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Summary 

Maximum likelihood estimation of the parameters A and ~ 

of a simple (linear) birth-and--aeath process observed continuously 

over a fixed time interval is studied, Asymptotic distributions 

for large initial populations and for large periods of observation 

are derived and some nonstandard results appear. The related problem 

of estimation from the discrete skeleton of the process is also 

discussed. 
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1, Introduction 

Let Xt be the population size at time t of the (linear) 

birth-and-death process, that is, the Markov process in which 

iAh + o(h), j=i+l, 

P{Xt +h = j I Xt = i} = 1 - i(:\+l-dh + o(h) ~ j=i, 

i Vh + ; (h ) , j = i -1 , 

o(h), otherwise, 

i=0,1,2, ... , :\ ~ 0, 11 ~ 0, and assume throughout that Xo is 

degenerate at some Xo > 0. We shall consider maximum likelihood 

estimation of the parameters :\ and 11 assuming that the process 

has been observed continuously over some time interval. 

The maximum likelihood estimators are the occurrence-exposure 
A "-

rates :\ = Bt/St , 11 = Dt/St , Bt and Dt being the number of 

births and deaths and St 
t = fOXudu the. total time lived by the 

population in the time interval [O,t] 0 The sampling properties 

of these estimators have been studied by a number of authors, to 

be referred to in Section 2, who assumed various stopping ru~es 

depending on the number of births and deaths, 

In this paper the sampling properties of the estimators will 

be studied under the assumption of a fixed interval [O,t] of 

observation. Exact results are as yet scarce; see Section 2. 

Asymptotic results for large initial population sizes are standard 

and stated in Section 3. Asymptotic results for large tare 
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studied in Secticms 4 and 5, 'rwo aspects of the birth-and-·death process 

cause novel features, First, if A > jJ, Xt ~ 0 ("becomes extinct") 
x 

with probability (ll!A) 0 and Xt "* 00 otherwise, whereas if :\.:': jJs 

Xt ~ 0 a, s, Accordingly, Section 4 gives asymptotic results conditioned on 

Xt ~ 00 i:md Section 5 results conditioned on extinction 0 Secondly 9 given 

where W is nondegenerate 0 Asymptotic 

normal theory no longer holds but is replaced by "Student tI-distribution 

results 0 The proof uses a generalization of Lamperti IS ra.'1dom time 

change transforming the birth-and-death process into a compound Poisson 

process, and then transforms the time scale back in a BillingSley (1968)-

type appro ach 0 

Finally, estimation under the assumption that the process is only 

observed at equidistant points of time (the so-ealled discrete skeleton) 

is discussed in Section 6 and the results are shown to improve the early 

work of InL7llel (1951) and Darwin (1956) 0 Furthsrmox'e, it is pointed out 

that by making the discrete skeleton infinitesimal, the results for 

continuous 6bsel'vation are recovered, 

The results are related to recent work -by Diorl (1972) on estimation 

in the Galton~Watson process and results by Jagers 19'73c) on estimation 

of the offspring diEtribution of a Bellman~Harris process, 

The particular cases jJ "" 0 (the pure birth process and A '" 0 

(the pure death process) have been studied previouslY, Keiding (1974) 

gave results for the pure birth process 9 using different proofs, and 

Beyers Keiding and Simonsen (forthcoming) give exact and L -convergence 
p 
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results for the pure birth process and the pure death process as well as 

a numerical evaluation of the asymptotic results (for these particular 

processes), given in Sections 3 through 5 of the present paper. 

The literature on estimation in the pure death process is vast, 

this problem occurring in a variety of life-testing situations, We 

shall not attempt to review this literature but call attention to the 

review by Cox (1965) and a paper by Wolff (1965) on estimation in 

birth-and-death processes of queueing theory. Further specific references 

are given in Sections 2 and 3. 

The asymptotic results in Sections 3 through 6 specialize in an 

obvious way to the pure birth and pure death processes. We shall not 

state this specialization explicitly in each case and will therefore 

assume through those Sections that A > 0 and 11 > 0, 
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2, . Maximum likelihood estimation from continuous observation 

Theorem 2.,1 The likelihood fUnction·is proportional to . 

where Bt and Dt are the number of births and deaths ,Jre§pective;Ly, 

and St = f~ Xudu is the total time lived in the population during 

[O,t]. (Bt,Dt,St) is minimal sufficient and the maximum likelihood 

estimators are given by . ~ = Bt/St . and V = D/St ' 

Re:rnark. Nt = Bt + Dt is to be understood as the number of discontin-

uities of 

of them, 

X, 0 < u < t, At u 

X jumps -1, Thus 
u 

of these, Xu jumps +1, at Dt 

and Dt depend on . {XuIO ~ u < t} 

only and it is seen that Xt - Xo = Bt - Dt' 

Proof. The likelihood function seems to have been derived first by 

Darwin (1956), The other results are immediately derived from the 

likelihood function, 

Remark, The characteristic function and some other results concerning 

the distribution of the minimal sufficient statistic were given by 

Puri (1968), For discussions of the distribution of 0 when A. = 0 

see Hoem (1969b ) and his references. 
A 

Exact and approximate small-sample properties of A in the pure 

A 

birth process (]J :: 0) and of ]J . in the pure death process (A = 0) 

are given by Beyer, Keiding and Simonsen (forthcoming), 

Alternative Stopping Rules. Stopping rules making the .observation time 
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t a random variable have been studied by a number of authors. Thus 

Moran (1951, 1953) observed conditional on Nt and on the particular 

sequence of births and deaths (thereby avoiding untimely extinction), 

Kendall (1952) observed conditional on Dt = Xo and Bartlett (1955, 

Sec, 8.3) described briefly observation conditional on Nt or Dt , 

In all such cases, the likelihood function ,~arid hence the maximum 

likelihood estimators, properly interpreted, remain the same (which, 

it seems, was not always realized by these authors) but the sampling 

properties, of course, differ. Anscombe (1953) studied sequential 

estimation with the criterion that A - ~ be estimated with a prescribed 

small standard error a, He obtained the stopping rule: observe until 

St ~ N~/2/a. (Some device must be prescribed to avoid extinction before 

then,. ) Asymptotically (as Nt 

were obtained as aNl / 2 
t 

+ 00) unbiased estimates of A + ~ 

( . ) -1/2 . and a Bt -Dt Nt ,respectl vely, 

and 

We 

remark that since under this stopping rule we may substitute St for 

N;/2/a, these estimators are nothing but Nt/St and (Bt-Dt)/St' or 

the maximum likelihood estimators once again. 

The point is perhaps best illustrated by the reparametrization 

(~,8) = (A + ~,~/A). Then the likelihood function will read 

Nt -~St Dt + 8)Nt 
~ e e (1 so that ~ and e are L-independent, and 

furthermore, given Nt' St is S-sufficient for ~ and Dt S-sufficient 

for e (in Barndorff-Nielsen's (1971) terminology). The probabilistic 

interpretation of this reparametrization is that ~ governs the "split 

time" process (Athreya and Ney (1972)) and e the imbedded random walk, cf, 

Moran (1951,1953). 
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§; ·AsYlP-pt53~.ic result.S ... fOl" large popul,ations •. 

The birlh""and ... death process with, Xa. ;;;t xD . 'canbeinterpreted as 

tqe .sum of Xci independent bi:bth,..and""de'atbp.recess:-e'swith the same 

parameters and. xcr =L. The following .asymptotic results for Xo 

and fixed t m/3¥' therefore be. obtained ,from ,standard asymptotic 

maximum ·likelip.oo·d theory. 

the factor. in .. {l ,.being replace d . .' by . 'xot when. A = ].I. 

Proof. It was shoWriby Puri (l968) that 

= (~) 
(appropriately . modified ,when. A = ].I).~ and since by. the strong law of 

the strong consistency .fol:lows. Asyntptot;Lc norma:li ty follows from 

standard theory, we need only' compute the information matrix, • But 
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and the result follows by taking the expectations 0 

Remark. Sverdrup (1965) gave a careful study of similar properties 

for related processes, cf. also Kendall (1949) and Hoem (1969a, 1971). 
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4. Asymptotic resuJ.. tS, .. for .. largeperiods of ,observation .. given non-extinction 

In the supercri tical case, that is, when 1..:>]1, it is well known that' 

Xt!E(Xt ) = Xt!{xOexp(A - ]1)t}+ W a.s. as t + 00, where p{W = O} = 

(Harris 

Xo 
P{Xt + O}"" (]1!A) and the distribution of W, given W> 0, 

1 xo xO-l -xOw 
(xO ,x; ), that is, has the density Xo w e !r (xO), w > 0 

isga;mma 

(1963)). Similar results hold for a.s . convergence of the minimal 

sufficient statistic which impli~'s the following consistency result. 

Theorem 4.1 

(a) As t + 00, 

Ct) f) -1 -(A-]1)t .' ;W. 
xeD + "]1 

1..-]1 a.s. o t' 

Rt 1 

A A 

(b) As t + 00, (1..,]1) + (1..,]1) a.s. on the set ' {Xt ';+ oo}, 

Proof. (b) is a corollary of (a). To prove (a), we may' use Jagers' 

(1973a) results on almost sure convergence of random f'unctionals of 

. general branching processes • In fact, the birth-and-death process is 

a general branching process with Malthusian parameter A - ]1, life- , 

length distribution function L(x) =1 - e 
-]1x and expected reproduction 

process given by the density Ae-]1xax • In the case Xo = 1, (a) is now 

obtained directly from Jagers' Corollaries 1, 2, and 5, and the general-

ization to Xo > l' is immediate:. 

The asymptotic behavior of the estimators on the set 

, {W = O} = {Xt + O} isdescribe'd in Section 5 below. 
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Theorem 4.8 As t + ~, 

S~/2(~ ~ A)A-l / 2 

Sl/~(A ) -1/2 
t ].1 - ].1 ].1 

(A - ].1)S e-(A - ].1)t/x 
t ° 

.A 

w B 
+ 

in the Gon di t ional di st ri but ion, given W > 0, where .A, B ~ W 

are ind~pendent, A and B are normal (0,1) and W is gamma 

(xO ,x~l) • 

Proof. The almost sure convergence of St' properly normalized, was 

shown in Theore~ 4.1. 

The asymptotic normal distribution is obtained from asymptotic 

normality ina certain compound Poisson process which is converted into 

a birth-~d-death proqess by a random time change, and then applying 

Billingsley (1968)-ty~e results to verify that the asymptotic normality 

holds after the random time change. 

Let a compound two-dimensional Poisson process (Qt,Rt ) be 

defined in the following way. At each event of a Poisson process Ut 

with intensity A +].1 the two-dimensional cluster size (M,N) = (1,0) 

or :(O~~l) with pr9bability A!(A +].1) and ].1/(A + ].1), respectively. 

Then if (Mi ,Ni ), i=1,2,... are independent replications of (M,N), 
. Ut Ut 

(Qt,Rt ) = (L l Mi , Ll Ni )· Obvi9usly E(M,N) = (A/(A+].1),].1/(A*].1)) so 

that E(~,Rt) = (At,].1t) and similarly it is seen that 
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V(Bt ) = (A + 1l)tE(M2 ) = At, V(Dt ) = llt and Cov(Bt ,Dt ) = 

C\ + II hE (MN) = O. Since (~ ,Rt ) has independent increments, 

it follows by thecentl'al Emit theorem tha:t ((~':"" At) C\.t) -1/2, 

(Rt - llt)(llt )-1/2) is asymptoti.cally two.,..dimensi.onalnormal with 

mean zero and variance matrix the identity. 

Let 

where.TO 

Kt :::. ~ - Rt + .xOand define 

= inf{tl~ = OJ. Then KL 
t t 

tAT 
Lt by Lt = fo o~ du, 

u 
is a birth-and-death process 

with parameters A and ll' whichm80'" be seen in a similar way as for 

the Lamperti representation of the pure birth process (Athreya and 

Ney (1972) ~ Theorem IILll.l). Furthermore ~t and R corresponq. Lt 

to Bt and Dt as defined above, and Lt to St' 

Replace now t by Lt in the asymptotic 'result 'above tG get 

((~ - ALt )(",Lt )-1!2 ,(~ - llLt )(llLt )-1!2) which in light of the 
t . t 

interpretation as birth-and-death process has the same distribution as 

(S~/2(~ _ ",)",-1/2, S~/2(G:.... 1l)1l-1!2). The proof that the asymptotic 

normali ty will still hold a.i'ter the random time change t + Lt ' on the 

set' {Lt + co} is now similar to Dian's (1972) prOof for discrete time,· 

cf, also Jagers (1973b), From this proof. we also conclude that the 

asymptoticnormaldi:st.ributi.on is independent of W as· stated. 

Remark, This method of proof' will yield a seri.es of central-limit 

type theorems for Markov branching, processes, . Such t;heorems will be 

useful counterparts tocentir'al limi-b results~,,£, of the type stated 

by Athreya and Ney (19"7'2, Sec. IlL 10 ) , 
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Corollary. As t + 00, 

( 
(\-A) A -1/2) !! 

( A ) -1/2 
].l-].l ].l 

in the conditional distribution, given Xt + 00. The limiting distribution 

is bivariate Student with common denominator (cf. Johnson and Kotz, 1972, 

p. 134), that is, each component is Student with 2xO d.f. and the com

ponents are independent for given W. 

Remark. As Xo + 00 in the Corollary above, the limiting distribution 

tends towards the two-dimensional standardized normal i~ accordance with 

the result in Theorem 3.1. 

Remark. The results of Theorem 4.2 and its Corollary will still hold if 

considered in the conditional distribution given {Xt > O} instead of 

. {Xt + oo}. By this remark, which is parallel to one made by Dion (1972), 

approximate confidence limits may be obtained. 
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5, Asymptotic results for largeperibds of observation given 
ultimate extinction 

If x + 0 
t 

as t + 00 which happens with probability 
x 

(jJI>..) 0 

in the supercritical case A > jJ and almost surely otherwise~ the 

consistency of the estimators no longer holds, since the sample will 

be in effect finite as t + 00, 

Since for a supercritical process with A > jJ, the conditional 

distribution, given that Xt + 0, is identical to that of a birth-and

death process with -birth parameter jJ and death parameter A (Waugh 

1958), the results in the present section are relevant for supercritical 

processes, given extinction, 

TEeorem 5,1 For A ~ jJ. (\, jJ) + (B/S,D/S) a,s" as t + 00, where 

B and D are the total number of births and deaths.until extinction 

and S = Joo Xtdt, 
0 

The distribution of (B,D,S) is given by the density 

Proof, Most of the results are immediate, The distributions of N 

and of . S given N were given~py Purl (1968), 'Galli ... and McNeil (;L971) 

discussed further aspects. of luhe distri:bution 'of· (N 98), 

From the results in the Theorem, various results concerning the 

limi ting distribution of 6,~) may be derived, A couple of examples 

are shown below" 0 
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(a) The expected values of (B/S,D/S) quickly become complicated. 

Given N = B + D, E(S-l) = (A+).1)/(N-l) so that 

E(~ I N) = 
(1..+).1) (N+xO) 

2(N-l) 

and it follows that for Xo = 1, E(B/S)- (1..+0)/2 and for Xo = 2 

it may be seen that 

(b) The estimator 

= 6y3 + 6y2A _ 31..2).1 + 1..3 

12).12 

A A 

A ... ).1 of the Malthusian parameter A - ).1 

is asymptoticallY equal to -xO/S, whose distribution is g~ yen by the 

density 

u < 0, where I is a modified Bessel f1,1IJ,ction, 
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6, Equidistant srurrpling 

Until now it has been assumed that the complete process 

{Xu I 0 ~ u ~ t} was observed, It may be more realistic to aSSume 

that the process is observed at the equidistant points 0 ,'T 92T 9' , , .k'T=t 0 

The observations X (sometimes called "the discrete skeleton") then 
nl' 

form a Gal ton-Watson process as is well-known (Harris 9 1963, p, 101), 

but the transition probabilities are rather messy 3 and direct maximum 

likelihood estimation does not seem feasible (cf, Darwin (1956)), 

In this Section, however, we shall show that interesting results 

may be obtained by assuming that the following observations are available, 

Interpret the discrete skeleton Galton-Watson process in the usual way 

as a chain of generations of independently reproducing particles, and 

assume that in addition to X itself, the number C of particles 
n'T n 

among the X( . that have 0 offspring is known 0 n-l}1: 

Proposition 6,1 Under the sampling scheme described above, the likelihood 

function is proportional to 

k-l 

C L XnT 
= a t{(l_a)(l_S)}O It > 0~]1 > 0 

where 

. { (:\-]1 h- I} :\ 
k 

11 e - S and Ct I C a "'" (i\-ll h = -a "" II n 
:\e - II n=1 

The maximum likelihood estimatcrs of a and S are giyen by 
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Proof. Let Z :c X 
n nT anq. let Then clearly' {(Z ,0 )/n=O,1,2, ... } . n n 

is a Markov ; chain· with stationary transition probabilities 

q. (z,c) = P{Z =z, C =c 
~. n n 

the i'th convolution, 

qo(O,O) = 1. The likelihood function is then derived as 

P{Zk=zk' Ck=~ / Zk_lczk_l' Ck_l=ck_l } ... P{Zl=Zl,Cl=cl / Zo=xO'CO=O}, 

Theorem 6.1 Assuming that only Xo ,XT, ... 'XkT = Xt are observed,. the 

maximum li~elihood estimator of the Malthusian growth parameter A - ~ 

is given by 

x- , '. . ) . X +. "+X' 1 T' ••• -~T 
11 "" - log 

T XO+" ,+X(k-lh . 

Proof. We have A ~ 11 = T-l log{(l-a)/(l-S)}, and the result is 

therefore true by Pr9position 6.1 if XnT and C were observed. 
n 

But since A - 11 is a function of the XnTs only, the result holds 

in the more narrow sample. 

This proof is p~tterned after Harris' (1948) derivation of the 

maximum likelihood estimator of the mean in an unrestricted offspring 

distribution of .a Galton-Watson process and settles a question left 

(A'=iT) T (:\-l1)T open by Darwin (1956), who studied e - as an estimator of e 

without proving that it is the maximum likelihood estimator, Darwin 

obtained results concerning bias and asymptotic variance of this estimator 
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as well as asymptotic efficiency relative to the maximum likelihood 

estimator exp{(Bt-Dth/St } obtained from continuous observation, 

E, Ro Immel (1951) also remarked in his unpublished UCLA thesis 

that estimation directly from the dis crete skeleton is unfeasible 0 

Immel then considered the problem of estimating the parametric function 

e = 111 A in the res tri cte d mo del with (lOg~l ~ logic) (p~A) "" T and 

showed that in this situation the maximum likelihood estimator was 
k-l k 

gi ven bYe;;:: \' X/\' X , Immel proved consistency and asymptotic 6 nT f nT 

normali ty of this estimator for large : Xo wi thin the restricted model 

and proposed to use e as an approximation in the general case, 

In the restricted model so that the maximum 

likelihood estimator of in the restricted model is e, 

From Theorem 6,1 we see, however 3 that e is in fact the maximum 

likelihood estimator of in the Ulu'estricted model, which 

indicates that Immelis proposal of using e a.s an estimator of e 

hl. general should not be followed, 

Comparison with permanent observation, 'The infini t'2;simal 
discrete skeleton 

By applying Dian ~ s (1972) results for the Ga:::.tc·n~Watson process 

one may give asymptotic results as k f 00 fOT \;he maximum likelihood 

estimators CAs]J) of ()',IlJ in this sampling situation as well as 

efficiency results 0 ~Ihis was shown in detail by Keiding (1974) for 

the pure birth process and we shall not give the full details for the 

birth-a.'1d~death process 0 

We may ~ however, call attention to the fact that 'When k f 00, 
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T+ 0, kT + t, the likelihood function of the equidistant sampling 

situation approaches that of continuous observation given in Section 

2. (When observation is continuous, the number of deaths in any 

interval is (almost surely) given by the knowledge of the total 

population number at each instant in that interval and, in particular, 

Ct + Dt ·) It may be seen that not only will the estimators 

eX","il) + 6,~) under this limiting process but that also the asymptotic 

distributions are asymptotically equal. As was assumed by Keiding 

(1974), the infinitesimal discrete skeleton again yields an alternative 

way of deriving the correct results~ but it should be emphasized that 

this Success depends on the introduction of the observation of C 
n 

above. 

Acknowledgement. My thanks are due to Steffen Lauritzen for discussions 

through the preparation of this paper. 

18 



[1] Anscombe 9 F. J. (1953). Sequential estimation (with discussion), 
J, R, Statist, Soc. B 15, 1-29. 

[2J Athreya~ L Bo and Ney, p, (1972), Branching Processes. Berlin: 
Springer. 

[3] Ba:rndorff-Nie1se~, O. (1971). On Conditional Statistical 
Inference. Arhus 0 Reprinted in: O. Barndorff-Nielsen 
(1973). E?sponential Families an.d Conditioning. Copenhagen: 
Wiley. 

[4] Bartlett, M. S, (1955), An Introduction to Stochastic Processes. 
Cambridge: Cambridge University Press, 

[5] Billingsley, Po (1968). Convergence of Probability Measures. 
New York: Wiley. 

[6] Cox, D. R. (1965). Some problems of statistical analysis 
connected with congestion. Congestion Theory.(W. L. 
Smith and W. Eo Wilkinson, eds,)~ University of North 
Carolina Press, 289-316,::"1', 

[7] Darwin, J. H. (1956). The behaviour of an estimator for a 
simple birth and death process. Biometrika 43, 23-31. 

[8] Dion, J,.-P. (1972). Estimation desprobabilites initiales et 
de la moyenne diun processus de Galton-Watson. These de 
doctorat, Universite de Montreal. 

[9] Gaui, J. and McNeil, D. R. (1971), Joint distributions of 
random variables and their integrals for certain birth
death and diffusion processes. Adv. Appl. Probe 3, 339-
352. 

[10] Harriss T. E. (1948). Branching processes. Ann. Math. Statist. 
19, 474-494, 

[11] Harris 9 T. E. (1963). The Theory of BraIlching Processes. 
Berlin: Springer. 

[12] Hoem, J. M. (1969). Fertility rates and: reproduction rates in 
a probabilistic setting, Biom.~Praxim. 10, 38-66. 
(Correction note: Biom,-Praxim. 11, 20.) 

[13] Hoem, J. M. (1969). The sampling distribution of an estimator 
arising in connection with the tr'\IDcated exponential 
distribution. Ann. Math. Statist. 40, 702~'703, 

19 



[14] Hoem, J. M. (1971). Point estimation of forces of transition 
in demographic models . . J .• R~ Statist; 'Soc; B, 33, 275-289. 

[15] Immel, E. R •. (1951) ... Problems of Estimation and of Hypothesis 
Testing Connected with Birth-and-DeathMaDkov Processes. 
Thesis,University.of California, Los Angeles. (Abstract: 
Ann. Math. Statist . 22, 485.) 

[16] Jagers, P. (1973a).Almost sure .convergence of genera;L branching 
processes and functionals thereof. Tech. rep. 1973-13, 
Dept. of Math., Chalmers Univ. Tech. and Univ. GOteborg. 

[17] Jagers, P. (1973b). A limit theorem for sums of random numbers 
of 1. 1. d. random variables. Mathematics and Statistics . 
Essays in Honour of Harald Bergstrom (P. Jagers and L. 
R~de, eds.) Goteborg. 33-39, 

[18] Jagers, P. (;L973c). Maximum likelihood estimation of the 
reproduction distribution in branching processes and the 
extent of disintegration in cell proliferation. Tech. rep. 
1973-17, Dept. of Math., Chalmers Univ. of Tech. and Univ. 
Goteborg. 

[19] Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: 
Continuous Multivariate Distributions. New York: Wiley. 

[20] Keiding, N. (1974), Estimation in the birth .process. Biometrika 
61$ 

[2i] Kendall, D. G. (1949), Stochastic processes and population growth. 
J. R. Statist. Soc. B 11 ~ 230-264.· 

[22] Kendall, D. G. (1952), Les processus stochastiques de croissance 
en biologie. Ann, Inst. H. Poincare 13, 43-108. 

[23] Moran, P. A. P. (1951). Estimation methods for evolutive processes. 
J, R. Statist. Soc. B 13, 141-146. 

[24] Moran, P. A. P. (1953). The estimation of parameters of a birth 
ruld death process. J, R. Statist. Soc. B 15, 241-245. 

[25] Puri, P. S. (1968), Some further results on the birth-and-death 
process and its integral. Proe. Camb. Phil. Soc. 64, 141-
154. 

[26] Sverdrup, E. (1965). Estimates and test procedures in connection 
with stochastic models for deaths, recoveries and transfers 
between different states of health. Skand, Akt. 52,18.4-211. 

20 



[27] Waugh, W. A. OiN. (1958). Conditioned Markov processes, 
Biometrika 45, 241-249. 

[28] Wolff, R. W. (1965), Problems of statistical inference for 
birth and death queuing models, Op. Res. 13, 343-357. 


	forside 4, 74
	Preprint 1974 - No 4 Keiding, Niels - Maximum Likelihood Estimation in the Birth-and-Death Process
	forside no 4
	no 4


