa is 

defined as in [7] (that is, loosely speaking, such that M(1,l)D:a ' 

1S of the magnitude nYlpaln), if furthermore Ip!1 > p and 

(3.1) 1S replaced by the stronger assumption 

00 

J x 2 dF .. (x) < 00, i,j = l, ••• ,k 
o 1, J 

then we may find real constants ¢a' .•. '¢S and (complexvalued) 

random variablesXa"."~P such that 

Z (1)a' 
n 

In particular, the normalizing constant for Z (l)a' 1S the 
n 

same as in the positively regular case. 

Proof of theorem 2. Fo~ any m > 1 and. = 1, ... ,k l , let 

Tq be the number of type q-individuals in the m'th generation, 
m 

whose parents are of some of the last k2 types, let Tm 
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1 kl 
(T ••• T ) and let U q 

0 (a kl-vector) be the offspring at 
m m m,n,J ' 

time n (n ~ m) of the j'th among the T~'S. Now 

n+l kl Tmq 

Zn+1 (1) 2: 2: 2: U q = 
m=l q=l j=l m,n+l,j 

Tq n+1 k1 
2: 2: 

m n 
'(Uq oM(1,1)n+1-m+, (U q -U q M(l l»M(l l)n-t)_ 
L L l' ., , -

j=l m,m,J r=m m,r+ ,J m,r,J m=l q=l 

n r 
Tq 

m n+l 
2: 

m=l 
2: 2: 2: (U q .-U q .M(l,l»M(l,l)n-r 

j=l m,r+1,J m,r,J r=l m=l 

and thus 

Z .( 1)' 7 n + 1 - (n + 1 )~v ( 2) M (2, 1) u ' (1) v (1) = n+1 . p p (3.2) 

n+1 
2: 1 (T -Z (2)M(2 l»M(l l)n+l-m/ n+1-m 

m m m-1 ' , p 
m=1 p 

n+l 
+ 2: (Zm_l(2)/pm - ~v(2»M(2,1)M(1,1)n+1-m/pn+1-m 

m=1 p 

W n+1 1 1 
+ P v ( 2 ) M ( 2, 1) 2: (M (1, 1) n + -m / p n + -m - u' (1) v (1) ) 

m=l 

Tq 
n r m 
2: 1 2: L (U q . 

r=l pr m=l j=l m,r+1,J Uq .M(l l»M(l l)n-r/ n+1-r 
m r J' , p 

As n -+ 00 , 

, , 

the third term tends to Wb (the existence of b 

is clear from (2.3». Furthermore, each of the series 

Tq 
00 r m 
L 

1 
L L (U q . 

1::':=1 r m=l . 1 m,r+l,J p J= 
- Uq .M(l,l» (q=l, .... k l ) 

m, r. J 
(3.3) 

(3.4) 

(3.5) 
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converges a.s.; this follows for (3.5) by theorem 1 and is for 

(3.3) and (3.4) seen by arguments similar to those employed in 

the proofs of lemma 1 and lemma 2. The reader should note he-

re, that the number of terms of i.i.d. random variables 1n (3.3) 

for each r is of the magnitude rpr (by referring to the theo

rem of Kesten & Stigum or alternatively by a rather direct ap

plication of the law of large numbers), that thus a modificati

on of lemma 1 is needed and rhat actually assumption (3.1) is 

essential for the convergence of {3.3); we leave it to the rea

der to check the details. 

Since M(1, l)u' (1) = put (1), it is now clear that 

( Zn (nl ) _ n W ) v ( 2 ) M ( 2, 1) u f (1) V (1) . ;U" (1) 
p p 

(3.6) 

has a limit. Furthermore, if the (vector) series La converges 
m 

and v(1)a' 0, 

n Mn - m I m f 
11 a n MIla 

r a = r a + 0, n + 00 

m=O m n-m m=O n-m m p p 

by the dominated convergence theorem and (2.3). 

such a 

Thus for any 

Z (1) 
( n 

n 
p 

- n W v(2)M(2,1)uf(1)v(1»af + Whaf. 
p 

and arguing as in the proof of theorem 1, 

Z (1) 
lim (_n __ 

n n+OO p 
- n £!: v ( 2 )M~2, 1) 11' (l) v (l ) ) 

p 

(3.7) 

exists and may by {3.7) be written on the form UV(l) + Wb~ 

Finally, 

Z (1) Z (2) 
lim ( n n 

M(2, l)u' (l)v(l» - n = n n+l n+oo p p 

Z (1) 
£!: v(2)M(2, l)u' (1)v(l» lim ( n - n 

ti+oo 
n p 

p 

by (1.2). 
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