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Summary. 

This is a small-sample study of the maximum likelihood estimator of 

the parameters in the pure (linear) birth process and the pure (linear) 

death process, observed in a fixed time intervaL The expect,ation, 

variance, and coefficient of skewness are tabulated and compared with 

various approximations. Some new asymptotic results on mean conver

gence of the estimators are also derived, and particular attention is 

called to the properties for large observation times (or large birth or 

death intensities) Emd small numbers of initial individuals. 

Key Words: Estimation in Markov processes, Life testing,' Birth-and-death 

processes, Small-sample theory, Maximum likelihood estimation, Maximum 

likelihood approKimations, Truncated exponential distributions .. 
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1. Introduction. 

This paper is a small-sample study of the maximum likelihood esti-

mators of the parametElr in the pure birth process and in the pure death 

process, derived under the assumption that the process is observed 

continuously' in a fixed time interval [O,t] and conditional on the 

value at 00 

Let {Xt , 0 < t < co} be a simple (linear) birth-and-death process 

given by 

i/l.h + o(h), j = i + 1, 

l-i (/I. +~)h + 0 (h); j = i, 
p(Xt +h =j Ixt = i} -

i~h + o(h) ) j = i - 1, 

'O(h), otherwise ) 

i = 0,1 J 2, 0 0 0' /I. ~ 0, ~ ~ 0 and as sume throughout that Xo is degenerate 

at some q > 00 Maximum likelihood estimation of /I. and ~ in this 

process, assuming continuous observation over some fixed time interval 

[O,t] was studied by Keiding (1975), The maximum likelihood estimators are 
i ... 

the occurrence-exposure rates ;:: = Et/Stand J1 = Dt/St where Et and' 

Dt are the number of births and deaths in [O,t], respectively, and 
t 

St = f X du is the total time lived by the population in [O,t]. The 
o u 

ex~ct distribution of these estimators, being ratios between a discrete 

and a continuous random variable, is'not very attractiveo 

In this paper we shall study the moments of the estimators in the 

two extreme cases: that of the pure birth process, where ~ = 0, and 

that of the pure death process, where /I. = 0 • Accordingly, the paper 

is divided into two parts, corresponding to these two caseso 
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Part I) concerning the pure birth process) gives in Section 2 

some exact and asymptotic properties of the moments) not previously 

stated in the literature) as well as the basic representation of the 

moments E(B(m)/Sr) 
t t as an integral, In Section 3 the expe,ctation 

E(l/~) of the maximum likelihood estimator of l/~ is derived and 

used to provide a lower bound on E(~). Section 4 gives a' deri vation 

of approxlinations to the moments b&sed on asymptotic maximum likeli-

hood theory. Finally) we report in Section 5 on the numerical 

results. We study the properties of the exact moments and discuss 

the approximations mentioned above, thus also illustrating the 

asymptotic distribution results ,given by Keiding (1974). 

In Part 11) a similar discussion is devoted to the pure death 

process. 

For estimation in the pure death process) a large literature is 

available) cL the bibliographies by Mendenhall (1958) and 

Govindarajulu (1964). The form of the estimator is latent in 

Grenander (1950) p. 253) and was derived by Littell (1952), 

Bartlett (1953a) and Deemer and Votaw (1955). Earlier studies of 

small-sample properties and validity of approximate distributions 

are by Deemer and Votaw (loc. cl t • L Mendenhall and Hader (1958) and 

Bartholomew (1963). A survey of tests for the assumption of expo-

nential life time distributions was given by Epstein (1960)) and 

studies on the robustness of the methods based on exponential life 
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time distributions when this assumption is .vio1ated are by Ze1en and 

Dannemi11er (1961) and Bar10w and Proschan (1967). Some further 

references were given by Keiding (1975). 
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Part I: The pure birth process. 

2. The moments. of the maximum likelihood estimator. 

Keiding (1974) stated the distribution of the minimal sufficient 

statistic in the follo,ying "ray. With probability -qAt 
e ) 

(BeSt) = (O)qt). Otherwise the density with respect to counting 

measures on the in"':;egers and Lebesgue measure on the Borel field is 

given as 

b+q-l ( )b -A,s (S 
( q-l) At e gb t - q) 

(2.1) 

where is the probability density of 

a sum of b independent, uniformly distributed random variables on 

[O)lJ. 

Remark. From this expression the distribution of the maximum 

likelihood estimator ~ = Bt/St is readily derived as given by an 

atom at o with probability -qAt 
e and otherwise with the density 

00 b+q-l I 
-2 Z ( )b btb-l -Ab/v (~- ) 

v . -1 A e gb t q) 
b=l q v 

v > O. It may be seen that this density is zero on the intervals 

(i··l i ) 
\ q t ) (q+i) t ) i:::l, ., . ""ill 

where m is the greatest integer such that m(m-l) < q. We shall 

not consider this rather irregular distribution further. 
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Let now 

1 -xt 
,!.J) (x)=! e dt = (l-e-x )/x ) 

o 

x ~ 0, be the Laplace transform of the uniform distribution on [O,lJ 

and let I = ~t. The basic formula in the study of the moments of ~ 

is given by the following Theorem. 

Theorem 2.1. Define o/qCI)m,r) = ~-rE(B~m)/S~), where m and rare 

non-negative integers and a(X) = a(a-l) ••• (a-x+l). Then for 

m = 0,1,2, ••• and r = 1,2, ••• 

00 

(m) m-r 
0/ (I ,m,r) = (q+m-l) I J 

q I 

( )r-l X-I -qx m ( (-q-m 
(r-l) ~ e cp x) [l-lcp x) Jdx 

and we have the recurrence relation 

(2.2) 

0/ (l,m+l,r+l) = l[(q+m)o/ (l,m,r) - qo/ +l(l,m,r)] • (2.3) 
q r q q 

Proof. By (2.1), 

00 

(q+b-l) (b) b-r b-l 00 -r -As (S 
(b-m) ! ~ t J s e gb t - q) ds . 

qt 

To evaluate the integral, we use the fact that the Laplace transform of 

gb is cpb, that is, 

b -xu b J e gb(U)dU = cp (x) 
o 

so that by multiplying both sides by e-qX(X_I)r-l/(r_l)! and sub-

sequent integration, we obtain 
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b [ 00 . r-l ] 00 r 1 
,r J (X-I) e-x(q+u)dx· g (u)du J (X-I) - . e-qx b( )dx 
. (r-l): b:::: (r-l): cP X • o I I 

The inner integral on the left-hand side is the Laplace transform of a 

gamma distribution on [1)00) and equals e-/(q-t-u)/(q-t-u)r. Inserting 

this result into (2.4)) we obtain 

( ) (Xl ( ) r-l 
(q+m-l) m·/m-r f X-I e -qxcpm(x) 

(r-l) ! 
I 

Since 
1 -xt -xt 

cp(x) :::: J e dt) where e is decreasing in X for each 
o 

fixed t E (0)1], it is itself decreasing) so that 0 ~ ICP(X).~ ICP(/) 

-I 
= l-e < I for x 2 I > O. We may therefore complete the sum under 

the integral sign which ends the proof of the representation of 

1/r (/)m,r). 
q 

The proof of the recurrence relation is obtained by 'noting that 

(X-/)CP(X) :::: [l-/CP(x)] - e 

Corollary. Define fl 0= E[ C);./;...)r]. 
r 

Then 

and in general 

fll :=: 1/rq(/J l)l) 

fl2 :=: 1/rq(/)1)2) 

fl3 :::: 1/r q (I )1,3) 

+ 1/r (/)2)2) 
q 

+ 31/r (I) 2,3) 
q 

7. 
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where the 

r (' ) 
~r = ~ T l ~ (Y,i,r) 

• ° 1 r q 
l= 

are the Stirling I s numbers of the second kind defined by 

r 
t 

r 
L: 

k=O 

T (k)t(k) 
r 

and satisfying the recurrence relation 

In particular, 

E(~) = ~l' Var(~) 

and the coefficient of skewness 

Keiding (1974) proved strong consistency and resultsion asymptotic 

distribution of ~ as t ~ 00 fOT fixed q or as q ~ 00 for fixed t. 

The following Theorem gives results on the behaviour of E(A) under these 

limits as well as for small observation times or small parameter values. 

Theorem 2.2. 

(a) E (~) ~ "A. 

(b) For fixed q} lirnE(~/A)=qlOg(q;l) and lirnE(~/A) l. 
A t ->0 ~ A t ~ 00 

(c) For fixed t > 0) (and fixed A), lim E(A) = A. 
q .+ 00 

Proof. The argument x is omitted from ~(x) in this proof. To prove (a), 

we write 
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-qx( )-q -qx )-q-l D [e l-/~ ] = - qe (l-/~ (l-/~-/~') x 

and since ~ + ~I = (l-~)/x) the last factor is l-/(l-~)/x 

= ~ + (l-~) (l- I /x), so that 

Now when x > I, all factors in the last term are positive) and con-

sequently by integration from 1 to 00 

00 

:::: J qe -qx~ (x) [l-)'~ (x) rq-ldx 
)' 

We next prove lim E(5::) :::: A as t -? 00 or q -? 00. Since) as 

mentioned above) we know that 5::...,. A a.s. in these cases) we obtain 

by Fatou's lemma lim inf E(5::) ~ E(lim 5::) = A and the result follows 
A 

by (a). Since E('A/'A) depends only on A and t through y = 'At~ it is now 

also obvious that E('A/'A) + 1 as y + 00. 

Finally, the first part of (b) is proved directly. 

By (2.4), we may write E(5::/A) as 

-1 
Since u < 1 

= 
bounded by 

for ·u ~ q ~ 1; the integral is) for each by 

00 

-qAtJ -AtU ()d 
e e gb U U = 

o 

9 



and for AtO < 1 

We may therefore use dominated convergence for to > t ..... O,obtaining 

co 

1im 1Jr(t-.t.91,l.) -'" q J u-l.gl (u-q)du 
t ..... O q 

q+l. -1 
== q J 11 al1 == q log[ (q+l)/q] 

as claimed. 

We now turn to the follow~ng 

q 

L -convergence results. 
2 

Theorem 2.3. For fixed A and t as q -+ 00 and for fixed q as At -+ 00 

E[{(~!A) - 1}2] -+ 0 and. therefore Var(A!A) -+ O. 

Proof. Let first A > 0 and t > 0 be fixed. Then, since St > qt, 

where E(Bt -AB t ) :=: O. The birth :process with Xr :=: q may be interpreted 
~) . 

as the sum of q stcchas'b:ically independent birth processes with XO::::: 1 

and the same parameter t-., and s:Lrnilarly Bt -t-.St may be interpreted as 

th.e S"Wn of independeI'.t contributions from each of these proceslj5es. Denot-

in a process with 

as q ~ 00, 

x - 1 --0 -- , by 0-2 
l' 

we therefore have 

Next) cons ider a fixed. pos i ti ve integer q. According to the Cbrol-

lary of Theorem 2.1 

A 

Var(~/A) ~ *q(y,l,2) + 1Jrq (y,2,2) - 1Jr~(f)l.,l.) 

and it is known from Theorem 2.2(b) that the last term tends to 1 as 

Furthermore, since St ~ qt 
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as t ~ 00 by Theorem 2.2(b). And by Theorem 2.1 

as t ~oo and hence 1 ~oo by Theorem 2.2(b). This proves 

lirn Var(~) = 0) and E{(~_A.)2} ~ 0 then follows from the mean con
t~oo 

vergence proved in Theorem 2.2(b). 

Finally, the behaviour for small observation periods or small 

parameter values of the variance and the coefficient of skewness may 

be obtained by passing to the limit in the relevant integrals, which may 

be justified as in the proof of Theorem 2.2(b). Both quantities become 

infinite in this limit,and the speed of divergence is described below. 

Notice that SeA) = S(A/A). 

Theorem 2.4. For fixed q and At ~ 0) 

A 

(q + l)At + Var(A/A) + 1 

and 

~ 1 . 

Remark. Monotonicity propE.rties of the moments as functions of q for fixed A and 

t and as functions of y = At for fixed q have been further studied by Simonsen 

(unpublished). Among the results obtained are that 

for n 1,2, ... 

A 

so that, ln particular) E (A) lS increasing and concave as function of q, and 

A 

so that EO.,/).,) is increasing as function of At. These properties are illustrated 

by the numerical results in Section 5 below. 

There are also general results on the asymptotic behaviour of 

the moments as q ~ 00 or At ~ 00. 
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3. The expectation of the inverse estimator and an inequality. 

It may in several situations be of interest to inquire into the 

possible bias of the maximum likelihood estimator of 
-1 

A We 

give in this Section results on this problem as well as an in~quality 

for E(5::) obtained via Jensen's inequality. 

Since f::= 0 with positive probability, E(f:- l ) == 00, But it is 

still possible to get the following results concerning E(f:-lIBt > 0). 

Theorem 3.1. Let 1 == f'.t. Thenz interpreting an empty sum as 0, 

_1_ + JL.
e/-l eg)'-l 

{ 
q-l q-l ( 1 _l)k} 1 + L ( ) -'-_ e~= __ 
k=l k k 

Proof. We compute E(A/f:) by conditioning ~n Bt' First, 

Xt 

(3.1) 

and we use the representation S == tx - L: T. where T +1"" ,T 
t t i=q+l l q Xt 

are the epochs at which the births take place ,(Keiding 1974). 

or enuivalently B X q 
':l. t == t - " these epochs are 

distributed like an ordered sample of Bt independeEt random vari

ables, all with density AeAu/(eAt_l), 0 < u < t (Puri 1968), Since 

a sum of ordered variables has the same distribution as a sum of the 

same number of correspondiug independent variables, and since the 

expectation of the above distribution is computed as 

12 
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we conclude that 

E (s IB ) == tB + qt - B (t - 1) == B (1 - ---=.t_)+ qt • 
t t t t l-e-~t ~t ~ e~t_l 

Next, by inserting this into (3.1)) we obtain 

E(,,/;:::IBt>O) == 1 - ~~ + il;qt E(B~lIBt>O) • 
e -1 

:But B.J.. is negative binomially distributed with parameters 
u 

and the result is therefore obtained from Rider (1962L who not only 

gave the formula used above) but also numerical tables. Further 

formulas and approximations were provided by Govindarajulu (1962). 

Corollary. For fixed q as t ~ 00 

Theorem 3.1 may be. used to provide a lower bound on E(;(/,,)) which by 

Theorem 2.2(a) is bounded above by 1. 

Theorem 3.2. Let Y == "t. Then 

E(f./'A.) > 
= 

Proof. First notice that 

-qY 
1 - e 

13 
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inequality 

and the result is then jJllmediate from Theorem 3.1. 

Remark. Denote the right-hand side of (3.2) by 

it is seen that for fixed q as Y ~ 00 

a (y). 
q 

Then 

which in conjunction with Theorem 2.2(a) in particular proves the mean 

convergence lim E (A / A) = 1 0 f Theorem 2.2 once more and also yields a 
Y -+ 00 

bound on the rate of convergence. (Notice the special case q = 1.) 

As r -+ 0, we have a (y) ~ 2q/(2q+l) ~ 1 - (2q)-1 + (4q2)-1 whereas 
q 

the exact result by Theorem 2.2(b) is lim E(~/~) = q log(l+q-l) ~ 
Y-+O 

We finally call attention to the fact that a (y) 
q 

is not monotone. 

As an example, al (y) has a minimum at )' == 1, at which point it 

attains the value 
-1 

1 - e == .632. The possible numerical usefulness 

of this inequality is discussed !\rrther in Section 5 below. 
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4. Approximatiohs from maximum likelihood theory 

A straightforward though of course not in general warranted applica-

tion of asymptotic distribution res~lts s,uch as those given by Keiding 

(1974) is to approximate the moments of the estimator by the moments in 

the limiting distribution. The asymptotic results are that 

(q(e~t _ 1) }!((/~-l) is asymptotically normal (0,1) for fixed t 

and q~= and asymptotically Student with 2q d.f. for fixed q 

and t ~co. 

Consider first the normal approximation. This invites the hypothesis 
A A 

of E (A.) = A. and t3 (~) = 0 and the usual invers e information approxi-

mation for the variance 

A 

Var (~/A.) ~ 
1 

(4.1) 
( A. t ) q e - 1 

The Student approximation again invites the hypothesis of no bias 

or skewness and since the variance of the Student distribution with 2q 

d.f. for q ~ 2 is q/(q-l), we would expect 

1 
(4.2) 

Comparing (4,1) and (4.2), it is seen that the price paid for the 

limi ting randomness as t --;:;> 00; discussed at length by Keiding 

(1974), is that the variance should be considered as if the process 

had started with one individual less, 
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Returning to the case of independent replications as q ~oo, 

more refined approximations to the moments of the maximum likelihood 

estimators were given by Haldane and Smith (1956). In a general 

framework of "curved exponential families" Efron (1974) showed in 

particular how the second approximation for the variance may be 

interpreted in terms of what he defines as the "statistical 

curvature". We give below the approximations to the expectation, 

the variance, and the coefficient of skewness in the case of the 

birth process. 
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Theorem 4.1. Let y = At. Then as Cl --> co 

y y ye - e + 1 1 
1 - Y )2 + 0(2) J 

Cl(e - 1 Cl 

A 

. A 
Var(); ) 

and the coefficIent of skewness 

Proof. Let £(A) log L(A), and define the information as 

i .' E ( D 2 £ ( A )} = E [( D £ C\ ) } 2 J = ~ (e A t - 1) . 

/\ 

( ~ .. 3) 

The covariance matrix I: of the sufficient statistic (Bt,St) is given 

by (Puri 1966) 

L 1 = Var(B ) 
1... t 

(1 ( 2A t ")._ 2t e/\t} 
(1 \'-r)' e -.1. 
':l cA J 

), 

Following Efron (1974), let now 
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be the vectors of canonical parameters and canonical statistics, respectively. 

Then £(A) = ~(A)'X, and therefore moments of £, D£, etc. are easily obtained 

directly from ~ as given above. In particular, define a = E(D£(A) D2£(A)}. 

Then since E(D£(A)} = 0, 

2 At 2 
= DT] (A) i ~ D 11 (A) = - qte lA . 

Let furthermore 

Then since (see Bartlett (1953b)) 

we obtain 

b 

Haldane and Smith (1956) gave the approximate expectation as 

-2 
+ O(q ) 

and the first result is now easily proved; similarly, they gave the 
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approximation of the skewness ~ as 

and the result concerning ~ is proved using (4.4) once more. 

For the variance) we want one extra term) which is quite complicated 

in Haldane and Smith's original formulation. We shall therefore quote 

Efron 's (1974) versi.on y which is 

All quantities have been defined above except the "statistical curvature" 

given by c2 = IMli- 3) M being the symmetric matrix with elements c 

2 
c 

We refer to Efron 's paper for further discussion of this concept and a 

rigorous derivation of the approximation. 'I'he variance approximation 

is now derived by carrying through the necessary algebra and using 

"-
the approximation to E(A-A) derived above. 
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5. Numerical results 

By direct numerical integration we have tabulated the expectation, 

variance and coefficient of skewness of A, and a detailed table of the 

results is available (Beyer 1974). We give in this Section fi~st a 

report on the integration procedures used and then a discussion of the 

exact behaviour of the first three moments along with a numerical evaluation 

of the approximations and inequalities proposed in the earlier Sections. 

a. The numerical integration 

The integrals * (r,m,r) given by (2.2) had to be computed for 
q 

1 < m < r ~ 3 and a representative set of parameter values rand q. 

Since lim *(r,m,r) = 0 if m < rand 1 if m = r, it turned out to 
r....,;. (Xl 

be advantageous to compute instead of *q(r,m,m) itself. 

The integrand of 1 - * (r,m,m) has a peak approximately iocated at 
q' 

me -J q and since we did not succeed in transforming the integrand to 

avoid this, we first truncated and then split the actual integration 

,interval at the point 4 me-1q J thus obtaining two intervals, one 

around the peak which was densely tabulated and another with more 

sparse evaluations. 

Using an adaptive Simpson quadrature procedure by Lyness (1969,1970) 

in double precision on the IBM 370/165 at "Northern Europe University 

Computer Center" in Lyngby, Denmark, the computations were done with at 

least 8 correct significant digits in the *IS, giving the bias and the 
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variance with a similar accuracy and the skewness with 4 correct 

significant digits for a large range of parameter values in the 

region 000001 ~ Y ~ 10 and Q = 1, 2, 000 ) 150 

computed separately and the recurrence relation (2.3) might then be 

used to check the accuracy. 

A detailed report on the numerical integration is available 

separately (Beyer 1974). 

b. The expectation. 

It is stated in Section 2 that E(~/A) < 1 and that E(~/A) --~ 1 

as),t or Q -~ 00 Table 1 gives a sample of values) we use y = At 

throughout. 

"-

It appears that E(A/A) lS increasing and concave In q and increasing 

in y, cf. the Remark at the end of Section 2 above. 

We deri vedin Theorem 3.2 the ineQuality E( ~/A) > a (y), where = Q 

a (y) was defined in the Theorem 0 a (y) is very accurate for y = 0, 
Q q 

but then it decreases and only for large y is it of any numerical 

significance. 

Theorem 4.1 states the approximation 

This approximation of the bias is remarkably good even for q as small 

as 5. 

In Figs.1-3 we show the exact expectations together with the lower 

limit (called "Jensen inequality") and the approximation for 

q = 1, 2 and 100 

21 



q 
y 1 2 

0 .6931 .8109 

·5 .7173 .8309 

1 .7431 .8517 

2 .7976 .8931 

4 .8991 .9587 

8 ·9894 ·9977 

TABLE 1 

Expectation of ~/A 

5 

.9116 

.9235 

·9354 

.9575 

.9866 

·9994 
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10 

·9531 

.9600 

.9669 

·9790 

·9938 

·9997 

15 100 

.9681 ·9950 

·9730 

.9777 .9966 

.9861 
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c. The variance 

The asymptotic results of Section 2 concerning the variance are that 

as q -> 00 or t --> 00 and that 
A 

Var(A) -> 00 as 
-1 

t 

as t --> 0 for fixed q. Approximations to the variance were discussed 

in Section 4. We give in Table 2 the exact variances, the Student 

approximation (4.2), the inverse information approximation (4.1) and the 

refined approximation from ~heorem 4.1 for y = 0.1, 1) 10, 20 and 

selected values of q. 

It is seen that for small y and not too small values of q, the 

traditional inverse information approximation (q -->(0) is quite good. 

The second normal approximation is a definite improvement over the first 

for y = 0.1 and 10 and q ~ 2 but for y = 1, the second approximation 

only improves the first for large q, The Student approximation (y -> (0) 

behaves better than the normal for y = 10 and 20 but worse for 

y = 0.1 and L We notice the rather irregular behaviour of the exact 

variance for q = 1 and large y. In this case the limiting Student 

distribution has infinite variance. 

d', The skewness 

The coefficient of skewness ~(y,q) is positive for small y, 

(in fact, ~(y,q) --> 00 as y -> 0 by Theorem 2.3), then becomes 

negative with larger y and reaches a minimum from which it approaches O. 

Tb.is is, however) not true when q = 1 in which case ~ -. > -00 as 

y -> 00 See Figs. 4 and 5· The root y = y q of ~(y)q)= 0 is decreasing 

in q and we conjecture that as q -> co, it approaches 0.606, being the 
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l'ABLE 2 

Variance of A/A and approximations. 

Stud2nt First Second 
approx. normal approx. normal approx. 

(402 ) (4.1 ) Theorem 4.1 
y <1 t -) 00 Exact <1 ~ 00 <1 -)00 

1 00 4.97G 9·508 1.184 
2 9·508 3·278 4,,754 2.673 

0.1 I" 
) 20 378 1.614 1·902 1.569 

10 1. (1565 c.8737 0·9508 0.8676 
15 0.G792 0,5987 0.6339 0.5969 

1 00 0.4689 0·5820 0.6660 
2 0·5820 0.2737 0.2910 - 0·3120 

1 5 .0.1455 0,11G5 0.n64 0.1198 
10 0.0(;46G 0.05860 0.05820 0.05904 
15 0,04157 0.03904 0.03880 0.03917 

100 0.005879 0,005828 0.005820 0.005828 
-

1 00 68.13 4.54 9·12 
tlO* .2 4·540 4.786 2.270 3:416 

5 1.135 1.139 0.9080 1.091 
10·. 0·5045 0··5051 0.4540 0.4998 

r~-
--

1 co 2.06 4.12 
20** 2 2.06:J... 2,0c'1 1.031 1. 546 

3 10031 },031 0.687 00916 
. - . oc 

* c All values have been multipUed cy 10" .. 

** All values have been multiplied by 109 . 
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root of the approximation (4.3). This limiting value is marked on Fig. 5. 

Similarly) the minimum point of t)(y)q) decreases in q with the 

conjectured limit of 2.78) which is the minimum of (4.3). 

The approximation depends only on q through the factor -1/2 q and 

therefore reflects neither these details in the sign pattern and minimum 

point nor the particular behaviour of t)( 1, y) as y -> 00. Table 3 

gives some information on the validity of the approximation. The 

general conclusion from the data presented there and our other investi-

gations is that the approximation is only able to give a very rough guide) 

and is particularly misleading for small q. 
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TABLE 3 

Exact and approximate coefficients of skewness 

Exact values with 4 significant digits) approximate values to the same 
number of decimal places 0 

~ 1 5 10 
Exact Approx. Exact Approx. Exact Approx. 

---~---

.0001 106.1 100.0 44·90 44.71 31.65 31.62 

.1 3. 190 2.613 L249 1.169 .8582 .8264 

.5 1.115 0.233 .2464 .1042 .1290 .0737 

.6 ·9417. .0116 .152,3 .0052 .06018 .00367 

.7 .7997 _. .1703 .07322 ~ .07618 ,002671 - .053867 

.8 .6782 - ,.3237 .004713 - .144751 - .04676 - .1023.5 
1 .4768 - .5690 - .1108 - ,,2545 -. .1287 - .1800 

1,5 .09583 - . 96064 -, .3280 - .4296 - .2740 - .3038 
2 - .2118 -1.1628 - .4877 - ·5200 - ·3676 - ·3677 

5 -2.175 -0.914 - .7039 - 4089 - ·373.5 - .2892 

10 -14,,83 -0.18 - .1474 .- .0784 - .07329 - .05540 

29 



6" ~{~J 

I.;, q=1 

2 

~ °1 ~~"'= q=5 

-2 q=2 

-I.. 

-6 0.606 2 2.78 4 _ 6 8 y- 10 

A 

figure 4 •. %The ... cubHHe.te.n1±{orK·sk:eVffi~ss S CA·? !or\lJ.=I, ~~' arld 3"and 0 <i:,.y ~ 10. 
. .......,..- ,............., 



0.4 

0.3 

0.2 

0.1 

0 
Y 

-0.1 

-0.2 q=1 

-0.3 q=15 

-0.4 
q=10 

-0.5 q=5 
q=2 

-0.6 

A 

Figure 5. :I'he coefficient of skewne~s SO.) for q=1,Z,5,10,15 and ,0 :'S,Y ~ 2. 
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6. Tbe mo~ents of, tge m~xim~ likelihood estimator 

The distribution of the minimal sufficient statistic (Dt,St ) 

is given in the following way, With probability e-ql-l\ (Dt,St) ::= (O,qt). 

otherwise the density, with a similar notation as in Section 2, is 

( Cl) dtd-l -!-lS (s d) d I-l' e gd t - q + ) (6.1) 

Accordingly, the distribution of the maximum likelihood estimator Dt/St 

is given by being 0 with probability -Cll-lt e and otherwise has the 

density 

-2 ~ Cl d d-l -I-ld/u d 
u LJ (d) dfl t e gd (tu - Cl + d) , 

d==l 
a > 0 . 

This density has a similar irregular shape as that described in Section 2 

above concerning the birth process. These results and references to 

previous 140rk leading up to them were given by Hoem (1969),' see, however, 

also Puri (1968). 

Let T) == flt and, as in Section 2, 

1 
qJ( x) f -xt dt (l-e-x)/x x> 0 -- e J 

:=: 

0 

-r. (m) r 
Theorem 6.1. Define Sq(t]JID,:c) "" I-l E(Dt 1St), whel'e m ~ rare 

nonnegatiYE; in,t§;S;t~rs ~ a(x) ~ a(a"'l) .•. (a~R+l). Then 

for :t > q. otherwi.se 
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00 ( ,r-l 
(m) m-r J x-T)) 'm -x q-m 

q'T) (r-l): cp (x)[e + T)CP(x)] dx 
T) 

Proof. The proof is rather similar to the proof of Theorem 2.1 above and 

we shall only outline the steps 0 

Notice first tha-t-, for m > q, both sides of the equation are O. 

By (6.1) vie get for m < q 

For all'values of d < q, the integrand in the above integral 

will be bounded and nonnegative over the support [O,d]. Since 

g (x) = 
q 

q-l 
cx for x E (0,1)) where c > ° is a constant, the 

integral for d = q. becomes 

1 
-T)x q-l-r 

c J e. x dx + a finite contribution, 
o 

so that the integral is finite if and only if r < q-l. 

In that case) we now proceed as for the pure birth process 

to get 

(m) m-r "" (X~D )~-l m(, ~J' 
q T) J -Tr- 1 ,- cP X) L 

T) ,.L~. 0 d=m 

, ',) ( d-m) ( ) ( q-m, , , d-m - q-d x 
'(d~rny;- ('1cp(x)} e' dx 

and the main result is obtained by completing the sum., 
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Toe moments may now be obtained as in the Corollary of Theorem 

2.1 above. 

As T) -> 00, i.t is obvious (see e.g., Keiding (1975)), that 

Dt --> '1 so that ~ --> q/S a.s. where S, being the sum of the 

exponentially distributed life-lengths of the '1 individuals that 

were alive at t =: 0, is gamma-distributed ('1, I-l- l ) . It follows from 

11 k t f th lI-rE(q(m)/Sr) we - nown proper ies 0 e gamma distribution that ,... 

= q(m) /(q-l)(r), which is in particular 0 for m> q and 00 for 

r~ q. It is a consequence of the following Theorem that the moments derived 

for finite t converge to the moments of the limiting distribution. 

Theorem 6.2. As ~t --> 00, 

S (J-Lt,m,r) 
'1 

-r 
J-L --> '1 (m) /( '1- 1 ) (r) 

Proof. Tbis result is obvious by the remarks above for m > '1 and for 

r > q. If m < '1 and r < '1 we may by a change of variable rewrite 

(6.2) as 

The integrand is then bounded above by 
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for ~ > ~O' which is integrable (since 

be obtained by dominated convergence. 

Coro~. As ~t --> 00 

and in particular 

and the coefficient of skewness 

Theorem 6.3. 

(a) E(~) ~ J-l 

r < q), and the result may 

r 1, .. o,q-l, 

q = 3,4, 

A 

(b) For fixed q > 2, lim E(y/y) 
]l t ~ 0 

q log( ql) 
q-

and Hm E Chi /]l) 
]lt ~oo 

( c ) For fixed A > 0 and t > 0 lim E (y) ]l . 
q + 00 

Proof. The second part of (b) was proved above and the rest of the 

proof is similar to the proof of Theorem 2.2. We omit the details. 
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7. The expectation of the inverse estimator 

In a similar vein as the study in Section 3) one may investigate 

which is the maximum likelihood estimator of 
-1 

j..l A careful study 

of small sample properties of 
A-l 
j..l was in fact performed by Bartholomew 

(1963)) cf. also his references. Also, an inequality similar to the 

result of Theorem 3.2 above may be derived. However, the resulting 

lower limit is less than 1 and the result, thus being weaker than 

Theorem 6.3(a) ,is omitted. 
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8. Approximations from maximum likelihood theory 

For fixed t and large Cl we may derive similar approximations to 
,.., 

the moments of ~ as was done in Section 4 for A. The results are given 

in Theorem 8.1 below) the proof of l/lhich is very similar to that of 

Theorem 4.1 and hence is omitted. 

Theorem 8.1. Let 

1 

( 1; 
+ 0 --J 

3' 
Cl 

Then as 

and the coefficient of skewness 

(8.1) 

(8.2) 

(8.3) 

Remark. It is easily seen that the approxi.mat:i.on to the bias is greater 

than 1, cf. Tll.eorem 6.3, aLd that the approximation to the skewness is 

positive for all ~. 

As ~ ~oo) it is interesting to verify that the approximations are 

in accordance (to the· order of approximation considered) with the exact 

results of the Corollary of Theorem 6.2. 

11ms as ~ -) 00) the approximate expectation tends to 
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2 2 
1 + l/q + O(l/q ).= q/(q-l) + O(l/q ), the variance has the limit 

(l/q)(l + 4/q) + O(1/q3) = q2/[(q_l)2 (q~2)} + O(1/q3) and for the 

skewness we obtain 4jql/2 + O(l/q) =: 4(q_2)1/2/(q_3) + O(l/q). However, 

we shall discuss in Section 9 below that in some cases it is advantageous 

to amend the approximations by making them exact in the limit 11 ~ 00. 
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90 Numerical results 

As for the birth process) we have tabulated the first three moments 

of ~,' and a detailed table is available (Beyer 1974). 

ao The numerical integration 

The same adaptive Simpson Cluadrature procedure as described in 

Section 5a above was used, Some care had to be taken in order to assure 

that the cutoff point in approximating the integral was chosen properly, 

For details J see Beyer (1974), 

b, The expectation 

The expectation E(0/J.l) is an increasing function of T) and 

a decreasing function of Cl; its limiting behavior is stated in 

Section 60 An improved version of the approximation (801) is given by 

and is Cluite precise even for Clui.te small values of Cl and all but very 

sma"l.l values of Table 4 glves some values of the exact and 

approximate expectations, 

Co The variance 

Tne variance appears to decrease i.n Cl and ;1" T:.ll.e limit 

behaviour as T1 --> IX! is gJ..ven in Section 6 and 8S Cl --:> 00 ) Var( 0) 

seems to go to 0" ('I'll.is could of course be proved rigorously by going 

through the details of the derivati.ons of Section 80) Finally, 

for Cl = 1 and 2 and --> 00 as T) --> 0 for fixed Cl ~ 3. 
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TABLE 4 

Exact and approximate expectations of ~/~ in the death process 

~ 
5 10 50 

Exact Approx. Exact Approx. Exact Approx. 

0 1.116 1.125 1.054 1.056 1.0101 1.010~ 

.1 1.121 ~~129 1.056 1.057 1.0105 1.0105 

·5 1.11+4 1.146 1.064 1.065 1.0119 1.0ll9 

1 1.172 1.165 1.074 1.073 1.0135 1.0135 

2 1.214 1.197 1.091 1.088 1. 0163 1.016~ 

.5 1.248 1.243 1.109 1.108 1.0199 1.019E 

00 1.250 1.250 1.111 1.111 1. 0204 1.0204 
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Two approximations to Var( are given in (8.2). We present 

in Table 5 some values of the exact variance, the first approximation 

given by [q( l-e -Tl) rI, the amended fi.rst approximation 

q2/[(q_l)2 (q-2) (l-e-Tl)L the second approximation given by (8.2) 

and an amended version of that obtained by multiplication by 

4 2 
q /[(q-l) (q-2) (q+4)J. The amendments all have the purpose of yielding 

exact results as T) -7 00. 

It is seen that the amendments are worthwhile only for larger values 

of Tl and that the second approximation, thus amended, is quite good. 

d. The skewness 

The skewness ~(Tl,q) is infinitely large as T) 4 O. For increasing 

T), ~(Tl,q) decreases until it reaches a positive minimum, then increases 

toward the asymptotic value given in Section 6. For q < 3, ~ = 00. The 

value Tlq where ~ = 0 is increasing in q and we conjecture that the 

limiting value is .528) being the minimum of the approximation (8,3). 

The approximation is of course not able to reflect the moving 

minima. We show in Fig. 6 the exact coefficients of skewness for q = 5 

and 10 and 0 'S Tl 'S 2. The asymptotes as Tl -700 and the limiting minimum 

point are also indicated. The dashed curves represent an amended approximation' 

obtained from (8.3) by replacing 
-1/2 

q I by the limiting value 

~(oo, q) 
I 

(q_2)1/2/(q_3). This approximation is quite good for Iq 10 

and not too small T). 
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TABLE 5 

The Variance of ~/~ and approximations 

First Am. First Second Am. Second 
T) q Exact approx. appr. appr. appr. 

5 2.733 2.102 5.474 2·575 3.725 
.1 10 1.186 1.051 1.622 1.169 1.289 

20 .5569 .5254 .6468 .5550 .5694 
50 .2150 .2102 .2280 .2149 .2158 

5 .6065 .3164 .8240 .4571 .6613 
1 10 .2052 .1582 .2441 .1934 .2132 

20 .08914 .07910 .09738 .08789 .09017 
50 .03312 .03164 .03432 .03305 .03319 

5 ·55)+0 .2313 .6024 ·3783 .5473 
2 10 .1679 .1157 .1785 .1524 .1680 

20 .06865 .05783 .07119 .06701 .06875 
50 .02470 .02513 .02509 .02460 .02471 

5 .5208 .2000 .5208 .3600 .5208 
00 10 .1543 .1000 .1543 .1400 .. 1543 

20 .06156 .0500 .06156 .06000 .06156 
50 .02169 .0200 .02169 .02160 .02169 

I 
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Figure 6. The coefficient of skewness Sell) and approximations Jor q=5 and 10. 
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