Martin Jacobsen

Splitting Times for Markov Processes and a Generalised Markov Property for Diffusions

Preprint February 1974

Institute of Mathematical Statistics
University of Copenhagen
Martin Jacobsen

SPLITTING TIMES FOR
MARKOV PROCESSES
AND A
GENERALISED MARKOV PROPERTY
FOR DIFFUSIONS

Preprint 1974 No. 1

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

February 1974
1. INTRODUCTION AND SUMMARY

In [7] Williams gives the following result on decomposition of the one-dimensional Brownian motion: If \(\{B_t : t \geq 0\} \) is a BM\(^O\) (Brownian motion starting at 0), if \(\tau \) denotes the passage time to 1, if \(\sigma \) is the last time 0 is hit before \(\tau \) and if \(\rho \) denotes the time point in \([0, \sigma]\) where the path attains its maximal value \(\alpha \), then the following construction yields a process identical in law to \(\{B_t : t < \tau\} \): Choose \(\alpha \) uniformly on \([0,1]\) and run a BM\(^O\) (independent of \(\alpha \)) until it first hits \(\alpha \); continue with \(\alpha - R_3 \) where \(R_3 \) is a three-dimensional Bessel process starting at 0 and run until it hits \(\alpha \) for the last time, independent of \(\alpha \) and the BM\(^O\); finish with a new Bessel process, independent of the previous items, starting at 0 and run until it first hits 1.

It is an immediate consequence of this result that if \(\xi \) is either of the random times \(\rho \) or \(\sigma \), then conditionally on \((\xi, \{B_t : 0 \leq t \leq \xi\})\) the law of the post-\(\xi \) process \(\{B(t+\xi) : t \geq 0\} \) depends only on \(B(\xi) \), i.e. BM\(^O\) starts afresh at the random time \(\xi \). (For other decomposition results and proofs, see [8]).

It is the purpose of this paper to define for time-homogeneous Markov processes a class of random times, splitting times, for which one might expect this kind of generalised strong Markov property to hold, to discuss the problems arising when one tries to prove general results to this effect and to show a splitting times theorem for one-dimensional diffusions.

Stopping times \(\tau \) may be characterised as splitting times enjoying the property that conditionally on the pre-\(\tau \) behaviour the post-\(\tau \) process is a replica of the given Markov process. Williams' decomposition result shows that for splitting times \(\tau \) the conditional post-\(\tau \) process may be a Markov process different from the given process.
In [5] Meyer, Smythe and Walsh and in [6] Pittenger and Shih discuss a Markov property with respect to coterminous times. As will be pointed out in section 3 below coterminous times come very close to being a special kind of splitting times.
2. PRELIMINARIES

Throughout the paper we shall assume the basic Markov process to possess smooth sample paths and be given on canonical (i.e. function space) form.

Therefore, assume \(E \), the state space of the process, to be a Polish space with Borel \(\sigma \)-algebra \(\mathcal{B} \), and \(C(E) \) the space of bounded, real-valued continuous functions on \(E \). Write \(T = [0, \infty[\), \(\overline{T} = [0, \infty] \) and let \(\Omega \) be the relevant subset of \(E^T \), i.e. \(\Omega \) is either the space of continuous paths from \(T \) to \(E \) or the space of right-continuous paths possessing left-limits everywhere.

Write \(X_t \) for the projection \(X_t : \Omega \to E \) given by \(X_t \omega = \omega t \) \((t \in T, \omega \in \Omega)\), let \(\mathcal{F} \) be the \(\sigma \)-algebra of subsets of \(\Omega \) generated by all the \(X_t \) and write \(\mathcal{F}_t (\mathcal{F}^T) \) for the pre-\(t \) (post-\(t \)) algebra generated by \(\{X_s\}_{s \leq t} \) (\(\{X_s\}_{s \geq t} \)). Finally, let \(\theta_t \) be the shift \(X_s \circ \theta_t = X_{s+t} \) on \(\Omega \).

Definition 1. A time-homogeneous, canonically defined Markov process with state space \(E \) is a family \(\{P^x\}_{x \in E} \) of probability measures on \((\Omega, \mathcal{F}) \) satisfying

i) For every bounded, \(\mathcal{F} \)-measurable \(Y : \Omega \to \mathbb{R} \) the mapping \(x \to P^xY \) from \(E \) to \(\mathbb{R} \) is Borel-measurable.

ii) For every \(x \in E \) \(P^x\{X_0 = x\} = 1 \).

iii) For every bounded, \(\mathcal{F} \)-measurable \(Y : \Omega \to \mathbb{R} \) and for every \(t \in T, x \in E \)

\[
P^x_{\mathcal{F}(t)} Y \circ \theta_t = P^x Y(t)^{\wedge}.
\]

The transition semigroup \(\{P_t\}_{t \in T} \) for the process is given by

\[
(P_tf)x = P^x f(X_t)
\]

\((t \in T, x \in E, f : E \to \mathbb{R} \text{ bounded Borel}).\)
The notation used here as everywhere else is the following: If Y is P^X-integrable $P^X Y$ denotes the P^X-expectation of Y while $P^X(Y;F)$ is the integral of Y over the set F. If $Y = 1_F$ we write of course $P^X F$ instead of $P^X 1_F$. If G is a sub σ-algebra of F P^X_G denotes conditional expectation of P^X given G. In case there exists a regular conditional probability $P^X_G Y$ will always denote (pointwise on Ω) the integral of Y with respect to that conditional probability. Finally, functions like

$$\omega \mapsto \int Y(\omega') P^X_t \omega'(d\omega')$$

will be denoted $P^X_t Y$ where more generally the \wedge is used to show which parts of the P^X_t-integrand depend on the integration variable. For instance one writes $P^X_t g(U,V)$ for

$$\omega \mapsto \int g(U\omega',V\omega') P^X_t \omega'(d\omega')$$

and $P^X_t g(U,V)$ for

$$\omega \mapsto \int g(U\omega,V\omega') P^X_t \omega'(d\omega').$$

With the setup we are using here the σ-algebras F_t, F^t may be characterised as saturated σ-algebras generated by a measurable partition (cf. [2]). For $t \in T$ let \sim_t, \sim^t be the equivalence relations on Ω defined by

$$\omega \sim_ t \omega' \text{ iff } \omega s = \omega' s (s \in [0,t]),$$

$$\omega \sim^t \omega' \text{ iff } \omega s = \omega' s (s \in [t,\infty[).$$

As a special case of lemma 1.2 of [2] it follows that $F \in F_t$, $F \in F^t$ iff $F \in F$ and F is a union of \sim_t (\sim^t) equivalence classes (atoms). Notice that the atoms themselves belong to F and thus determine a measurable partition of Ω.

The Markov property iii) of definition 2.1 may now be formulated as follows: To every $x \in E$, $t \in T$ there exists a regular conditional probability $P^X_{F(t)}$ of P^X given F_t, uniquely
determined by

$$P^X_{\mathcal{F}(t)} \mathcal{F} \cap \mathcal{G}^{-1} \mathcal{F} = 1_F P^X(t) \wedge (\mathcal{F}_t \mathcal{F}^\tau, \mathcal{G} \mathcal{F}).$$

$P^X_{\mathcal{F}(t)}$ is also proper, i.e. for every $\omega \in \Omega$ the probability

$P^X_{\mathcal{F}(t)}(.) \omega$ is concentrated on the \sim equivalence class containing ω.

Because of this identities like

$$(P^X g(U,V \circ \theta_t) = P^X_{\mathcal{F}(t)} g(U,V)$$

hold trivially whenever U is \mathcal{F}_t-measurable.

A random time is a \mathcal{F}-measurable mapping $T: \Omega \rightarrow \widetilde{T}$. The corresponding shift θ_T is a measurable mapping from $\{ T < \infty \}$ to Ω, identical to θ_T on $\{ T = t \}$. Similarly $X_T: \{ T < \infty \} \rightarrow \mathbb{R}$ is measurable and equal to X_t on $\{ T = t \}$.

For an arbitrary random time T the pre-T algebra \mathcal{F}_T is defined as the \mathcal{F}-saturated σ-algebra generated by the equivalence relation \sim_T given by

$$\omega \sim_T \omega' \text{ iff } \tau \omega = \tau \omega' \text{ and } \omega s = \omega' s \ (s \in [0,\tau \omega] \cap T)$$

(cf. [2]).

A (strict) stopping time is a random time T such that $\{ T = t \} \in \mathcal{F}_T$ ($t \in T$). The process is Markov with respect to the stopping time T if

$$P^X_{\mathcal{F}(\tau)} Y \circ \theta_T = P^X(\tau) \wedge Y \text{ on } \{ T < \infty \}$$

(2.2)

for every bounded, measurable $Y: \Omega \rightarrow \mathbb{R}$ and every $x \in E$.

Formally (2.2) is obtained from the Markov property by identifying conditional expectations given \mathcal{F}_T with those given \mathcal{F}_t on $\{ T = t \}$. Since T is a stopping time $\{ T = t \} \in \mathcal{F}_t \cap \mathcal{F}_T$ with $\tilde{t} = \sim T$ on $\{ T = t \}$. This fact partly justifies the identification but does not of course provide a rigorous proof. For that ex-
tra conditions are needed to ensure that one works with the correct versions of the conditional probabilities given the F_t.

If (2.2) holds for all stopping times the process is strong Markov. The strong Markov property will appear as a special case of the corollary to proposition 1 below. The proposition deals with the identification principle in a more general setting.

For the formulation we need the following concept. If τ is a random time and $\{A_t\}_{t \in T}$ a family of sub σ-algebras of \mathcal{F} with each A_t being the saturated σ-algebra determined by a measurable equivalence relation \sim_A, we say that the pre-τ algebra \mathcal{F}_τ is generated by $\{A_t\}$ provided

\begin{enumerate}
\item $\{\tau=t\} \in A_t \quad (t \in T)$
\item $\tau = \sim_A$ on $\{\tau=t\} \quad (t \in T)$.
\end{enumerate}

Proposition 1. Let τ be a random time and let $\{A_t\}_{t \in T}$ be a family of σ-algebras which generate \mathcal{F}_τ such that

$$\mathcal{F} \cap \{s < \tau < t\} \in A_t \quad (F \in \mathcal{F}_\tau, s < t \in T). \quad (2.3)$$

Suppose that for every $x \in E$, $t \in T$ the conditional expectation $p^x_{A(t)}$ of p^x given A_t satisfies the following condition: For every $n \in \mathbb{N}$, $t_1 < \ldots < t_n \in T$, $f_1, \ldots, f_n \in C(E)$, $\omega \in \{\tau < \infty\}$ the mapping

$$t \rightarrow \left(p^x_{A(t)} \prod_{j=1}^n f(x_{t_j}) \circ \theta_t \right) \omega$$

is right-continuous at $t_o = \tau \omega$.

Then conditionally on \mathcal{F}_τ at ω the post-τ process is identical in law to the post-$\tau\omega$ process conditionally on $A_{\tau\omega}$, i.e.

$$(P^x_{\mathcal{F}(\tau)} Y \circ \theta_{\tau \omega}) \omega = (P^x_{A(\tau\omega)} Y \circ \theta_{\tau \omega}) \omega \quad (\omega \in \{\tau < \infty\})$$

for every $Y: \Omega \rightarrow \mathbb{R}$ bounded and measurable.
Proof. It suffices to show that for every \(x \in E, n \in \mathbb{N}, t_1 < \ldots < t_n \in T, f_1, \ldots, f_n \in C(E), F \in \mathcal{F}_T \cap \{ \tau < \infty \} \)

\[
\int_{\mathcal{F}} (p^X_{A(\tau \omega)} Y \circ \theta_{\tau \omega}) \omega \, P^X(d\omega) = P^X(Y; F)
\]

with \(Y = \Pi_{j=1}^n (X_{t_j}) \) and to check that the integrand on the left is \(\mathcal{F}_T \)-measurable.

The integrand is trivially constant on \(\mathcal{F}_T \)-atoms and is \(\mathcal{F} \)-measurable because using (2.4)

\[
(p^X_{A(\tau \omega)} Y \circ \theta_{\tau \omega}) \omega = \lim_{n \to \infty} \sum_{k=0}^{\infty} (p^X_{A(k+1)2^{-n}} Y \circ \theta(2^n k) \circ \theta_{\tau \omega}) \omega 1_{F_{nk}}(\omega).
\]

where \(F_{nk} = \{ -k/2^n \leq \tau < k/2^n \} \).

Using this representation and dominated convergence we find from (2.3)

\[
\int_{\mathcal{F}} (p^X_{A(\tau \omega)} Y \circ \theta_{\tau \omega}) \omega \, P^X(d\omega)
\]

\[
= \lim_{n \to \infty} \sum_{k=0}^{\infty} P^X(A(k+1)2^{-n} Y \circ \theta(2^n k) \circ \theta_{\tau \omega}; F \cap F_{nk})
\]

\[
= \lim_{n \to \infty} \sum_{k=0}^{\infty} P^X(Y \circ \theta(2^n k) \circ \theta_{\tau \omega}; F \cap F_{nk})
\]

\[
= P^X(Y \circ \theta_{\tau}; F).
\]

In the special case where the \(A_t \) increase with \(t \) condition (2.3) is equivalent to the condition

\[
F \cap \{ \tau < t \} \in A_\tau (F \in \mathcal{F}_T, t \in T),
\]

in particular \(\tau \) is a stopping time with respect to \(\{ A_t \} \).

In some cases condition (2.4) may be simplified.
Corollary. The conclusion of proposition 1 holds if \(\{\Lambda_t\} \) generates \(\mathcal{F}_T \), if (2.3) holds and if for every \(x \in E \), \(t \in T \) the post-\(t \) process conditionally on \(\Lambda_t \) at \(\omega \) under \(P^x \) is time-homogeneous Markov with initial state \(X_t^\omega \) and transition semigroup \(\{X^s_{\omega s}\}_{s \in T} \) not depending on \(t \) satisfying
\[
X^s_{\omega s} : C(E) \to C(E) \quad (s \in T).
\] (2.5)

It is even sufficient that this condition on the post-\(t \) process holds at all \(\omega \in \{\tau < t\} \) only.

Proof. The first part is proved by verifying (2.4) of the proposition. By assumption
\[
(P^x_{\Lambda(t)} \ Y \circ \theta_t) \omega = X^\omega t \ Y \quad (2.6)
\]
for every \(Y : \Omega \to \mathbb{R} \) bounded and measurable. (Here \(\{X^s_{\omega s}\}_{y \in E} \) are the function space probabilities corresponding to the semigroup \(\{X^s_{\omega s}\} \)).

That the right hand side of (2.6) is right-continuous in \(t \) for all \(Y \) of the form \(\Pi f_j(X_{t_j}) \) with \(t_1 < \ldots < t_n, f_j \in C(E) \) follows if we show that, writing \(Q^Y = X^Y_{\omega} \)
\[
y \to Q^Y \ Y \quad (2.7)
\]
is continuous. But for \(n = 1 \) this is equivalent to (2.5). Furthermore, if \(X^s_{\omega s} = Q^s \)
\[
Q^{Y_{n+1}} \Pi f_j(X_{t_j}) = Q^{Y_{n-1}} \Pi f_j(X_{t_j}) \big[f_n Q^Y t_n+1 - t_n f_{n+1}(X_{t_n}) \big](X_{t_n})
\]
so using (2.5) (2.7) follows by induction.

As for the proof of the second part observe that the proof of the proposition applies if each \(P^x_{\Lambda(t)} \) is determined only within \(\{\tau < t\} \) and there satisfies (2.4).

We shall need the second part of the corollary in section 5 below.
The first part contains a version of the strong Markov property as a special case: If τ is a strict stopping time $\{F_t\}$ generates \mathcal{F}_τ and since the conditional post-t process is the given Markov process itself starting at X_τ the corollary shows as is of course well known, that the strong Markov property holds if $P_\tau: C(E) \to C(E) (t \in \tau)$. (Recall that this condition is sufficient for the process to be strong Markov with respect to any stopping time τ, strict or not, and the enlarged pre-τ algebra $\mathcal{F}_{\tau^+} = \bigcap_{\varepsilon > 0} \mathcal{F}_{\tau + \varepsilon}$.)
3. DEFINITION AND BASIC PROPERTIES OF SPLITTING TIMES.

We shall study random times τ with respect to which the process obeys the following generalised Markov property: For every $x \in E$, $Y: \Omega \rightarrow \mathbb{R}$ bounded and measurable the conditional expectation

$$P^X_T Y \circ \theta_{\tau_T}$$

(defined on $\{\tau < \infty\}$) depends only on (τ, X_{τ_T}).

Intuitively one would expect this generalised Markov property to hold for random times τ having the property that knowledge that $\tau = t$ may provide information about the behaviour of the path after time t, but only so that this post-t information does not depend on the behaviour of the path prior to t. This leads to the following.

Definition 2. A random time τ is called a splitting time if it has the following cross-over property: For any two paths ω_1, ω_2 with $\tau \omega_1 = \tau \omega_2$ (say) and $\omega_1 t = \omega_2 t$ also $\tau \omega = t$ where

$$\omega u = \begin{cases} \omega_1 u & (u \leq t) \\ \omega_2 u & (u \geq t) \end{cases}$$

(3.2)

It is evident that any strict stopping time is a splitting time. Furthermore, the definition is symmetric in past and future so that random times that are stopping times for the time reversed process (e.g. last exit times) are also splitting times. One also finds that the random times σ, ρ of the introduction are splitting times.

David Williams suggested the name splitting times and himself proved that discrete time processes are Markov with respect to arbitrary splitting times. This result, which has not been published, may be formulated as follows.

Let $X = (\Omega, \mathcal{F}, \mu_T, X_t, \theta_t, P^X)$ be a time-homogeneous Markov process in the sense of [1] with discrete time parameter set.
$T_d = \{0,1,\ldots\}$ and state space E. Write F for the σ-algebra generated by $\{X_t\}_{t \in T_d}$. Call $\tau: \Omega \to T_d \cup \{\infty\}$ a splitting time if for every $t \in T_d$ there exists $F_t \in \mathcal{M}_t$, $G_t \in \mathcal{M}$ such that

$$\{\tau = t\} = F_t \cap \Theta_t^{-1}G_t \quad (3.3)$$

Define the σ-algebra \mathcal{M}_T as follows: $M \in \mathcal{M}_T$ iff $M \in \mathcal{M}$ and there for every $t \in T_d$ exists $M_t \in \mathcal{M}_t$ with

$$\{\tau = t\} \cap M = M_t \cap \Theta_t^{-1}G_t.$$

Theorem 1. (Williams). For every $x \in E$, $Y: \Omega \to \mathbb{R}$ bounded and measurable

$$(P^x_M(\tau) Y \circ \Theta_\tau)\omega = P^x_{T\omega}(Y|G_T\omega) \quad (\omega \in \{\tau < \infty\}) \quad (3.4)$$

where the right-hand side may be defined arbitrarily (subject to the measurability constraints) for those ω for which $P^x_{T\omega}G_T\omega = 0$.

In the proof one works of course on the sets $\{\tau = t\}$ separately. The proof rests on the Markov property alone. (See the proof of (3.5) below). Notice that the representation (3.3) is non-unique but that (3.4) holds no matter how the F_t, G_t are chosen.

One reason why this result cannot be used to establish results for continuous time is that, unlike stopping times, splitting times can in general not be approximated by monotone sequences of splitting times with countable range. ρ of section 1 is an instance of this.

We return now to the continuous time case and the discussion of definition 2. In the setup we are using Galmarino's characterisation of strict stopping times (see [4] p. 86) is valid. Definition 2 is the splitting times analogue of Galmarino's characterisation. The following proposition gives the splitting times analogue of the customary definition of stopping times, which also matches Williams' definition.
Proposition 2. A random time τ is a splitting time if for every $t \in T$ there exists $F_t \in \mathcal{F}_t$, $G_t \in \mathcal{F}$ such that

$$\{\tau = t\} = F_t \cap \theta_t^{-1} G_t.$$

Proof. To verify the cross-over property, assume $\omega_1, \omega_2 \in \{\tau=t\}$ with $\omega_1 t = \omega_2 t$. Defining ω as in (3.2), since $\omega_t \sim \omega_1$, $\omega \sim \omega_2$ it follows that $\omega \in F_t \cap \theta_t^{-1} G_t$.

Consider now a splitting time \(\tau \) with \(\{ \tau = t \} \) as in proposition 2. Define $1_t = 1_{\theta_t^{-1} G_t}$ and let \sim denote the equivalence relation

$$\omega_1 \sim_G \omega_2 \text{ iff } \omega_1 \sim \omega_2 \text{ and } 1_t \omega_1 = 1_t \omega_2,$$

with G_t the σ-algebra determined from \sim.

It is immediate that the family $\{G_t\}$ generates \mathcal{F}_T. Furthermore, since G_t is the σ-algebra generated by $(\{X_s\}_{s<\tau}, 1_t)$ we claim that a regular conditional probability of p_X given G_t is defined by

$$(p^X_{G(t)} F \cap \theta_t^{-1} G) \omega = 1_F(\omega)p^X_{1_t \cap G(t)}(G|\{1_G(t) = 1_t \omega\})(F \in \mathcal{F}_F, G \in \mathcal{F}) \quad (3.5)$$

where the conditional probability on the right may be defined arbitrarily (subject to the G_t-measurability condition) for those ω for which the $p^X_{1_t \omega}$-measure of the conditioning event is 0.

The proof of (3.5) proceeds as follows: If e.g. $F' \in \mathcal{F}_t$, $H = F' \cap \{1_t = 1\}$ one finds

$$p^X(p^X_{\tau}(t)^{\wedge}(G|\{1_G(t) = 1\}); F \cap H)$$

$$= p^X(p^X_{\tau}(t)^{\wedge}(G|\{1_G(t) = 1\}); F \cap F' \cap \theta_t^{-1} G_t)$$

$$= p^X(p^X_{\tau}(t)^{\wedge}(G \cap G_t); F \cap F')$$

$$= p^X(F \cap \theta_t^{-1} G \cap H).$$
This is the argument used by Williams in the proof of theorem 1.

Because of (3.5) one might expect that proposition 1 could be used straightaway to establish the Markov property for \(\tau \). However, it may be true that

\[
\Pr^X \omega \{ 1_G(t) = 1_t \omega \} = 0
\]

for all \(\omega \in \{ \tau = t \} \) which makes it impossible to verify (2.4) of proposition 1, the limit as \(t \downarrow \tau \omega \) not being defined.

An example of this is provided by the splitting times \(\rho, \sigma \) of the introduction. For instance one has \(\{ \sigma = t \} = \mathcal{F}_t \cap \Theta^{-1} \mathcal{G}_t \) with

\[
\mathcal{F}_t = \{ B_t = 0 \} \cap \bigcap_{s \leq t} \{ B_s < 1 \} \in \mathcal{F}_t,
\]

\[
\mathcal{G}_t = \{ B_t = 0 \} \cap \{ B_s > 0 \text{ for all } s \in (0, \tau) \} \in \mathcal{F}_t
\]

using the notation of section 1. It is now clear that (3.6) holds because \(\text{BM}(1) \) will with probability 1 cross its initial level infinitely often in any time interval \([0, u] \).

The generalised Markov property (3.1) states that the process should start afresh at time \(\tau \). An important particular case arises naturally when the conditional post-\(\tau \) process is itself time-homogeneous Markov with law depending only on \(\tau, X_{\tau} \). In [5] \(\tau \) is then called a birth time for the process and it is proved (theorem 5.1) that any coterminal time \(L \) is a birth time in the following sense: The process \(\{ X_{L+t} \}_{t > 0} \) is strong Markov with respect to the family \(\{ \mathcal{F}_{L+t} \}_{t > 0} \) of \(\sigma \)-algebras. Also the transition semigroup for the conditional process is given.

It is pointed out in [5] that the restriction to \(t > 0 \) is essential. This way the problem we discussed in connection with (3.6) is avoided.

As we mentioned in the introduction coterminal times are
nearly splitting times. A coterminus time L satisfies in particular that

$$L \circ \theta_t = (L-t) \vee 0 \quad (t \in T).$$

Assuming $\omega_1 \in \{L \leq t\}$, $\omega_2 \sim \omega_1$ it follows that $(L \circ \theta_t)\omega_2 = (L \circ \theta_t)\omega_1 = 0$ so that $L\omega_2 \leq t$. Thus $\{L \leq t\} \in \mathcal{F}_t$ showing that L is a (non-strict) stopping time for the time reversed process.

On the other hand the p of section 1 is a splitting time but not a coterminus time.

In [6] results are given which show that a Markov property (in the sense of (3.1)) is valid with respect to any coterminus time. According to [6] the difficulties around (3.6) can be solved because certain limits of ordinary conditional probabilities exist.
4. A CLASS OF CONDITIONAL DIFFUSIONS

Before formulating and proving splitting times theorems for diffusions we shall summarise the facts needed from diffusion theory and prove some preliminary results.

We shall only discuss conservative regular diffusions but it is fairly obvious that the results extend to non-singular diffusions with killing.

Let \(J \) be a subinterval of the extended real line, with \(\text{int} \ J \) denoting the interior of \(J \).

A canonically defined Markov process \(\{ P^x \}_{x \in J} \) with state space \(J \) is called a conservative, regular diffusion provided

i) the \(P^x \) are probabilities on the space of continuous functions from \(T \) to \(J \);

ii) the process is strong Markov;

iii) \(P^x \{ \tau_y < \infty \} > 0 \) (\(x \in \text{int} \ J, \ y \in J \)).

Here \(\tau_x \) is the passage time \(\inf \{ t \in T : X_t = x \} \).

Let \(a \) be the lower and \(b \) the upper boundary of \(J \). We shall need the following facts about diffusions (cf. [3] or [4]).

Any conservative regular diffusion on \(J \) may be characterised by a scale \(S : J \to \mathbb{R} \) which is strictly increasing and continuous and a speed measure \(m \) on the Borel subsets of \(J \) which is locally strictly positive and finite (i.e. \(0 < m(x,y) < \infty \) for all \(x < y \in \text{int} \ J \)). \(S,m \) must satisfy certain conditions at the endpoints of \(J \), mentioned below for the boundary \(a \).

If \(a \in J \) either \(S(a) = -\infty \) or \(\int_{]a,x[} (Sy - Sa) m(dy) = \infty \) for all \(x \in \text{int} \ J \).

If \(a \in J \) \(S(a) \neq -\infty \) and \(\int_{]a,x[} (Sy - Sa) m(dy) < \infty \) for all \(x \in \text{int} \ J \).
If also \(m[a,x] = \infty \) for all \(x \in \text{int } J \), \(a \) is necessarily absorbing. Otherwise \(a \) is absorbing iff \(m[a] = \infty \), and reflecting iff \(m[a,x] < \infty \) for all \(x \in \text{int } J \).

\(S, m \) are related to the exit probabilities and mean exit times by

\[
\begin{align*}
p^x_{\tau_\alpha < \tau_\beta} &= \frac{S_x - S_\alpha}{S_\beta - S_\alpha}, \\
p^x_{\tau_\alpha} &= \int_{[a,\beta]} G_{\alpha\beta}(x,y)m(dy)
\end{align*}
\]

for all \(\alpha < \beta \in J, x \in [\alpha,\beta] \). Here \(\tau_{\alpha\beta} = \tau_\alpha \wedge \tau_\beta \) and

\[
G_{\alpha\beta}(x,y) = G_{\alpha\beta}(y,x) = \frac{(S_x - S_\alpha)(S_\beta - S_y)}{S_\beta - S_\alpha} \quad (x \leq y \in [\alpha,\beta]).
\]

More generally, if \(f:[a,\beta] \rightarrow \mathbb{R} \) is bounded and measurable

\[
\begin{align*}
p^x \int_0 \tau(\alpha\beta) f(X_t) dt &= \int \alpha,\beta\ [a,\beta] G_{\alpha\beta}(x,y)f(y)m(dy).
\end{align*}
\]

From a special case of this one finds

\[
\begin{align*}
p^x(\tau_{\alpha\beta};{\tau_\beta < \tau_\alpha}) &= \int_{[a,\beta]} G_{\alpha\beta}(x,y) \frac{S_y - S_\alpha}{S_\beta - S_\alpha}m(dy) \quad (4.1) \\
p^x(\tau_{\alpha\beta};{\tau_\alpha < \tau_\beta}) &= \int_{[a,\beta]} G_{\alpha\beta}(x,y) \frac{S_\beta - S_y}{S_\beta - S_\alpha}m(dy)
\end{align*}
\]

The proof of (4.1) is as follows:

\[
\begin{align*}
\int \alpha,\beta\ [a,\beta] G_{\alpha\beta}(x,y) \frac{S_y - S_\alpha}{S_\beta - S_\alpha} m(dy) &= p^x \int_0 \tau(\alpha\beta) \frac{S(X_t) - S_\alpha}{S_\beta - S_\alpha} dt \\
&= \int_0 p^x[p^x(t) \wedge \alpha,\beta\ \wedge \{\tau_\beta < \tau_\alpha\};{\tau_\alpha > t}] dt \\
&= \int_0 p^x[p^x(t) \wedge \alpha,\beta\ \wedge \{\tau_\beta < \tau_\alpha, \tau_\alpha > t}\] dt \\
&= \int_0 p^x[\tau_\beta < \tau_\alpha, \tau_\alpha > t] dt
\end{align*}
\]
where we have used the Markov property once and Fubini's theorem twice.

It is well known that the transition operators for any conservative regular diffusion on \(J \) are operators on \(C(J) \).

Suppose \(\{p^X\}_{x \in J} \) is conservative and regular on \(J \) with \(a \in J \). Then \(a \) is an entrance non-exit boundary for \(\{p^X\} \) provided

\[
Sa = -\infty, \quad \int (Sx - Sy)\mu(dy) < \infty \quad (x \in \text{int } J). \quad (4.2)
\]

We shall need the following result about entrance non-exit boundaries.

Proposition 3. Suppose \(\{p^X\}_{x \in J} \) is a regular diffusion on \(J \) with \(a \) an entrance non-exit boundary. Then there exists a probability \(p^a \) on the space of continuous functions from \(T \) to \(J \cup \{a\} \) satisfying \(p^a(\tau_x < \infty) = 1 \) for \(x \in J \) and such that \(\{p^X\}_{x \in J \cup \{a\}} \) defines a canonical strong Markov process with continuous paths and state space \(J \cup \{a\} \). The transition operators for this process are operators on \(C(J \cup \{a\}) \).

For the proof see [4].

Starting from \(a \) the new process immediately moves into \(J \) itself never to return to \(a \).

To arrive at the conditional diffusions needed in section 5 we begin with the following quite general result.

Let \(\{p^X\}_{x \in E} \) be a canonical Markov process with state space \(E \). Let \(A \in \mathcal{F} \) be an event satisfying this condition: To every \(t \in T \) there exists \(A_t \in \mathcal{F}_t \) such that \(A = A_t \cap \bar{0}_t^{-1}A \). Finally, let \(E_A = \{x \in E: P^X_A > 0\} \).

Lemma 1. For every \(x \in E_A \), \(t \in T \)

\[
P^X(X_t \in E_A | A) = 1. \quad (4.3)
\]
Furthermore, if for \(x \in E_A, t \in T, f: E_A \to \mathbb{R} \) bounded and measurable one defines

\[
(P_{A,t}f)x = P^x(f^*(X_t)|A),
\]

where \(f^* \) is an arbitrary bounded and measurable extension of \(f \) from \(E_A \) to \(E \), then the family \(\{P_{A,t}\}_{t \in T} \) defines a one-parameter semigroup of stochastic transition operators on \(E_A \).

Proof. Using the Markov property and the definition of \(E_A \) one finds

\[
P^x \cap \{X_t \in E_A\} = P^x(P^x(t)^A; A_t \cap \{X_t \in E_A\})
\]

\[
= P^x(P^x(t)^A; A_t) = P^x
\]

proving (4.3). (4.3) shows that the definition (4.4) is unambiguous. For the proof of the last assertion of the lemma only the semigroup property needs verification. But

\[
(P_{A,t}(P_{A,s}f)x = P^x((P_{A,s}f)(X_t); \{X_t \in E_A\}) \cap A) = P^x
\]

\[
= (P^x)^{-1}P^x[(P^x(t)^A)^{-1}P^x(t)^A; (f(X_s); \{X_s \in E_A\}) \cap A; \{X_t \in E_A\}]
\]

\[
= (P^x)^{-1}P^x(f(X_s); \{X_s \in E_A\}) \cap A; \{X_t \in E_A\} \cap A]
\]

\[
= (P^x)^{-1}P^x(f(X_{s+t}); \{X_t \in E_A\}) \cap A_t \cap \theta^{-1}A \cap \{X_{s+t} \in E_A\})
\]

\[
= (P_{A,t+s}f)x.
\]

Let now again \(\{P^x\}_{x \in J} \) be a regular conservative diffusion on \(J \) with scale \(S \) and speed measure \(m \) and let \(\alpha \in J \) with \(\alpha < b \). Write

\[
A_\alpha = \bigcap_{t > 0} \{X_t > \alpha\}, \quad J_\alpha = \{x \in J: x > \alpha\}.
\]

We have the following dichotomy: Either \(P^x_{A,\alpha} > 0 \) for all \(x > \alpha \) or \(P^x_{A,\alpha} = 0 \) for all \(x > \alpha \) with the first possibility occurring iff \(Sb < \infty \) and \(b \) is not a reflecting boundary (i.e. \(b \) is absorbing or not in \(J \) with \(Sb < \infty \) and \(\int (Sb-Sy)m(dy) = \infty \)).
To see this observe that for $x > \alpha$

$$p_{X_\alpha}^x = p_{X_{\tau_\alpha^a}}^x = \lim_{\beta \uparrow \alpha} p_{X_{\tau_\beta < \tau_\alpha^a}}^x = \frac{Sx-SA}{Sb-SA}$$

(4.5)

provided b is not reflecting. If b is reflecting $P_b^{\{\tau_\alpha^a < \infty\}} = 1$ and consequently

$$p_{X_\alpha}^x = p_{X_{\tau_\tau_\beta < \tau_\alpha^a}^a}^{\tau_\alpha^a < \infty} = p_{X_{\tau_\beta < \tau_\alpha^a}}^x p_{\tau_\alpha^a < \infty}^b = 0.$$

This motivates the following.

Definition 3. A conservative regular diffusion $\{p^x\}$ on J is said to be positively inclined if $P_{X_\alpha}^x > 0$ for all $\alpha \in J \setminus \{b\}$, $x \in J_\alpha$.

The next result is basic for the sequel.

Proposition 4. Let $\{p^x\}_{x \in J}$ be a positively inclined conservative and regular diffusion on J. For every $\alpha \in J \setminus \{b\}$, the equations

$$Q_\alpha^x = p^x(. | A_\alpha) \quad (x \in J_\alpha)$$

define a family $\{Q_\alpha^x\}$ of probability measures on the space of continuous functions from T to J_α which determine a conservative regular diffusion on J_α. This diffusion has scale

$$S_{\alpha} = -(S - S\alpha)^{-1},$$

speed measure

$$m_{\alpha}(dx) = (Sx-SA)^2m(dx)$$

and α as entrance non-exit boundary.

Proof. Although formally defined as a probability on the space of continuous paths from T to J Q_α^x may obviously for $x > \alpha$ be considered a probability on the space of continuous paths with values in J_α. Furthermore A_α satisfies the condition imposed on the A of lemma 1 with $E_{A_\alpha}(\alpha) = J_\alpha$. By that lemma therefore

$$(Q_{\alpha,f}(x) = Q_\alpha^x(f(X_t))$$
defines a stochastic semigroup \(\{Q_{\alpha,t}\} \) of transition operators. One finds that \(\{Q_{\alpha}^X\} \) is a canonical Markov process on \(J_\alpha \) in the sense of definition 1. To prove that it is a regular conservative diffusion it thus remains to show that \(Q_{\alpha}^X(\tau_y < \infty) > 0 \) for all \(x \in \text{int } J_\alpha \), \(y \in J_\alpha \) which is trivial, and to verify the strong Markov property.

We shall achieve this by showing that each \(Q_{\alpha,t} \) maps \(C(J_\alpha) \) into itself. As (4.5) shows \(x \mapsto P_{\alpha}^X f \) is continuous, so this is equivalent to showing that

\[
x \mapsto P_X^X(f(X_t);\alpha_\alpha) = P_X^X(f(X_t);\{\tau_\alpha = \infty\})
\]

is continuous on \(J_\alpha \) for every \(f \in C(J_\alpha) \).

But if \(x < y \in J_\alpha \)

\[
P_X^X(f(X(t+\tau_y))); \{\tau_y < \tau_\alpha, \tau_\alpha \circ \theta(\tau_y) = \infty\})
\]

\[
= \frac{S_x-S_\alpha}{S_y-S_\alpha} P_Y^Y(f(X_t);\{\tau_\alpha = \infty\}).
\]

When \(y \neq x \) the left hand side converges to \(P_X^X(f(X_t);\{\tau_\alpha = \infty\}) \) by dominated convergence. It follows that (4.6) is right-continuous.

A similar argument may be used to establish the left-continuity except possibly at \(b \). But if \(b \in J \) is absorbing, for any \(x < y \in J_\alpha \) we have

\[
\frac{S_x-S_\alpha}{S_y-S_\alpha} P_Y^Y(f(X_t);\{\tau_\alpha = \infty\})
\]

\[
= P_X^X(f(X(t+\tau_y))); \{\tau_\alpha \circ \theta(\tau_y) = \infty, \tau_y < \tau_\alpha\})
\]

\[
= P_X^X(f(X(t+\tau_y))); \{\tau_b < \tau_\alpha = \infty\})
\]

and as \(y \to b \) the last term tends to

\[
P_X^X(f(b);\{\tau_b < \tau_\alpha\}) = \frac{S_x-S_\alpha}{S_b-S_\alpha} f(b).
\]
Thus
\[\lim_{y \to b} P^y(f(X_t); \{ \tau_\alpha = \infty \}) = f(b) = P^b(f(X_t); \{ \tau_\alpha = \infty \}) \]
proving the left-continuity at \(b \).

The scale and speed for \(\{ Q^x_\alpha \} \) may be computed directly. If \(\gamma < \delta \in J_\alpha \), \(x \in [\gamma, \delta] \) (4.5) shows that
\[
Q^x_\alpha \{ \tau_\delta < \tau_\gamma \} = \frac{S_b-S_\alpha}{S_x-S_\alpha} P^x_\alpha \{ \tau_\delta < \tau_\gamma, \tau_\alpha = \infty \} = \frac{S_b-S_\alpha}{S_x-S_\alpha} S_x-S_\gamma S_\delta-S_\alpha \]
proving that \(S_\alpha \) is the scale for \(\{ Q^x_\alpha \} \). Also
\[
Q^x_\alpha \tau_\gamma \delta = \frac{S^x_\alpha}{S^b_\alpha} P^x_\alpha (\tau_\gamma \delta; \{ \tau_\alpha = \infty \}) = \frac{S^x_\alpha}{S^b_\alpha} (P^x_\alpha (\tau_\gamma \delta; \{ \tau_\delta < \tau_\gamma \}) \frac{S^b_\alpha}{S^\delta_\alpha} + P^x_\alpha (\tau_\gamma \delta; \{ \tau_\gamma < \tau_\delta \}) \frac{S^b_\alpha}{S^\gamma_\alpha})
\]
and using (4.1) this reduces to
\[
\int_G \gamma \delta(x,y) S^{-2}(y) m(dy)
\]
with \(G_\alpha \) being the Green function for \(S_\alpha \). Thus \(m_\alpha \) is the speed measure for \(\{ Q^x_\alpha \} \).

Finally it is immediate that (4.2) holds for \(a = \alpha \), \(S = S_\alpha \), \(m = m_\alpha \) so \(\alpha \) is entrance non-exit.

This proposition in conjunction with proposition 3 shows that for every \(\alpha \in J \) a probability \(Q^\alpha_\alpha \) on the set of continuous paths from \(T \) to \(J_\alpha U \{ \alpha \} \) may be adjoined to the family \(\{ Q^x_\alpha \}_{x \in J_\alpha} \) such that the enlarged family defines a strong Markov process with continuous paths, state space \(J_\alpha U \{ \alpha \} \), and transition operators mapping \(C(J_\alpha U \{ \alpha \}) \) into itself.
5. MINIMAL FUNCTIONALS AND A SPLITTING TIMES THEOREM FOR DIFFUSIONS.

We shall be concerned with positively inclined conservative and regular diffusions on an interval J. To begin with we shall only need the function space Ω of continuous paths from T to J and the measurable structure on Ω.

Definition 4. A functional $\{M_t\}_{t \in T}$ defined on Ω with values in J is called minimal if

i) M_t is F_t-measurable for every $t \in T$;

ii) For every $\omega \in \Omega$ the function $t \mapsto M_t \omega$ from T to J is non-increasing;

iii) For every $0 \leq t < u$, $\omega \in \Omega$ the condition $X_s \omega > M_t \omega$ ($s \in [t,u]$) implies that $M_u \omega = M_t \omega$.

The examples which motivated this definition are $M_t = \gamma$ ($\gamma \in J$), $M_t = \inf\{X_s : s \in [0,t]\}$. Other examples of minimal functionals are

$$M_t = \gamma \wedge \inf\{X_s : s \in [0,t]\} \quad (\gamma \in J),$$

$$M_t = X_0 + c \inf\{X_s - X_0 : s \in [0,t]\} \quad (c \in [0,1]).$$

A wide class of minimal functionals may be obtained as follows: Let $\{K_t\}_{t \in T}$ be a functional such that $K_t : \Omega \to J$ is F_t-measurable and satisfies $K_t \geq X_t$. Then, if $I_t(K) = \inf\{K_s : s \in [0,t]\}$, $\{I_t(K)\}_{t \in T}$ is minimal provided each $I_t(K)$ is F-measurable.

Notice also that if $\{M_t\}$, $\{M'_t\}$ are minimal, so is $\{M_t \vee M'_t\}$.

A minimal functional need not be continuous. For convenience we shall only consider right-continuous functionals $\{M_t\}$, i.e. $\{M_t\}$ satisfies that for every $\omega \in \Omega$ the mapping $t \mapsto M_t \omega$ is right-continuous.

Lemma 2. Suppose $\{M_t\}$ is minimal and right-continuous. Then
\[\cap \{X_s > M_s^{-}\} = \cap \{X_s > M_t\} \quad (t \in T). \]

(Here \(M_s^{-} = \lim_{s' \uparrow s} M_s \), for \(s > 0 \)).

Proof. The inclusion \(\supseteq \) is obvious since \(\{M_s\} \) is non-increasing.

Assume \(\omega \in \cap \{X_s > M_s^{-}\} \). If for some \(t' \in \]t,\infty[\)
\(M_t, \omega < M_t \omega \) it follows, because \(\{M_s \omega\} \) is right-continuous, that there exists a point \(t_0 \in \]t,\infty[\) of decrease for \(\{M_s \omega\} \), i.e. a point \(t_0 \in \]t,\infty[\) such that for all \(s_1 \in \]t, t_0[\), \(s_2 \in \]t_0, \infty[\)
we have \(M_{s_1} \omega < M_{s_2} \omega \). But to any such \(s_1, s_2 \) there exists \(s_3 \in [s_1, s_2] \) with \(\omega s_3 < M_{s_1} \omega \). It follows that \(\omega t_0 < M_{t_0} \omega \)
which is a contradiction. Consequently \(M_t, \omega = M_t \omega \) for all \(t' \in \]t, \infty[\) proving the inclusion \(\subseteq \).

Minimal functionals are of relevance to the theory of splitting times because of the following result.

Proposition 5. Let \(\{M_t\} \) be a right-continuous minimal functional. Define

\[\tau = \sup\{t \in T : X_t \leq M_t^{-}\} \]

(with \(\sup \emptyset = 0 \)).

Then the sets \(\{C_t\}_{t \in T} \) given by

\[C_0 = \cap \{X_s > M_0\} \]

\[C_t = \{X_t < M_t^{-}\} \cap \cap \{X_s > M_t\} \quad (t > 0) \]

are mutually disjoint and

\[\tau = \begin{cases} t \text{ on } C_t & (t \in T) \\ \infty \text{ outside } UC_t \end{cases} \quad (5.1) \]

in particular \(\tau \) is a splitting time.

Furthermore, if for \(t \in T \) \(A_t \) is the \(\sigma \)-algebra generated
by the equivalence relation \(\sim \) given by

\[\omega_1 \sim_{A_t} \omega_2 \text{ iff } \omega_1 \sim \omega_2 \text{ and } 1_{G(t)} \omega_1 = 1_{G(t)} \omega_2 \]

where \(G_t = \cap \{ X_s > M_t \} \), then the \(A_t \) increase with \(t \) and generate \(F_T \). In particular \(\tau \) is a stopping time with respect to \(\{ A_t \} \) and (2.3) holds.

Proof. From the definition of \(\tau \) it follows that

\[
\{ \tau = t \} = \begin{cases}
\cap \{ X_s > M_t \} & (t = 0) \\
\{ X_s < M_t \} \cap \cap \{ X_s > M_s \} & (t > 0).
\end{cases}
\]

Lemma 2 now shows that (5.1) holds. Since

\[
\{ \tau = t \} \cap \cap \{ X_s > M_s \} = G_t \in F
\]

\(\tau \) is a random time. (5.1) and proposition 2 then shows that it is a splitting time.

Let \(s < t \). To show \(A_s \subseteq A_t \) we show that if \(\omega_1 \sim_{A_t} \omega_2 \) then \(\omega_1 \sim_{A_s} \omega_2 \). The assumption implies \(\omega_1 \sim \omega_2 \) so it remains to show that \(1_{G(s)} \omega_1 = 1_{G(s)} \omega_2 \). If \(\omega_1 u \leq M_s \omega_1 \) for some \(u \in [s,t] \) evidently \(1_{G(s)} \omega_1 = 1_{G(s)} \omega_2 = 0 \) since \(\omega_1 \sim \omega_2 \). If \(\omega_1 u > M_s \omega_1 \) for all \(u \in [s,t] \) we have \(M_t \omega_1 = M_s \omega_1 \) and because \(\omega_1 \sim \omega_2 \), \(M_t \omega_2 = M_t \omega_1 = M_s \omega_1 = M_s \omega_2 \) in which case the assertion \(1_{G(s)} \omega_1 = 1_{G(s)} \omega_2 \) is equivalent to the assumption \(1_{G(t)} \omega_1 = 1_{G(t)} \omega_2 \).

To prove that \(\{ A_t \} \) generates \(F_T \) we must show that \(\{ \tau = t \} \in A_t \) and that \(\tau = \sim \) on \(\{ \tau = t \} \). Assume e.g. that \(t > 0 \). (The case \(t = 0 \) is similar). If \(\omega_1 \in \{ \tau = t \} \), \(\omega_1 \sim \omega_2 \) one has

\[
1_{G(t)} \omega_2 = 1_{G(t)} \omega_1 = 1 \text{ and } X_t \omega_2 \leq M_t \omega_2 \text{ so that } \omega_2 \in \{ \tau = t \} \text{. Thus } \{ \tau = t \} \in A_t \text{ and } \omega_1 \tau \omega_2 \text{. If } \omega_1 \in \{ \tau = t \} \text{, } \omega_1 \tau \omega_2 \text{ trivially } \omega_1 \sim \omega_2 \text{ and } 1_{G(t)} \omega_1 = 1_{G(t)} \omega_2 \text{ proving } \omega_1 \sim \omega_2 \text{.}
Finally, because the A_t increase (2.3) is equivalent to $F \cap \{\tau < t\} \in A_t$ ($F \in F_T$, $t \in T$) which will follow if we show that if $\omega_1 \in \{\tau < t\}$, $\omega_1 \sim \omega_2$ then $\tau \omega_1 = \tau \omega_2$. Since $\omega_1 \sim \omega_2$ for all $s < t$ this is immediate from the definition of τ.

We come now to the main theorem. For the formulation of this let $\{P^x\}_{x \in J}$ be a positively inclined conservative and regular diffusion on J, let $\{Q^x\}_{x \in J} \cup \{\alpha\}$ be the conditional diffusion of proposition 4 with the entrance non-exit boundary α adjoined and let τ be a splitting time determined from a right-continuous minimal functional $\{M_t\}$ as in proposition 5.

Theorem 2. With $\{P^x\}$ and τ as above

$$P^x_{\{\tau < \infty\}} > 0$$

$(x \in J)$.

Furthermore, conditionally on \mathcal{F}_τ within $\{\tau < \infty\}$ the post-τ process is identical in law to the process $\{Q^x\}$ with $\alpha = M_\tau$, starting at the state X_τ. More specifically

$$P^x_{\mathcal{F}(\tau) \circ \theta_\tau} = Q^{X(\tau)}_{M(\tau)} \text{ on } \{\tau < \infty\}$$

(5.3)

for every $x \in J$, $Y: \Omega \rightarrow \mathbb{R}$ bounded and measurable.

Proof. We have (see (5.2))

$$P^x_{\{\tau < \infty\}} = \lim_{t \uparrow \infty} P^x \cap \{X_s > M_t\}_{s > t}$$

$$\geq \lim_{t \uparrow \infty} P^x \cap \{X_s > M_t\} > 0$$

because $\{P^x\}$ is positively inclined.

For the proof of the Markov property (5.3) we shall use the second part of the corollary to proposition 1. Since $\{A_t\}$ generates \mathcal{F}_τ and since (2.3) holds (proposition 5) it suffices to show that

$$P^x_{A_t} Y \circ \theta_t = Q^{X(\tau)}_{M(\tau)} \text{ on } \{\tau < t\}$$

(5.4)

for every $x \in E$, $t \in T$, $Y: \Omega \rightarrow \mathbb{R}$ bounded and measurable and
to check that (2.5) holds.

Given (5.4) this latter fact follows from proposition 3 and 4 so only (5.4) needs verification.

Because of (5.2) (5.4) will follow from \((A_t \text{ being the } \sigma\text{-algebra generated by } F_t \text{ and } G_t) \)

\[
P^X(Y \circ \theta_t; F \cap G_t) = P^X(Q^X(t) \wedge M(t); F \cap G_t) \quad (F \in F_t). \]

But with \(A_\alpha \) as in proposition 4

\[
P^X(Y \circ \theta_t; F \cap G_t) = P^X(P^X(t)^\wedge; F) = P^X((Q^X(t)^\wedge) P^X(t)^\wedge; F) \]
\[
= P^X(Q^X(t)^\wedge; F \cap G_t) \]

using the Markov property for \(\{P^X\} \), (cf. (2.1)).

Now the observation that \(M_t = M_t \) on \(G_t = \{\tau < t\} \) completes the proof.

Notice that if \(\{M_t\} \) is continuous the post-\(\tau \) process starts at the entrance non-exit boundary \(M_t \) on \(\{0 < \tau < \infty\} \).

The theorem holds in particular for the splitting times determined by the functionals \(M_t = \gamma \), \(M_t = \inf \{X_s: s \in [0,t]\} \), i.e. for \(\tau \) equal to the last time the process is below \(\gamma \) and the last time the process attains its minimal value.

If in particular the diffusion \(\{P^X\} \) is a Brownian motion with an upper absorbing boundary \(b \) the associated diffusion \(\{Q^X_\alpha\} \) of proposition 4 becomes \(\alpha + R_3 \) with \(b \) absorbing and \(R_3 \) the three-dimensional Bessel process on \([0,\infty]\).

It is now clear why the Bessel processes occur in Williams' decomposition result [7].

That a splitting times theorem holds at the time where a positively inclined diffusion attains its minimum is proved in
theorem 2.4 of [8]. The result is first proved for a particular diffusion and then extended to other diffusions by time substitution.

We shall now mention an example of a splitting times theorem slightly different from theorem 2.

Let \(\{B^X_t\}_{t \in \mathbb{R}} \) be canonical one-dimensional Brownian motion and let \(\{B^X_k\} \) be Brownian motion with constant drift \(k > 0 \). Then \(B^X_k = B^X_0 \Phi^{-1} \) with \(\Phi: \Omega \to \Omega \) given by \(X_t \circ \Phi = X_t + kt \). Also \(\{B^X_k\} \) is positively inclined and the associated conditional diffusion \(\{Q^X_t\}_{t \geq 0} \) has scale and speed

\[
S_{\alpha}^X = -\left(e^{-2k\alpha} - e^{-2kx} \right) - 1,
\]

\[
m_{\alpha}(dx) = \left(e^{-2k\alpha} - e^{-2kx} \right) ^2 \frac{1}{k} e^{2kx} dx
\]

corresponding to the generator

\[
\frac{1}{2} \frac{d^2}{dx^2} + k \coth(kx-k\alpha) \frac{d}{dx}
\]

(cf. 2.4 of [8]).

Defining \(\tau = \sup\{t \in T: X_t \leq -kt\} \) (with \(\sup \Phi = 0 \)) it is readily verified that \(\tau \) is a splitting time. \(\Phi \) transforms \(\tau \) into \(\tau^* = \sup\{t \in T: X_t \leq 0\} \). Applying theorem 2 to \(\tau^* \) and \(\{B^X_k\} \) and transforming back we therefore find

\[
(B^X_{F(\tau)} \circ \theta_{\tau^*}) \omega = Q^X_{\tau^*} \omega + \theta_{\tau^*} \omega \circ \psi_{\tau \omega} \quad (\omega \in \{\tau \leq \infty\})
\]

where \(\psi_{\alpha}: \Omega \to \Omega \) is given by

\[
X_t \circ \psi_{\alpha} = X_t - k(t+c).
\]

In other words, a Brownian motion starting at \(x \in \mathbb{R} \) and conditioned to stay above the line \(t \to y - kt \) forever (where \(y < x \)) is identical in law to the diffusion on \([0,\infty[\) with generator

\[
\frac{1}{2} \frac{d^2}{dx^2} + k \coth(kx) \frac{d}{dx}
\]
starting at $x - y$ subjected to the transformation ψ_{-y} of Ω. In particular this conditional process is non-homogeneous Markov.

The main result of this paper, theorem 2 gives a generalised Markov property for a special class of processes and a special class of splitting times. By exploiting the theory of diffusions we were able to describe exactly what the conditional post-τ process should be and to verify the crucial condition 2.5. However, the structure of the problems discussed and solved for diffusions (for instance the fact that certain splitting times are stopping times with respect to families of increasing σ-algebras other than the \mathcal{F}_t) suggest that a generalised Markov property with respect to splitting times must hold in great generality.
REFERENCES

