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1. INTRODUCTION AND SUMMARY 

In ~7] Williams gives the following result on decomposi-

tion of the one-dimensional Brownian motion: If {B : t > O} 
t~ -

is a BM o (Brownian motion starting at 0), if T denotes the pas

sage time to 1, if a is the last time 0 is hit before T and 

if p denotes the time point in [O,a] where the path attains 

its maximal value a, then the following construction yields 

a process identieal in law to {B t : t < T}: Choose a uniform

lyon [0,1] and run a BM o (independent of a) until it first 

hits a; continue with a - R3 where R3 LS a three-dimensional 

Bessel process starting at 0 and run until it hits a for the 

last time, independent of a and the BM o ; finish with a new 

Bessel process, independent of the previous items, starting 

at 0 and run until it first hits 1. 

It is an:i:mmediate consequence of this result that if ~ 

is either of the random times p or a, then conditionally on 

(~, {B t : 0 < t < ~}) the law of the post-~ process {B(t+~): 

t > O} depends only on B(~), i.e. BM o starts afresh at the 

random time ~. (For other decomposition results and proofs, 

see [8]). 

It is the purpose of this paper to define for time-homo

geneous Markov processes a class of random times, splitting 

times, for which one might expect this kind of generalised 

strong Markov property to hold, to discuss the problems ari

sing when one tries to prove general results to this effect 

and to show a splitting times theorem for one-dimensional 

diffusions. 

Stopping times T may be characterised as ~litting times 

enjoying the property that conditionally on the pre-T behavi

our the post-T process is a replica of the given Markov pro-

cess. Williams' decomposition result shows that for splitting 

times T the conditional post-T process may be a Markov process 

different from the given process. 
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In [5] Meyer, Smythe and Walsh and in [6] Pittenger and 

Shih discuss a Markov property with respect to coterminal ti

mes. As will be pointed out in section 3 below coterminal ti

mes come very close to being a ~pecial kind of splitting ti-

mes. 
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2. PRELIMINARIES 

Throughout the paper we shall assume the basic Markov 

process to possess smooth sample paths and be given on canoni

c a 1 C i • e • fun c t ion spa c e ) form. 

Therefore, assume E, the state space of the process, to 

be a Polish space with Borel a-algebra a, and CCE) the ~pace of 

bounded, real-valued continuous functions on E. WriteT = 
[0,00[, "f = [0,00] and let ~ be the relevant subset of ET , i.e. 

~ is either the space of continuous paths from T to E or the 

space of right-continuous paths possessing left-limits every

where. 

Write Xt for the projection Xt : ~ + E given by XtW = wt 

(tET, wE~), let F be the a-algebra of subsets of ~ generated 

by all the Xt and write F t CFt) for the pre-t Cpost-t) alge

bra g en era ted by' {X s } s <t C { X s } S~l>t) • Fin a 11 y, 1 e t e t bet he 

X t on~. s+ 

Definition 1. A time-homogeneous, canonically defined 
. x 

Markov process with state space E is a family {p }xEE of pro-

bability measures on C~,F) satisfying 

by 

i) 

ii) 

iii) 

For every bounded, F-measurable Y: ~ +R the mapping 

x + pXy from E to ~ is Borel-measurable. 

For every x E E pX{X ~ x} = 1. 
o 

For every bounded, F-measurable Y: ~ + ~ and for 

every t E T, x E E 

P ~Kt) A 1. 

The transition semigroup {Pt}tET for the process is glven 

(t E T, x E E, f: E ~ R bounded Borel). 
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The notation used here as everywhere else is the fo1lo-

. If' x. bl x d x . wLng: Y LS P -Lntegra e P Y enotes the P -expectatl0n 

of Y while pX(Y;F) is the integral 6f Iy over the set F. If 

Y = IF we write of course pXF instead of pXlF If-G is a 

sub a- algebra of P P~ denotes conditional expectation of pX 

given G. In case there exists a regular conditional probabi

lity P~Y will always denote (pointwise on Q) the integral of 

Y with respect to that conditional probability. 

functions like 

Finally, 

1\ 

will be denoted pXt Y where more generally ~he 1\ is used to 

,show which parts of the pXt-integrand depend on the integra-
X '/\ 1\ 

tion variable. For instance one writes p t g(U,V) for 

f X w w ~ g(Uw',Vw')P t (dw') 

A 

and pXt g(U,V) for 

f X w w ~ g(Uw,Vw')P t (dw'). 

t With the setup we are using here the a-algebras P t , P may be 

characterised as saturated a-algebras generated by a measurab

le partition (cf. [2]). For t E T let ~, : be the equivalence 

relations on Q defined by 

w - w' iff ws 
t 

w's (s E [O,t]), 

t /,\, W ... w iff ws = w's (s E [t,co[). 

As a special case of lemma 1.2 of [2] it follows that 

F E P t (F E pt) iff F E P and F is a union of ~ (:) equiva1en-

ce classes (atoms). Notice that the atoms themselves belong 

to P and thus determine a measurable partition of Q. 

The Markov property iii) of definition 2.1 may now be 

formulated as follows: To every x E E, t E T there exists a 

regular conditional probability p;(t) of pX given P t , uniquely 
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determined by 

P x F n e-1G 
F (t) t 

x 
PF(t) 1S also proper, Le. for every wErt the probability 

x 
PF(t) (.)w is concentrated on the ~ equivalence class contai-

ning w. 

Because of this identities like 

(2. 1) 

hold trivially whenever U is Ft-measurable. 

A random time is a F-measurable mapping T: rt + T. The 

corresponding shift eT is a measurable mapping from {T < oo} 

to fl, identical to et on· {T=t}, Similarly XT :· {T < oo}+E is 

measurable and equal to Xt on {T=t}. 

For an arbitrary random time T the pre-T algebra F 1S de
T 

fined as the F-saturated a-algebra generated by the equivalen-

ce relation - given by 
T 

(cf. [2]). 

w - WI iff TW = TW' and ws 
T 

wls (s E [O,Tw]nT) 

A (strict) stopping time is a random time T such that 

{T=t} E F t (tET). The process is Markov with respect to the 

stopping time T if 

(2. 2) 

for every bounded, measurable Y: rt + R and every x E E. 

Formally (2.2) 1S obtained from the Markov property by i

dentifying conditional expectations given F with those given 
T 

Ft on {T=t}. Since T is a stopp~ng time·{T=t} E F t n FT with 

t on This fact partly justifies the identification 
T 

but does not of course provide a rigorous proof. For that ex-
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tra conditions are needed to ensure that one works with the 

correct versions of the conditional probabilities given the 

Ft " 

If (2.2) holds for all stopping times the process is 

strong Markov. The strong Markov property will appear as a 

special case of the corollary to proposition 1 below. The 

proposition deals with the identification principle in a more 

general setting. 

For the formulation we need the following concept. If 

T is a random time and {At}tET a family of sub a-algebras of 

F with each At being the saturated a-algebra determined by a 

measurable equivalence relation i ~ we say that the pre-T a1-
t:_ ... 

gebra FT is generated by {At} provided 

i) (t E T) 

ii) on {T=t} (t E T). 

Proposition 1. Let T be a random time and let {A } 
t tET 

be a family of a~a1gebras which generate F such that 
T 

F n {s < T < t} E At (F E F , s < t E T). 
T 

(2. 3) 

Suppose that for every x E E, t E T the conditional ex

pectation p~(t) of pX given At satisfies the following conditi-

on: For every n EN, t1 < "0 < tn E T, f 1 , ... ,fn E C(E), 

W E {T < oo} the mapping 

t + 
n 

,n feXt.) 
J:1 J 

is right-continuous at to = TW. 

(2. 4) 

Then conditionally on F at W the post-T process is iden
T 

tical in law to the post-TW process conditionally on A (, ~.e. 
'TW 

(px Y 0 e )w 
A(Tw) TW 

for every Y: ~ + R bounded and measurable. 
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Proof • It suffices to show that for every x E E, n E N, 

• 0. < t E T, fl, ... ,f E C(E), FE P n {T<oo} 
n n T 

with Y = ITf.(X .) and to check that the integrand on the left 
J tJ 

1S PT-measurable. 

The integrand is trivially constant on PT-atoms and is 

P-measurable because uS1ng (2.4) 

where Fnk 

Using this representation and dominated convergence we 

find from (2. 3) 

lim 
n-+OO 

~ PX(Yr 0 e(k+l \. F n F nk ) 
\2 n J' k=O 

= P X(Y e F) o ; • 
T 

In the special case where the At increase with t conditi

on (2.3) is equivalent to the condition 

F n· {T < t} E At (F E P T' t E T), 

in particular T 1S a stopping time with respect to {At}. 

In some cases condition (2.4) may be simplified. 
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Corollary. The conclusion of proposition 1 holds if 

. {~t} generates F T , if (2.3) holds and if for every x € E, t 

E T the post-t process conditionally on ~t at wunder pX is 

time~homogeneous Markov with initial state Xtw and transiti

on semigroup {~Qs}sET not depending on t satisfying 

XQ : C(E) ~ C(E) w s 
(s E T). (2.5) 

It is even sufficient that this condition on the post-t 

process holdsat all W E {T < t}only. 

Proof. The first part is proved by verifying (2.4) of 

the proposition. By assumption 

(2. 6) 

. x y} 
for every Y: n -+ ~ bounded and measurable. (Here {w Q y€E 

are the function space probabilities corresponding to the se

migroup {~Qs}). 

That the right hand side of (2. 6) ~s right-continuous in 

t for all Y of the form ITf.(X .) with tl < ... < t ,f. E C (E) 
J tJ n· J 

follows if we show that, writing QY = xQY 
w 

y -+ QY y (2. 7) 

is continuous. But for n = 1 this is equivalent to (2.5). 
x 

Furthermore, if wQ s = Qs 

n+l 
QY n f. (X ) 

. 1 J t. 
J= J 

so using (2.5) (2.7) follows by induction. 

As for the proof of the second part observe that the 
x 

proof of the proposition ~pplies if each p~(t) is determined 

only within{T < t} and there satisfies (2.4). 

We shall need the second part of the corollary ~n secti

on 5 below. 
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The first part contains a version of the strong Markov 

property as a special case: If T is a strict stopping time 

. {F t } generates 'T and since the conditional post-t process is 

the given Markov process itself starting at Xt the corollary 

shows as is of course well known, that the strong Markov pro-

perty holds if P t : C(E) + C(E) (t E T). (Recall that this con-

dition is sufficient for the process to be strong Markov with 

respect to any stopping time T, strict or not, and the enlar

ged pre-T algebra '1+ = n, ). 
s>O T+S 
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. 3. DEFINITION AND BASIC PROPERTIES OF SPLITTING TIMES. 

We shall study random times T with ~espect to which the 

process obeys the following generalised Markov property: For 

every x e E, Y: n + R bounded and measurable the conditional 

expectation 

(3. 1) 

(defined on {T<OO}) depends only on (T,X T). 

Intuitively one would expect this generalised Markov pro

perty to hold for random times T having the property that know

ledge that T = t may provide information about the behaviour 

of the path after time t, but only so that this post-t informa

tion does not depend on the behaviour of the path prior to t~ 

This leads to the following. 

Definition .2. A random time T is called a splitting 

time if it has the following cross-over property: For any 

two paths wl ,w2 with TW I = TW 2 (~t say) and WIt = w2t also 

TW = t where 

wh 
(u < t) 

(ii > t) (3.2) 

It is evident that any strict stopping time is a split-

ting time. Furthermore, the definition is symmetric in past 
.. ----""'--=-..::---

and future so that random times that are stopping times for the 

time reversed process (e.g. last exit times) are also split-

ting times. One also finds that the random times cr,p of the 

introduction are splitting times. 

David Williams suggested the name splitting times and 

himself proved that discrete time processes are Markov with 

respect to arbitrary splitting times. This result, which has 

not been published, may be formulated as follows. 

-j 

Let X 
,.... ~ x 

= (n,M,Mt~'Xt,8t'P) be a time-homogeneous Markov 

process in the sense of [1] with discrete time parameter set 
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Td = {O,l, ..• } and state space E. Write F for the a-algebra 

generated by {Xt}tET. Call T: D + Td U {oo} a splitting time 

if for every t E Tdtiere exists F t £ 9 t , Gt E 9 such that 

(3.3) 

Define the a-algebra g as follows: MEg iff M E 9 and 
T T 

there for every t e Td exists Mt E 9 t with 

Theorem 1. (Williams). For every x E E, Y: D + R bounded 

and measurable 

where the right-hand side may be defined arbitrarily (subject 

to ~he measurability constraints) for those 00 for which 

P XTdtG = O. 
TOO 

In the proof one works of course on the sets {T = t} 

separately. The proof rests on the Markov property alone. 

(See the pt:"oof of (3.5) below). Notice that the representati

on (3.3) is non-unique but that (3~4) holds no matter how the 

Ft,Gt are chosen. 

One reason why this result cannot be used to establish 

results for continuous time is that, unlike stopping times, 

splitting times can in general not be approximated by monotone 

sequences of splitting times with countable range. p of sec

tion 1 is an instance of this. 

We return now to the continuous time case and the discus-

sion of definition 2. In the setup we are using Galmarino's 

characterisation of strict stopping times (see [4] p. 86) is 

valid. Definition 2 is the splitting times analogue of Gal-

marino's characterisation. The following proposition gives 

the splitting times analogue of the customary definition of 

stopping times, which also matches Williams' definition. 
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Proposition 2. A random time T 1S a splitting time if 

for every t E T there exists F t EFt' Gt E F such that 

Proof. To verify the cross-over property, assume WI' W2 
E {T=t} with wIt = w2 t. Defining W as in (3.2), since W ; wI' 

, t -1 
ill ~ ill2 it follows that ill E F t n St Gt , 

Consider now a splitting time T with {T=t} as in proposi-

tion 2. Define It = 1 -1 and let G~ denote the equivalence 
StGt t 

relation 

with Gt thea-algebra determined from G . 
t 

It is immediate that the family'{Gt } generates F. Fur-
T 

thermore, since Gt is the a-algebra generated by ({Xs}s<t' It) 

we claim that a regular conditional probability of pX given 

Gt is defined by 

where the conditional p~obability on the right may be defined 

arbitrarily (subject to the Gt-measurability condition) for 

h f . h X W f h d··· t ose ill or wh1ch t e P t -measure 0 t e con 1t10n1ng event 

is O. 

The proof of (3.5) proceeds as follows: If e.g, F' EFt' 

H F' , n '{It=lY one finds 

AA 
pX(pX (t) (Gl {I = It}) ; G(t) 

F n H) 

A A 
pX(pX(t)C G1{1 = I} ) ; F 

G(t) 
A A 

pX(pX(t)(G n Gt ); F n F' ) 

= PXCF n S-IG n H). t 

(3.5) 
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This LS the argument used by Williams in the proof of 

theorem 1. 

Because of (3.5) one might expect that proposition 1 

could be used straightaway to establish the Markov property 

for T. However, it may be true that 

(3.6) 

for all W E {T=t} which makes it impossible to verify (2.4) 

of proposition 1, the limit as t + TW not being defined. 

An example of this is provided by the splitting times 

p,a of the introduction. 

e-1G with 

For instance one has {a=t} = F n 
t 

t t 

F t ='{B t = O} n n 
s~t 

G ='{B = O} n {B > 0 for all s E ]O,T]} E F 
t t s 

using the notation of section 1. It is now clear that (3.6) 

holds because BM(l) will with probability I cross its initial 

level infinitely often in any time interval ]O,u]. 

The generalised Markov property (3.1) states that the 

process should start afresh at time T. An important particu-

lar case arises naturally when the conditional post-T process 

is itself time-homogeneous Markov with law depending only on 

T, XT , In [5] T is then called a birth time for the process 

and it is proved (theorem S.l) that any coterminal time L is 

a birth time in the following sense: The process {XL+t}t>O 

is strong Markov with respect to the family {FL+t}t>O of 

a-algebras. Also the tnansition semigroup for the conditio-

nal ppocess is given. 

It is pointed out in [5J that the restriction to t > 0 

LS essential. This ~ay the problem we discussed in connect i-

on with (3.6) is avoided. 

As we mentioned in the introduction coterminal times are 
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nearly splitting times. 

ticu1ar that 

A cotermina1 time L satisfies in par-

L 0 8 
t 

(L-t) V 0 

Assuming w1 E' {L < t}, w2 ~ 
(L 0 8 t )w 1 = 0 so that LW 2 ~ t. 

(t E T). 

w1 it follows that (L 0 8 t )w 2 = 
Thus'{L < t} E Ft showing 

that L is a (non-strict) stopping time for the time reversed 

process. 

On the other hand the p of section 1 1S a splitting time 

but not a cotermina1 time. 

In [6J results are given which show that a Markov pro

perty (in the sense of (3.1» is valid with respect to any 

cotermina1 time. According to [6] the difficulties around 

(3.6) can be solved because certain limits of ordinary condi

tional probabilities exist. 
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4. A CLASS OF CONDITIONAL DIFFUSIONS 

Before formulating and proving splitting times theorems 

for diffusions we shall summarise the facts needed from diffu-

s10n theory and prove some preliminary results. 

We shall only discuss conservative regular diffusions but 

it is fairly obvious that the results extend to non-singular 

diffusions with killing. 

Let J be a subinterval of the extended real line, with 

int J denoting the interior of J. 

A canonically defined Markov process"{pxlxEJ with state 

space J is called a conservative, regular diffusion provided 

i) the pX are probabilities on the space of continuous 

functions from T to J; 

ii) the process is strong Markov; 

iii) pX{T < oo} ~ 0 (x E int J, y E J). 
y 

Here Tx 1S the passage time inf {t E T: Xt = x}. 

Let a be the lower and b the upper boundary of J. We 

shall need the following facts about diffusions (cf. [3] or 

[ 4]) . 

Any conservative regular diffusion on J may be characte

rised by a scale S: J + R which is strictly increasing and con-

tinuous and a speed measure m, on the Borel subsets of J which 

is locally strictly positive and finite (i.e. 0 < m[x,y] < 00 

for all x < Y E int J). S,m must satisfy certain conditions at 

the endpoints of J, mentioned below for the boundary a. 

If a IE J either Sa = - 00 or J (Sy - Sa 
] a, x [ 

for all x E int J. 

)m(dy) 

If a E J Sa ~ - 00 and J (Sy - Sa)m(dy) < 00 for all 
] a, x [ 

00 
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x E in t J. •. I fa 1 s 0 m ] a, x [ = 00 for all x E in t J a is n e c e s -

sarily absorbing. Otherwise a LS absorbing iff mta} = 00, and 

reflecting iff m[a,x[ < 00 for all x E int J. 

S,m are related to the exit probabilities and mean exit 

times by 

Sx-Sa 
SS-Sa' 

PXT = J GNQ(x,y)m(dy) 
as ]a,S[ Uf..' 

for all a < S E J, x E [a,S]. 

G (x ) = G ( x) = (Sx-Sa) (SS-Sy) (x < y E 
as ,y as y, SS-Sa 

and 

[a,S]). 

More generally, if f~I(J(,.I3]~IRis bounded and measurable 

T(aS) 
pX J f (X t ) d t 

o 
J G S(x,y)f(y)m(dy ). 

]a,S[ a 

From a special case of this one finds 

J Sy-Sa 
GaS(x,y) sS-sam(dy ) 

]a,S[ 

The proof of (4.1) is as follows~ 

00 X(t) A A 
= J pX(P {T <T }"{T > t})dt 

0 Sa' as 

00 

J x 
TaS>t}dt p {TsO®t<T a o8 t , 

0 

00 

J pX{Ts<Ta,Tas>t}dt 
0 

(4.1) 
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where we have used the Markov property once and Fubini's theo~ 

rem twi ce. 

It 1S well known that the transition operators for any 

conservative regular diffusion on J are operators on e(J). 

a ( J. 

vided 

Then a is an 

1S conservative and regular on J with 

entrance non-exit boundary for {px} pro-

Sa - 00, J (Sx - Sy)m(dy) < 00 

]a,x[ 
(x E int J). (4.2) 

We shall need the following result about entrance non

exit boundaries. 

Proposition 3. Suppose {PX}xEJ is a regular diffusion on 

J with a an entrance non-exit boundary. Then there exists a 

probability pa on the space of continuous functions from T to 

J U {a}satisfying pa{T < oo} = 1 (xEJ) and such that 
x 

'{Px}xEJU{a} defines a canonical strong Markov process with 

continuous paths and state space J U{a}. The transition ope

rators for this process are operators on e(J U {a}). 

For the proof see [4]. 

Starting from a the new process immediately moves into 

J itself never to return to a. 

To arrive at the conditional diffusions needed in section 

5 we begin with the following quite general result. 

Let {px}xEE be a canonical Markov process with state spa

ce E. Let A E F be an event satisfying this condition: To 
-1 

every t.~ T there exists At E F t such that A = At n 8 t A. Fi-

nally, l~t EA =' {xEE: pXA > oJ. 

Lemma 1. For every x E EA, t E T 

1. (4. 3) 
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Furthermore, if for x E EA, t E T, f: EA ~ R bounded 

and measurable one defines 

(4. 4) 

* where f 1S an arbitrary bounded and measurable extension of 

f from EA to E, then the family {PA,t}tET defines a one-para

meter semigroup of stochastic transition operators on EA" 

Proof. Using the Markov property and the definition of 

EA one finds 

A 

P X(pX(t)Ao, At n'{x EE }) 
t A 

proving (4.3). (4.3) shows that the definition (4.4) 1S un-

amb iguous. For the proof of the last assertion of the lemma 

only the semigroup property needs verification. But 

(PA t f) x. , +s 

Let now again'{pX}xEJ be a regular conservative diffusion 

on J with scale S and speed measure m and let a E J with a<b. 

Write 

= n ' {X t > cd, J a = {xE J: x > a}. 
[,>0 

Either pXA > 0 for all 
a We have the following dichotomy: 

x 
x > a or P A 

a 
= 0 for all x > a with the first possibility oc-

curring iff Sb < 00 and b is not a reflecting boundary (i.e.b is 

absorbing or not in J withSb < 00 and f(Sb-Sy)m(dy) = 00). 
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To see this observe that for x > a 

Sx-Sa 
Sb-Sa (4.5) 

provided b 1S not reflecting. 

and consequently 

If b b is reflecting P {T <oo}=l a 

o. 

This motivates the following. 

Definition 3. A conservative regular diffusion {px} on 

J 1S said to be positively inclined if pXA > 0 for all 
a 

The next result is basic for the sequel. 

Proposition 4. Let {px} J be a positively inclined con
xE 

servative and regular diffusion on J. For every a E J,{b} 

the equations 

(x E J ) 
a 

define a family {Qx} of probability measures on the space of 
a 

continuous functions from T to J which determine a conserva
a 

tive regular diffusion on J • 
a 

This diffusion has scale 

speed measure 

S 
a 

-1 
- (S - Sa) , 

2 
m (dx) = (Sx-Sa) m(dx) 

a 

and a as entrance non-exit boundary. 

Proof. Although formally defined as a probability on 

the space of continuous paths from T to J Q~ may obviously 

for x > a be considered a probability on the space of conti

nuous paths with values in Jao Furthermore Aa satisfies the 

condition imposed on the A of lemma I with EA(a) = ~a' By 

that lemma therefore 



-20-

defines a stochastic semigroup{Qa,t} of transition operators. 

One findsthadQ x } is a canonical Markov process on J in the a a 
sense of definition 1. To prove that it is a regular conser-

vative diffusion it thus remains to show that QX{T < 00}>0 
a y 

for all x E int J , Y E J which is trivial, and to verify a a 
the strong Markov property. 

We shall achieve this by showing that each Q maps 
a,t 

e(J ) into itself. As (4.5) shows x + pXA is continuous, 
a a 

so this is equivalent to showing that 

is continuous on J for every f E e(J ). a a 

But if x < y E J 
a 

pX(f(X(t+T»; {T < T~, 
Y Y u, 

Sx-Sa PY(f(X )'{T =oo}). 
Sy-Sa t' a 

o 8 (T' ) 
y 

(4. 6) 

= oo}) 

When y+x the left hand side converges to pX(f(Xt ); {Ta=oo} ) 

by dominated convergence. 

tinuous. 

It follows that (4.6) is right-con~ 

A similar argument may be used to establish the left

continuity except possibly at b. But if b € J is absorbing, 

for any x < y E J we have 
a 

= p x (f (X (t + T.) ) ; { T • 08 (-F ) = 00, T < T }) 
yay y a 

and as ytb the last term tends ~o 

Sx-Sa feb). 
Sb-Sa 
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Thus 

b 
P (f (Xt ) ; { T a =00 } ) 

proving the left-continuity at b. 

The scale and speed for {Qx} may be computed directly. 
a 

If y<o EJ , x E: [y,o] (4.5) shows that a 

= Sb-Sa Sx-Sy So-Sa 
Sx-Sa So-sy Sb-Sa 

S x-S y a a 
S o-S y a a 

proving that S 1S the scale for {Qx}. Also 
a .. a _ 

S x 
a pX(Ty~;{TN=oo}) 

Sab u \.N 

and uS1ng (4.1) this redtic~~ t~ 

J -2 G ~(x,y)S (y)m(dy) 
]y,o[ a,Yu a 

with G being the a 
measure for {Qx}. 

a 

Green function for S • a Thus m a 

oo} 

is the speed 

Finally it is immediate that (4.2) holds for a a, 

S = S , m = m so a is entrance non-exit. a a 

This proposition 1n conjunction with proposition 3 shows 

that for every a E J a probability Q~ on the set of continuous 

paths from T to J a U' {a} may be adjoined to the family {Q~}xEJ 
a 

such that the enlarged family defines a strong Markov process 

with continuous paths, state space J U'{a}, and transition 0-a 
perators mapping C(J U {a}) into itself. a 
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5. MINIMAL FUNCTIONALS AND A SPLITTING TIMES THEOREM FOR 

DIFFUSIONS. 

We shall be concerned with positively inclined conserva-

tive and regular diffusions on an interval J. To begin with 

we shall only need the function space ~ of continuous paths 

from T to J and the measurable structure on ~. 

Definition 4. A functional {Mt}tET defined on ~ with 

values in J ~s called minimal if 

i) Mt is Ft-measurable for every t E T; 

ii) For every W E ~ the function t + MtW from T to J 

is non-increasing; 

iii) For every 0 _< t < u, W E ~ the condition X W > M W s t 

(s E [t,u]) implies that M W u 

The examples which motivated this definition are Mt 5 y 

(yEJ), Mt = inf{X s : s E [O,t]}. 

functionals are 

Other examples of minimal 

= Y A inf {X : s 
s E [O,tJ} (yEJ), 

+ C inf {X -X : 
s 0 

s E [o,t]} (c E [0,1]). 

A wide class of minimal functionals may be obtained as follows: 

Let {Kt}tET be a functicrnal such that Kt : ~ + J is Ft-measurab

Ie and satisfies Kt ~ Xt " Then, if It(K) inf{K s : s E [O,t]}, 

. {It(K)}tET is minimal provided each It(K) is F-measurable. 

Not ice a 1 sot h at if' {M t }, {M ~} are min i mal, s 0 ~ s . {M t V M ~ } . 

A minimal functional need not be continuous. For conve-

nience we shall only consider right-continuous functionals 

'{M t }, i.e. {Mt } satisfies that for every W E ~ the mapping 

t + MtW is right-continuous. 

Lemma 2. Suppose'{Mt} is minimal and right-continuous. 

Then 
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n '{x > M } 
s s-

s>t 

lim M I for s > 0). 
sIts s 

(t E T). 

Proof. The inclusion ~ is obvious Slnce {M } is non
s 

increasing. 

Assume W E n'{x > M }. s s- If for some t l E ]t,~[ 
s>t 

Mt,W < MtW it follows, because {MsW} is right-continuous, that 

there exists a point 'toE h,cx>[ of decrease fortMsW}' Le. a 

point to E ]t,cx>[ such that for all sl E ]t,t o [' s2 e ]to'CX>[ 

we have M W < M w. But to any such' sl,s2 there exists 
s2 sl 

s3 E [sl,s2] with wS 3 < MslW. It follows that wt < M W 
o - to 

which is a contradiction. Consequently Mt,W= MtW for all t l 

E ]t,~[ proving the inclusion ~. 

Minimal functiona1s are of relevance to the theory of 

splitting times because of the following result. 

Proposition 5. Let {Mt } be a right-continuous minimal 

func ti onal. Define 

T = su~{t E T: Xt < M . } 
t-

(with sup ~ = 0). 

Then the sets'{Ct}tET given by 

C 
o 

n' {X > M } 
s>o s 0 

n'{x 
s>t s 

are mutually disjoint and 

T = 
(t E T) on Ct 

outside UC t , 

ln particular T is a splitting time. 

(t > 0) 

(5. 1) 

Furthermore, if for t E T At is the a-algebra generated 
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by the equivalence relation - g~ven by 

At 

where Gt = n{x s > Mt }, then the At increase with t and ge

nerate FT' s~li particular T is a stopping time with respect 

to {At} and (2.3) holds. 

Proof. From the definition of T it follows that 

{T=t} = 
s s s- (t=O) 

{ 
>no{X > M } 

{X t _< Mt _} n n' {X > M ,} (t > 0). 
s>t s .8-

Lemma 2 now shows that (5.1) holds. Since 

n {X 
s>t s 

(5. 2) 

T is a random time. (5.1) and proposition 2 then shows that 

it is a splitting time. 

Let s < t. 

then wI A w2 • 
s 

To show As ~ At we show that if wI A w2 
The assumption implies wI ; w2 so it femains 

to show that lG(s)W l = lG(s)W 2 , If Wlu ~ MsWl for some u E 

[s,t] evidently lG(s)W l = lG(s)W 2 = 0 since wI ~ w2 • If wlu 

> MsWl for all u E [s,t] we have MtW l = Mswl and because 

wI ~ W2 ' Mt W2 = MtW l = Mswl = Msw2 in which case the assertion 

lG(s)wl = lG(s)w 2 is equivalent to the assumption lG(t)W l = 

lG(t)w2 , 

To prove that'{At } generates FT we must show that {T=t} 

E At and that T on {T=t}. Assume e. g. that t > O. (The 
At 

case t = 0 is similar). 

lG(t)W 2 = lG(t)W l = 1 and Xt W2 < Mt _w 2 so that w2 E 

'{T=t}. Thus' {T=t} E At and wI ~ W2 • If WI E {T=t}, wI ~ w2 

trivially wI ~ w2 and lG(t)W l = lG(t)w2 proving wI At w20 
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Finally, because the At increase (2~3) is equivalent to 

F n {T<t} E At (F E 'T' t E T) which will follow if we show 

_~hat if~~L E {T<t}, wI A w2 then TW I = TWZ,Since Wt I w2 for all 

s < t this is immediate~irom the defi~ition of 'f. . .. S 

We come now to the main theorem. For the formulation of 

this let {PX}xEJ be a positively inclined conservative and re

gular diffusion on J, let {Q~}xEJ U{a} be the conditional dif-
a 

fusion of proposition 4 with the entrance non-exit boundary 

a adjoined and let 'f be a splitting time determined from a 

right-continuous minimal functional {Mt } as in proposition 5. 

Theorem 2. With~ f pX} and T as above 

(x E J). 

Furthermore, conditionally on F'T within {T<ro} the post-T 

pro c e s sis ide n tic ali n 1 a w tot he pro c e s s' {Q~} wit h a = MT • 

starting at the state X. More specifically 
T 

for every x E J, Y: ~ + ~~ bounded and measurable. 

Proof. We have (see (5.2» 

= lim pX 
ttro 

> lim pX n 
ttro s> t 

because {px} is positively inclined. 

(5.3) 

For the proof of the Markov property (5.3) we shall use 

the second part of the corollary to proposition 1. 

generates F' and since (2.3) holds (proposition 5) it suffices 
T 

to show that 

(5. 4) 

for every x E E, t E T,Y: ~ + R bounded and measurable and 
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to check that (2.5) holds. 

Given (5.4) this latter fact follows from proposition 3 

and 4 so only (5.4) needs verification. 

Because of (5.2) (5.4) will follow: from (At being the 

a-algebra generated by Ft and Gt ) 

A 
PX(Y e FnG) pXCQX(t) Y F n G ) 

o t; t = M(T); t 

But with A as ln proposition 4 a 

using the Markov property for {px}, (cf. (2.1». 

Now the observation that Mt 

the proof. 

MT on Gt ={T< t} completes 

Notice that if'{Mt } is continuous the post-T process starts 

at the entrance non-exit boundary M on'{O < T < oo}. 
T 

The theorem holds in particular for the splitting times 

determined by the functionals Mt = y, Mt = inf {Xs: s E [O,t]}, 

i.e. for T equal to the last time the process is below y and 

the last time the process attains its minimal v~lue. 

If in particular the diffusion' {px} is a Brownian motion 

with an upp~r"absorbing boundary b the associated diffusion 

'{Q:} of propositioi 4 becomes a+1 3 with b absorbing and R3 

the three-dimensional Bessel process on [0,00[. 

It is now clear why the Bessel processes occur in Willi

ams' decomposition result [7]. 

That a splitting times theorem holds at the time where a 

positively inclined diffusion attains its minimum is proved ln 
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theorem 2.4 of [8]. The result 1S first proved for a particu

lar diffusion and then extended to other diffusions by time 

substitution. 

We shall now mention an example of a splitting times the

orem slightly different from theorem 2. 

Let {B x } EH be canonical one-dimensional Brownian motion 
x . 

and let {B~} be Brownian motion with constant drift k > o. 
Then B~ = Bx.- 1 with ¢: n + n given by Xt 0 ¢ = Xt + kt. Also 

. {B k
X } is positively inclined and the associated conditional 

diffusion {QX} has scale and speed 
a x>a 

-2ka -2kx-1 
= - (e - e ), 

-2ka _ e-2kx)2 1 
ma(dx) = (e k 

2kx d e x 

corresponding to the generat0r 

1 d 2 
+ k coth(kx-ka) d 

2 --2 dx dx 

( cf. 2.4 of [ 8]) • 

nefining T = sup{t E T: Xt ~ -kt} (with sup ¢ = 0) it is 

readily verified that T is a splitting time. ¢ transforms T 

* * into T = sup{t E T: Xt < a}. Applying theorem 2 to T and 

, {B k
X } and transforming back we therefore find 

where ¢ : n + n 1S given by 
c 

x 0 ¢ = X - k(t+c). 
t .,c . t 

In other words J a Brownian motion starting at x E Rand 

conditioned to stay above the line t ~ Y - kt forever (where 

y ~ x) is identical in law to the diffusion on [O,oo[ with 

generator 

1 d 2 d 
2 dx 2 + k coth(kx) dx 
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starting at x - y subjected to the transformation W of n. 
-y 

In particular this conditional process is non-homogeneous Mar-

kov. 

The main result of this paper, theorem 2 gives a genera

lised Markov property for a special class of processes and a 

special class of splitting times. By exploiting the theory of 

diffusions we were able to describe exactly what the conditi

onal post-T process should be and to verify the-crucial condi"Ej.Qn 
- -- - - --- - --

2.5. However, 'the· structure fif the problems -di.scussed and solved 

for diffusions(for instance the fact that certain splitting ti

mes are stopping times with respect to families of increasing 

a-algebras other than the F t ) suggest that a generalised Mar

kov property with respect to splitting times must hold in 

great generality. 
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