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1. Summary. 

Let {Xt , t ~ O} be a non-homogeneous Markov branching process with Xo = 1. 

Under the assumption that p{X = 11 X = l} and E(X I X = 1) are conti-
t s t s 

nuous in (s,t) we prove an inequality which implies that P{N(s,t) = O} 

and EN(s,t) are finite, positive and continuous, where N(s,t) is the 

number of jumps of the process in [s,t[. This result is then applied to 

prove that we can change the timescale of the process by either 

~(t) -In P{N(O,t) O} 

or 

1j! ( t ) EN ( 0 , t) 

such that the transition probabilities satisfy a Lipschitz condition. 

This then again implies the existence of intensities for the process 

which can be found as the unique solution to the backward Kolmogorov 

equation. 
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2. General background. 

The problem of finding an intrinsic time scale for a Markov process was 

first treated by Goodman [5] who proved that for a finite state space 

and under the assumption of continuity of the transition probabilities, 

one can change the time scale .i?yme:ans .0£ 

aCt) -In Det P(O,t) 

and obtain a Lipschitz condition for the transition probabilities. This 

1S then used to obtain the existence of intensities almost everywhere 

and to prove that the process can be recovered as the unique solution 

to the backward Kolmogorov equations. Such a time ·sc;ale ;is .called sm 

intrinsic time~':scale. 

For the case of a countable state space it was proved in Goodman and Jo-

hansen [6] that under the assumption of uniform continuity of the tran-

sition probabilities one can apply a result of Doeblin [2] to obtain 

that 

¢(t) -In P {NCO, d O} 

and 

1/! ( t ) EN ( ° , t) 

are admissible intrinsic time' sca:les. 

Goodman [3] considered the:semigroup of schlicht mappings of the unit disc 

into itself which have ° as fixed point, and found that one could use 

net) = -In D f (0) 
O,t 

as an intrinsic 'time scale,see also· [4]. 
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This has immediate applications to Markov branching processes with no 

deaths, since the generating function is a schlicht mapping of the unit 

disc into itself, such that feO) = O. An account of the application of 

these ideas to the imbedding problem for branching processes with no 

deaths is given in Johansen [7J. 

The purpose of the present note 1S to prove that for the general non­

homogeneous Markov branching process one can apply Doob's Martingale 

inequation to obtain an inequality which proves that again ~ and ~ are 

admissible intrinsic timescales. 

The result is purely analytical but at the crucial point of the proof, 

a version of the underlying stochastic process is used. Thus one can 

either consider the result as a probabilistic proof of an analytic re­

sult or as an analytic formulation of the existence of a well behaved 

verS10n of the process, i.e. a process given by its intensities and with 

a finite number of jumps on any finite interval. 

The application to the imbedding problem will appear elsewhere. 

3. A combinatorial inequality. 

Let {Xt , t ~ O} be a non-homogeneous Markov branching process with Xo 1. 

It 1S well known that if E Xt < 00 then Yt = Xtl E Xt is a martingale. 

It is however a special martingale 1n that it Jumps with jumps of S1ze 

almost equal to 1 for small values of t if E Xt is close to 1. Let us 



introduce 

h(t) 

k( t) 

sup 
O~u~t 

sup 
O~u~t 

and let D denote the partition 

Then we can prove the following 
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11 - :i:>{x 
u 

1 3.1. Lemma. Let t be such that h(t) ~4. 

Then 

1 - p{X 
u 

1, u E D} ~ 10(h(t) + k(t)) . 

Proof. + Let y (a,b) denote the number of upcrossings of the process 

{y , uE D} over the interval [a,b], see Neveu [9]. Similarly let y-(a,b) 
u 

denote the number of downcrossings. 

If for some u E D, X f 1, then either X = 0, in which case Y u u u o and 

y-(O, 1 - h(t)) ~ 1, or Xu > 2 in which case Yu ~ 2/ E Xu ~ 2(1 - h(t)) 

which implies that y+(l + h(t), 2(1 - h(t))) ~ 1. 

In terms of probability this becomes: 

1 - p{X = 1, u E D} 
u 

~ P{y+(l + h(t), 2(1 - h(t))) ~ I} + p{y-(O,l - h(t)) ~ I} 

~ E y+(l + h(t), 2(1 - h(t)) + E y-(O, 1 - h(t)). 
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We next evaluate this by Doob's inequality and obtain 

+ ( __ Xu \+ 
(1 - 3h(t» E y (1 + h(t), 2(1 - h(t» ~ ~~~ E 1 + h(t) ~ X) 

u 

and 

X 

(1 - h(t» E y-(O, 1 - h(t» ~ sup E(E ~ - (1 - h(t»)+. 
uED u 

Continuing we obtain 

E(l + h(t) - ~)+ = (1 + h(t» p (0) + (1 + h(t) - _1 ___ ) p (1) EX u EX u 
u u 

~ (1 + h(t» (1 - pu(l» + 2h(t) pu(l) ~ 2(h(t) + k(t», 

slnce k/ E Xu ~ k(l - h(t» > (1 + h(t» whenever k ~ 2 

Here p (k) = p{X = k} .S'imi;l&r:ty We get u u . 

1 
and h(t) ~ 4' 

E(~ - (1 - h(t»)+ = ~ (_k ___ - (1 - h(t») puCk) 
E Xu k=l E Xu 

E X 
u 

E X 
u 

(1 - h(t» (1 - pu(O» ~ h(t) + pu(O) ~ h(t) + k(t). 

If we combine these inequalities and use that 1 - 3h(t) ~1/4 and 

(1 - h(t» ~ 3/4 then we get the result of the Lemma. 

3.2. Corollary. 1) and P{Xt = 11 X s 
I} are continuous 

functions of (s,t), then 

g(s, t) = P{X = 1, s 2 u ~ tl X u s 
P{N(s,t) = 01 X s 

is positive and continuous. 
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Proof. Let' {Xt } be constructed as the second canonical process, then 

we can use the relation 

Pix 
u 1, 0 ~ u ~ t} inf pix 

D u 
1, u ED}, 

see Meyer [8] or Goodman and Johansen [6]. 

From the inequality we obtain 

1 - pix 
u 

1, 0 ~ u ~ t} ~ 10(h(t) + k(t» 

whenever t is so small that h(t) ~ 1/4. This implies the continuity at 

t = O. From the multiplicativity 

g(O,t) g(O,u) g(u,t), o ..2 u ~ t, 

the rest follows. 

3.3. Corollary. If and pix = 11 X = I} are continuous 
t s 

functions of (s,t), then E N(s,t) is finite and continuous. 

Proof. We first prove an inequality: 

Pix u + X } 
s = l: Pix m u + ml X 

s 
m} Pix = s 

m} 

= l: (1 - pix = ml X m} ) pix = m} 
m u s s 

< l: (1 - pix = m, s~v~ul X = m} ) pix m} 
=m v s s 

m PiX m} l: (1 - g(s,u) ) 
m s 

< (1 - g(s,u» l:m pix m} ~(¢ (u) - ¢Cs» E X s' m s 

where ¢Cu) - In g (0, u) • 
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Now we can find E N(s,t) as follows 

n 
E N(s,t) sup I E, r{x + X }, 

S k=l sk sk-1 

So < sl < ... < s < t of the interval n 
where S ~s the partition s 

[s, d. 

Using the above inequality we get 

n 

E N(s,t) < sup E (Xul Xs 
s~u.:::_t 

1) sup 
S 

I (¢(sk) - ¢(sk-1)) 
k=l 

< (¢(t) - ¢(s)) sup E(Xul Xs 1). 
s~u~t 

This proves the finiteness of E N(s,t) and the continuity for s t. 

The additivity 

E N(s,t) E N(s,u) + E N(u,t) 

then implies the rest. 

4. The change of time scale. 

Let the generating function f be defined by 
s,t 

f (z) = 
s,t 

00 

k· Iz P{Xt 
k=O 

We then have the Chapman-Ko1mogorov equation 

(4.1) f 
s,u o ~ z ~ 1, 

(4.2) f t(z) s, 
z, s = t. 

s ~ u ~ t, 
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We also assume continuity: 

(4.3) f (z) lS continuous In (s,t) uniformly In z E [0,1]. s,t 

We shall call the process regular if 

(4.42 D fO (1) lS finite and continuous. 
, t 

The family {f ,0 ~ s ~ t < oo} satisfying (4.1) - (4.4) will be call-s,t --

ed a regular continuous family. We shall deal with this family rather 

than the family {P(s,t), 0 < s 2 t < oo} of transition probabilities for 

the non-homogeneous Markov branching process. 

4.1 Proposition. For a regular process there exists a change of time 

scale 

¢(t) -In P{N(O,t) O} 

or 1)1(t) E N(O,t), 

such that the functions f (z) satisfy a Lipschitz condition uniformly 
. , t 

In z E [0,1]. 

Proof. From Corollary 3.2 we get that ¢ and 1)1 are well defined. We can 

then change the ,tim.e.scaleas follows. 

Ifu ¢( t) , v ¢(s) then we define 

*f (z) v,U f (z). 
s,t 
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This LS a consistent definition, SLnce if for instance u 

1 

which implies that f (z) = z and hence 
t l ,t2 

f (z) 
s,t2 

f (z). 
s,t l 

Similarly one can see that f * s,t 
satisfies the continuity conditions 

(4.3) and (4.4). 

A similar consideration shows that we could use ~ as the change of time 

scale. 

Let now i(z) = z and for any function g: [O,lJ ~ [-l,lJ we define 

Igl = sup Ig(z)l· 
z 

The basic inequality LS now the following: For s < u < t, 

If - f I u,t s,t' /f - f 0 f / u,t s,u u,t 

/i - f / < 1 - p{X 
s ,u u 11 X s 

< 1 - g(s,u) ~ ¢(u) - ¢(s). 

If the time scale is changed to ¢ this inequality impl"ies that the func-

tion f (z) 
. , t 

satisfies a Lipschitz condition uniformly Ln z . 

If ~ had been used we would evaluate as follows: 
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1 - g (s, u) P{N(s,u) > I} ~ E N(s,u) 1/J(u) - 1J!(s). 

Now we prove the ma~n result which follows from the inequality. 

4.2 Theorem. For a regular continuous process there exists a change 

of time scale such that the intensities 

(4.5) h 
s 

lim 
u+O,v+O 

(f -f ),(u+v) 
s-u, t s+v, t. 

-1 

exist for S ¢ N, where N is a null set for Lebesgue measure. The inten-

sities satisfy 

t 

(4.6) f D h (l)du < 00 

u ' 
s < t. 

s 

The derivatives 

(4.7) 3 f 
s s,t 

lim 
u+O,v+O 

(f - f ) (u + v)-l 
s+v,t s-u,t 

exist for s ¢ Nand t > S. 

When the intensities satisfy (4.6) the function f (z) 
. ,t 

~s given as the 

unique solution to the backward Kolmogorov equation: 

(4.8) 3 f (z) 
s s,t s ¢ N 

or 
t 

(4.9) z - f (z) = - f h (f (z»dv, 
s,t v v,t 

s 
s ~ t, 

with initial condition (4.2). 

Proof. Let us first change the time scale by cp. Using Proposition 4.1 
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we then immediately get that the derivatives 

(4.10) 8 f (z) 
s s,t lim 

utO,vtO 

-1 
(f (z) - f (z)) (u + v) 

s+v,t s-u,t 

exist for s ¢ N as long as t 1S rational and z 1S rational. 

Now define for s > u > 0, v > 0, 

(4.11) g (z) - (f (z) - z) (u + v)-l + z, 
s,u,v - s-u,s+v ° ~ z < 1, 

then it follows from 

Iz - f (z)1 < 1 - p{X s-u,s+v s+v 11 X s-u 
l} 

< 1 - g(s - u, s + v) ~ U + v, 

that g 1S a probability generating function. 
s,u,v 

Now consider 

(4.12) gs t u v(z) = gs u v(fs +v t(z)) , , , , , , 

= (f (z) - f (z)) (u + v)-l + f (z). 
s-u,t s+v,t s+v,t 

If we use (4.10) then we get that for t and z rational and s ¢ N, the 

limit as u t 0, v t ° exists and we define 

(4.13) g (z) = 
s,t lim g (z) = -8 f t(z) + f (z). s,t,u,v s s, s,t utO,vtO 

We want to extend this convergence to all z. But g (.) is an 
s,t,u,v 

increasing convex function and that easily implies that the limit exists 

for all ° ~ z < 1 and that the limit function g (.) is continuous s,t 

on [0,1[. 
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For z = 1 we have g (1) = 1, which means that (4.13) holds for 
s,t,u,v 

z E [0, 1], ct .rational and s ¢ N. 

We next want to prove that g ( . ) 
s,t 

~s continuous at 1, ~.e. lim g (z)=l. 
z1'1 s,t 

To prove this consider 

s2 s2 

f g (z)ds J f t(z)ds + f (z) f t(z) 
sl 

s,t 
sl 

s, sl,t s2' 

The right hand side converges to (s2 - sl) as z l' 1 and the integrand 

on the left hand is monotone in z. By the theorem of monotone convergence 

we get that 

s2 

J 
sl 

which implies that gs t(l) , 

g (l)ds s,t 

1, s ¢ N, t rational. 

Hence g (.) ~s continuous on [0,1] and this means that the conver­
s,t 

gence (4.13) ~s uniform in z and that g ~s a probability generating 
s,t 

function. 

Next consider 

where t is rational, z < 1 and s ¢ N. Take s such that f (z) < 1 - s s,t 

and find Vo such that also fs+v t(z) < 1 - s for v ~ vO. Then this , 
difference can be evaluated by 

D g (1 - s)1 f (z) - f (z)1 s,u,v s+v,t s,t 
-2 

< s v, 
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since for any probability generating function g(z) 

have 

D g(z) 

This proves that 

00 

L: 
k=O 

k Zk-l 

g (z) 
s,t 

Pk < 

00 

L: 
k=O 

-2 
(1 - z) . 

for t rational, s ¢ N, z < 1. It is easily seen to hold for z 

This implies the existence of the limit 

g (z) 
s 

for any z E ]0,1], s ¢ N. 

lim 
u+O,v+O 

g (z) 
S,U,v 

1 as well. 

Because for any such z and s, we can find t rational such that f teO) < z, 
s, 

but then z = f t(w) for some w E [0,1]. 
s, 

Again g S,U,v lS increasing and convex and converges on ]0,1]. This 

easily implies that it converges on [0,1] and that the limit g is 
s 

continuous. This implies that g lS a probability generating function 
s 

and that the convergence is uniform In z E [0,1]. 

Let us now define h (z) 
s 

g (z) - z, then (4.5) lS proved. 
s 

Going back to (4.12) we let u + ° and v + ° and we obtain for 

z E [0,1], s ¢ N and any t, 

(4.14) g (f t(z)) s s, 
-8 f (z) + f t(z), s s,t s, 
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~.e. the derivatives exist and the convergence ~s uniform. This proves 

(4.7) and (4.8) and after integration (4.9). 

In order to prove (4.6) we use (4.14) and obtain 

s2 gs(fs t(z)) - 1 f (z) - f t(z) §2 f (z) - 1 
J ds 

sl,t s2' J s,t ds. , 
+ 

sl z - 1 z - 1 sl z - 1 

Now let z t 1. By the monotone convergence theorem and using the con-

vexity of f and gs 0 f we prove that s,t s,t 

D g (1) D f t(l)ds s s, 
D f t(l) - D f t (1) 

sl' s2' 

s2 
+ J D f (l)ds, 

sl 
s,t 

which means that D g (1) is locally integrable. This proves (4.6). 
s 

Finally we only have to prove that f.,t(z) is uniquely given as a 

solution to (4.8). This follows however from Caratheodory [1] p. 674, 

since the function h satisfies the Lipschitz condition 
s 

where D h (1) ~s locally integrable. 
s 
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