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Abstract
The covariance function of the Newtonian potential of a random orthogonal
set function on the unit sphere in three dimensions is derived, and it is shown
that the coefficients to the series expansion of this are simply related to the

moments of the covariance measure of the random set function.

Furthermore, as an application, it is shown that available gravity data
indicates a mass distribution inside the Earth which becomes more and more

irregular as one approaches the center of the Earth.
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1. Introduction

Tn Lauritzen (1973) a derivation of stochastic models for the gravity
potential of the Earth was given. It was shown how measurements of gravity
anomalies and deflections of the vertical can be treated as linear operations
on the random potential function, thus giving opportunity to estimste the
covariance function under the assumption that it be invariant under the ortho-
gonal group, and to predict linear functionals of the potential where these

are unknown. A specific expression of the covariance function was shown to

fit data very well.

However, the derivation was based entirely on analytical properties of
harmonic functions and did not utilize the relation bhetween the mass density
in the interior of the Earth and the corresponding potential, thus making it
difficult to give any physical interpretation of the results.

The present paper gives a derivation of stochastic models for the dis-
turbing potential based on the variations of the mass and itlis ghowﬁ that
the available data indicates the mass distribution becoming more and more
irregular as one approaches the center of the Earth.

The disturbing mass is described by a random orthogonal set function
and it is shown that the "degree-variances" of the potential covariance

function are simply related to the moments of the covariance measure of the

random orthogonal set function.

As a consequence, it is shown that the problem of determining the possible
covariance functions for the disturbing potential arising from models with the

above mentioned structure is equivalent to the classical Hausdorff moment problem.



Finally, the covariance measure corresponding to the model proposed

in Lauritzen (1973) is derived.

2. Potentials of random orthogonal set functions on the unit sphere

in 3-dimensional RFuclidean space.

Let Z Y%be a random orthogonal set function on the Borel sets of S .,

the closed unit sphere in R3 s, 3=dimensional Euclidean space, with covariance
measure 1 satisfying p(8) < +o , i.e. Z is a stochastic process on the
Borel sets of S with
i) Ez(A) =0
ii) Ez(A)Z(B) = p(a N B)
iii) z(a) + z(B) = Z(AU B) a.s. for AN B=¢ , A and B being
arbitrary Borel sets of S .

For ¢ é S , define the stochastic integral in the L2—sense by

g(t) = ﬂ———l—l—l 7(du) .
uES t-u .

This defines a stochastic process on R3RS with mean value

= Zz(du) = 0
Eg (t) e TTEZETT-E (qu)

and covariance function
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see e.g. Grenander and Rosenblatt (1957) p. 25 ff.



The stochastic process § shall be called the Newtonian potential of

7Z o in accordance with the .classical potential theory, where the Newtonian

potential of a Radon measure V on & compact set KC R3

function ¢:R3\K +~ R given by

_ 1
o (x) = e —IX__—YI‘]—\)(dY)

As we have the expansion (e.g. Hobson, 1955)
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where wtu is the angle between the t and the wu wvectors and Pn are

the Legendre polynomials, we get
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If we assume that 1y 1is uniform on spheres of the form {|]u|] = p}, and

introduce spherical coordinates
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we get
\ 7 i
1 © 1 Xn+m 4/ 2m il i
EE(s)E(t) = p— z — n(dx)ri anm(s,t,e,k)51n gdaedr d ,
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where

is defined as the



p(dr,dd,d\) = n{dr) sin® 46 dax,

and
anm(s,t,e,k) = Pn(cos~wsu) Pm(cos wtu) , u o~ (1,0,0) .

Using the well-known formula

Pn(cos wsu) = Pn(cos GS) Pn(cos B) + 2 .f (ni)!

n+i)!
i=1

where Pni are the Legendre functions, we get

n
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where

bijnm(s,t,e,x) = cijnm[Rni(es,xs)ij(et,xt)Rni(e,X)ij(e,A)

+ Rni(es,xs)smj (et,kt)Rni(e,MSmj(e,M

(6,M)R
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Sni mJ t’xt ni

+ Sni( s’ks)sm,j (Gt,)\t)sni(e,k)smj (8,1)]

Here

Rni(e A) = Pni(cos 8) cos iA

P . (cos 0) sin iA
ni

s, (8,2)

are the surface spherical harmonics. Using the orthogonality property of

: Pni(coﬁ es) Pni(cose)cos i(ks'x)



these, the only terms in the sums contributing anything to the integral will

be those of the form R .R R ,R., or S8 .S .8 .S . . As for i # 0
ni ni ni ni ni ninini
2T T 2m( T
- 2T (n+i)!
R2.(6,A) sinB 46 ar = 82.(6,K) sin aba) = +< (n+1) e
0l ™ o |o ni (on+1)(n-i)?

or (1
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1 otherwise,
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we obtain by using (¥) again, that

2T (T LT A
Jo [O anm(s,t,e,k) sinb d6 ax = Gnm 537 Tn (cos wst)

Hence

o w0+l P (cos ¢ ) 1
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Defining oi = JO x~ nldx) , we obtain that

2=ao
Gn Yn s

where Yn is the n'th moment of the distribution of the random variable X

where X follows the distribution

[X n(du)
P{X < x} = 0

T n(am)
0
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In terms of the covariance measure, we get

e sl utaw

The problem of when a prescribed sequence Yn can be a sequence of moments
Of a distribution on the unit interval is the classical Hausdorff moment problem,

having the solution that (Yn, n=0,1,2, ... ) 1is a moment sequence iff it is

completely monotone, i.e. iff (—1)vAVyn > 0 for all V,n , where Ayn = Yn+l - Yn ,

see Feller (1966).

3. Application to the gravity potential of the Earth.

Lauritzen (1973) studied stochastic models for the disturbing gravity
potential of the Earth, and showed that the general form of a rotational in-

variant covariance function for a random potential is

' o0 5 1 n+l
Bg(s)g(t) = § a <-r - P (cos g) ,
n=0 s 't

where aﬁ Jjust have to be so that the series is convergent.

The random disturbing potential can be represented in a series expansion

with random coefficients g and B
nm nm
© n+l/ n n i
= i ! T -
gl) = ) | Lo B (Opoxg) + 1 B 8 (6500)
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As one has rather precise knowledge of the coefficients O s Bnm for n=0,1,2,

one could consider those as fixed, i.e. consider the covariance function of

E(t) conditional on the known values of o, B for n=0, 1, 2, as also
—————— nm’> “nm

done in Lauritzen (1973); this can be shown (same paper) to affect the covariance
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function only by putting aj = a] = as = 0
From an empirical covariance function obtained from gravity anomalies,

it was demonstrated that an expression of the form
0 forn =0, 1, 2

A
TH:ITTEZET- for n > 3

gave an extremely good fit to the observations.

The investigations in section 2 of the present paper give us a possibility
of an interpretation of these coefficients in terms of the variations in the

mass distribution inside the Earth. We have the relation

2.2 bt 2 _onn o
n - % Zn+1 o % LT “n

Now, suppose that the Earth is the unit sphere in R and the deviations

between a homogeneous and the actual mass distribution is given by a random

orthogonal set function Z with covariance measure absolutely continuous w.r.t.

Lebesgue measure on S and density f given by

0 for |full <e

A 5 3
o 7 = 5 for ¢ ézliulg i:l
all™ ul]7y

This corresponds to n(dx) = g(x)dx , where

0 for x < €

é——(;é-— §§—) for e <x <1,
b'd



corresponding to for n > 3
2
o2 = A 2n+l + A en-hpze” 5 )
o by (n=l)(n-2)  hw n-1  n-2

For € YDbeing small we then have the approximation

aﬁ = m + 0(82) °© O(]n‘_-) for n ; 3 5

the main term of which exactly is the one proposed by Lauritzen (1973).

The good fit of this form for ai should then indicate a mass dis-
tribution inside the Earth which gets more and more irregular in absolute

variation as one approaches the center of the Earth.



References

Feller, W. (1966): An Tnt roduction to Probability Theory and Its Applications,
Vol. II, Wiley, N.Y.

Grenander, U. and Rosenblatt, M. (195T7): Statistical Analysis of .Stationary
Time Series, Wiley, N.Y.

Hobson, E. W. (1955): The Theory of Spherical and Ellipsoidal Harmonics,
Chelsea, N.Y.

Lauritzen, S. L. (1973): The Probabilistic Background of some Statistical
Methods in Physical Geodesy. Medd. Geodetic Institute, No. L8, Copenhagen.



	forside 2, 74
	Preprint 1974 - No 2 Lauritzen, Steffen L. - Random Orthogonal Set Functions and Stochastic Models for the Gravity Potential of the Earth
	forside no 2
	no 2


