J. E.Beyer N.Keiding W. Simonsen

The Exact Behaviour

of the Maxirnum Likelihocd Estimator
i the Pure Birth Process

and the Pure Death Process

Preprint
November

1974 .
14 |

Institute of Mathematical Statistics
University of Copenhagen




* * %k
Jan E. Beyer Niels Keiding W. Simonsen

THE EXACT BEHAVIOUR OF THE MAXIMUM LIKELIHOOD
ESTIMATOR IN THE PURE BIRTH PROCESS
AND THE PURE DEATH PROCESS

Preprint 1974 No. 14

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

November 1974

Institute of Mathematical Statistics and Operations
Research, The Technical University of Denmark.

* %
Laboratory of Insurance Mathematics, University of

Copenhagen.




Sﬁmma ¥

This is a small-sample study of the maximum likelihood estimator of
the parameters in‘the pure (linear) birth process and the pure (1inear)
death process, observed in a fixed time interval. The expectation,
variance, and coefficient of skewness are tabulated and compared with
various approximations. Some hew asymptotic results oﬁ mean cénver-
gence of the estimators are also derived, and particular attention is
called to the properties for large observation times (or large birth or

death intensities) and small numbers of initial individuals.
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1. Introduction.

This paper is a small-sample study of the maximum likelihood esti-
mators of the.parameter in the pure birth process and in the. pure death
process, derived under the assumption thet the process is obsefved-
continuouslyjin a fixed time interval [O,t] and conditional en the

~value at O,

Let {Xt,‘O <t <=} be a simple (linear) birth-and-death process

given by
inh + o(h), j=1i+1,
{ | } 1-i(t)h + o(h), J =1,
P{X =j|X, =1} =
t+h t .- : .
iuh + o(h), jg=1-1,
o(h), otherwise ,

i= 0,1,2,,.¢,x;30, ui’O and assume throughout that XO is degenerate
at some q ~ 0. Maximum likélihood estimation of A and p in thisb
process, assuming continuous observation over some fixed time interval
[0,4] was studied by Keiding (1975). The maximum likelihood estimators are
the occﬁrrence—exposure rates K = BJG/SJG ‘and {1 = Dt/st where BJC and -
DJG arE the’number of births and deafhsyin [0,t], respectively,‘and
SJG = g Xudu is the total time lived by the population in [0,t]. The
‘exact distribution of these estimators, being ratios between a discrete
and a continuous random variable, is not very-attraetive,

In this paper we shall study the moments of the estimators in the
two extreme cases: that of the pure bifth process, where p =0, and

that of the pure death process, where )\ = 0. Accordingly, the paper

is divided into two parts, corresponding to these two cases.



Part I, concerning the pure birth process, gives in Section 2

some‘exact_and asymptotic properties of the moments, not previously
stated in the literature, as well as the basic representation of the
moments E(Bém>/si) as an integrala In Section 3 the expectation
E(1/X) of the maximum likelihooa estimator of 1/ 1is derived and
used to provide a lower bound on E(X). Section 4 gives a derivation
of approximations to the moments based on asymptotic maximum likeli-
hood theory. Finally, we report in Section 5 on the numerical
results. We study the properties of the exact moments and discﬁss
the approximations méntioned above, thus also illustrating the

asymptotic distribution results given by Keiding (1974).

In Part IT, a similar discussion is devoted to the pure death
process. |
‘For estimation in the pure death process, a large litefatﬁre is
available, cf. the bibliographies by Mendenhall (1958) and
Govindarajulu (1964). The form of the estimator is late;t in
Grenander (1950, p. 253) and was derived by Littell (1952),
Bartlett (l955a) and Deemer and Votaw (1955). Earlier studies of
small-gsample properties and validity of approximate distributions
are by Deemer and Votaw (loc. cit.), Mendenhall and Hader (1958) and
Bartholomew (1965). A survey of tests for the assumption éf expo-

nential 1ife time distributions was given by Epstein (1960), and

studies on the robustness of the methods based on exponential life



time distributions when this assumption is violated are by Zelen and

Dannemiller (1961) and Barlow and Proschan (1967). Some further

references were given by Keiding (1975),



Part I: The pure birth process.

2. The moments, of the maximum likelihood estimator.

Keiding (1974) stated the distribution of the minimal sufficient

statistic (Bt’st) in the following way. With probability e_qxt,

<Bt’st) = (0,qt). Otherwise the density with respect to counting
measures on the integers and Lebesgue measure on the Borel field is

given as

b+g-1 ‘
CD e € - 0

b =1,2,..., gt <5 <®, where 'is the probability density of

&y

a sum of b independent, uniformly distributed random variables on
[0,1]. |

Remark. From this expression the distribution of the maximum
likelihood estimator X = Bt/st is readily derived as given by an

atom at O with probability .e—qht and otherwise with the density

v > 0. It may be seen that this density is zero on the intervals

(q+1)t

1 l -
), i=l,ee0,m

where m dis the gfeatest integer such that m(m-1) < g. We shall

not con51der this rather irregular distribution further.

(2.1)



Let now

. -xt -X
o (x)=fe Tat = (1-e 7)/x ,
0]

x > 0, be the Laplace transform of the uniform distribution on [0,1]

and let 7 = A\t. The basic formula in the study of the moments of A

is given by the following Theorem.

1

Theorem 2.1. Define Wq(7,m,r) x_rE(Bém)/Si), where m and r are

non-negative integers and a(x) a(a-1) «-+ (a~x+l). Then for

il

m=0,l,2,... and‘r_=l)2,aeo

© r-1 '
)(m)ym-rf M)__ e-qxcpm(x)[l-VCp(X)]-q-de (2.2)

. Wq(y,m,r)= (q+m-l / (o-1)7

and we have the recurrence relation

v, (7omtlrh) = %[(q*m)wq(V,myr) " Wy (7omor)] . (2.3)

Proof. By (2.1),
o0

(b) '
{q#b-1) "7 ,b-r.D 1r g% Mg, (5 - q)ds . (2.4)

qu‘-,tymyr> = (b‘-m) 1 ot

z
b=m
To evaluate the integral, we use the fact that the Laplace transform of
gb is @b, that is,

P -Xu b
[ e g (uan =9 (x)

0

so that by multiplying both sides by e-qx(x-V)r-l/(r-l)f[ and sub-

sequent integration, we obtain



b 0 . r-1 ®© r-l 
/ [ / Gey) 7 mxlata) g ] g, (wau = o7) e " (x)ax .

V- 1 = .
y (r-1) y r-1

The inner integral on the left-hand side is the Laplace transform of a
gamma, distribution on [7,%) and equals . e-7(q+u)/(q+u)r. ‘Inserting

this result into (2.4), we obtain

Wq(VJm)r) =

00 | r-1 [e] :
(m)ym-r [ (x-y7) e—qx@m(x) 5 (q+m+b-l)[7¢<x)]bdx .

(q+m-l)

1
Since @(x) =[e Xtdt, where e is decreasing in x for each
. 0 ‘
fixed t e (0,1], it is itself decreasing, so that 0 < ro(x) < 7p(7)
= 1—e-7 <1 for x 5'7 > 0. We may therefore complete the sum ﬁnder

the integral sign which ends the proof of the representation of

Wq<7)myr)-

The proof of the recurrence relation is obtained by noting that

(=7 (x) = [1-79(x)] - & " .

Corollary. Define b = E[(X/x)r]. Then

Ml = Wq(yyl)l) |
= (7 ,1,2) + 32,2
by = ¥ (751,2) +y, (7,2,2) |
by = wqmm) + 5%(7,2,3) + wq(v,m)

and in general




T o) :
p,=Z T (7,1i,7)
1=1 4

where the T(i) are the Stirling's numbers of the second kind defined by
where the L.,

r_ 5 op 0 W
k=0 T

and satisfying the recurrence relation

p(3) _p(i-1) 45 (5) 2<i+1<r,
r r=1 Sr-l = =
Tgl) = Tﬁr) = 1, In particular,

N - 2 2
E(N) = Mg s Var(R) = a (ug-ul)

and the coefficient of_skewness

3
_ELR-E@)P] MMt
e (PR ()

Keiding (1974) proved strong consistency and results!on asymptotic
distribution of A as t = for fixed g or as g = mkbfor fixed +.
The following Theorem gives results on the behaviour of E(A) under these

limits as well as for small observation times or small parameter values.

Theorem 2.2.
(a) E(R) <
, A + N
(b) For fixed q, lim E(X/A)=gq 1og(L£L) and 1im E(X/)) = 1.
At=0 2 Tt

(c) For fixed t > 0, (and fixed A), lim E(A) = A.
q‘—)-oo

Proof. The argument x is omitted from @(x) in this proof. To prove (a),

we write




Dx[e"qx(l_%p)'q] - - qe'qx(l—ym)'q'l(l-ym-V@‘)

and since ¢ + o' = (1-p)/x, the last factor is 1-7(1-9)/x

=¢ + (1-9)(1-7/x), so that
@ o (-0) " = -0, [ 7)™ -qe_qx(l—w)(l-7¢)'q'l(l-7/X)'.

Now when x > 7, all factors in the last term are positive, énd con=
sequently by integration fromv 7 to =

(o]

BQ/A) = 1,011 = J @ o170 17 Hax
7

S - [e_qx{l-7¢(x)}-q]; =1.

We next prove lim E(N) =n as t > or q =~ %, Since, as
mentioned above, we know that X = A a.s. in these cases, we obtain
by Fatou's lemma 1im inf E(X) ;-E(lim X) = and the result follows
by (a). Since E(X/A) depends only‘on A and t through v = At, i;iislnow

"also obvious that E(A/A) > 1 as y - o,

Finally, the first part of (b) is proved directly.

By (2.4), we may write E(X/A) as

® lgo-1) ) il P 1 o
z o) (M) [ u e g (u-q)dau .
b=l . b

= . q

o

$4ktﬂql?

. -1
Since uw = <1 for uw>4d 21, the integral is, for each b,

bounded by

(o8]
e-qxtf e—xtug

/ L (wau = " PP (xt) <1i,



and for Xto <1
s (g#b-1 ()
- b-1).

°

v b-1 ___a
() () 1

We may therefore use dominated convergence for to >t = 0, -obtaining
qtl

- .
- -1
lim y(A\5,1,1) =g [ © lgl(u=q)du =q ) u du=q log[(qtl)/q]
£.=0 q o} o

as claimed.

We now turn to the following L2—convergence results.

Theorem 2.3. TFor fixed X and t as ¢ > @ and for fixed q as At > =

E[{(i/k) - 1}2] -+ 0 and therefore Var(i/k) - 0.

Proof. Let first A > 0 and t > 0 be fixed. Then, since St > qt,

Btsks
S

CE(R0)2) = B

o
t 2 N2
) SEBEA8)/(gt)
, = t.t
t -
where E(Bt-xst)”= 0. The birth process with XO = q may be interprefed
as the sum of g stochastically independent birth processes with XO =1
and the same parameter A, and similarly Bt—}\St may be interpreted as
- the sum of independent contributions from each of'these processes. Denot-

ing Var (B -ASt) in a process with XO = 1 by Of, we therefore have

t

3

as q = @,
Next, consider a fixed positive integer gq. According to the Corol-

lary of Theorem 2.1

Var(\/\) = Wq(%l,a) + ﬂfq(j/,z,z) - llfi(%l,l)

and it is known from Theorem 2.2(b) that the last term tends to 1 as

t = o, Furthermofe, since S, > gt

t

10



¥, 0:1,2) = 2B (8,/55) < ()W TEBR) - o

as t = o by Theorem 2.2(b). And by Theorem 2.1
v (72,2) = (@f1)y (,1,1) - a¥ ; (7,1,1) »q+1 -q=1

as t > ® and hence 7 =» = by Theorem 2,2(b). This proves
. N ~ 2
lim Var(X) = 0, and E{(A-A)")} =» O then follows from the mean con-

t > o0
vergence proved in Theorem 2.2(b).

Finally, the behaviour for small observation periods or small
parameter vélues of the variance and the coefficient of skewness‘may
be obtained by passing to the limit in the relevant integrals, which may
be justified as in the proof of Theorem 2.2(b). Both quantities become

infinite in this limit, and the speed of divergence is described below.

Notice that B(i) = B(X/A).‘

Theorem 2.4. For fixed q and At =0,

(q + 1)At + Var(A/A) » 1

and

_ 1/2
tl/2}\l/2 %L BR) ~1 .

Remark. Mopotonicity‘properties of the moments as functions of q for fixed ) and
t and as functions of y = At for fixed q have been further studied by Simonsen
(unpublished). Amoﬁg the results obtained are that

DR N CA% P DR for n = 1,2,...

so that, in particular; E(i) is increasing and concave as function of g, and
Dywq(Y,l,l)A; 0 |
so that E(A/X) is increasing as function of At. These properties are illustrated

by‘the numerical results in Section 5 below.

There are also general results on the asymptotic behaviour of

the moments as q = @ or At = o,

11



3. The expectation of the inverse estimator and an inequality.

It may in several situations be of interest to inquire into the
possible bias of the‘maximum likelihood estimator X_l of xfl, We
give in this Section results on this problem as well as an inequality
for E(X) obtained via Jensen's inequality.

Since A =0 with positive probability, E(R T) = =, ‘But it is

still possible to get the following results concerning E(}tﬂllBt >0).

Theorem %.1. Let 7 = At. Then, interpreting an _empty sum as O,

E(;\/;QlBt>o)=1_—77—+—g;— y+2(k) e1;1 .
‘ oe'=l eV -l k=1

 Proof. We compute E(\/A) by conditioning on B, . First,

A > = > (3'1)
E(?M/?\lBt 0) E[E()&S‘t/BtlBt)lBt 0] (3.1
Ly ' ,
et sentati = - :
and we use the representation St tXt . Ti where Tq+lf _,TX
i=g+l t
are the epochs at which the births take place.(Keiding 197§).
Given Xt’ or equivalently BJG = XJG - Q, these epochs are

distributed like an ordered sample of Bt independent random vari-

ables, all with density xexu/(ekt~l), 0<u<t. (Puri 1968), ‘Since
a sum of ordered variables has the same distribution as é sum df the
same number of corresponding independent Vériables, and éince the |

expectation of the above distribution is computed as

)

t
TR L U S T |
(e"7-1) ~f auedu = el

0 1-e

12



'~ we conclude that

‘ t 1 1 t
E(S,|B,) = tB_ + qt - B (—— - =) = B_(= - )yt aqt .
tt Tt BRI A ekt—l'
Next, by inserting this into (3.1), we obtain
E(/R[B, >0) =1 - 22— + gt B(87 B, >0) .
t PN t t
e -1
But B is negative binomially distributed with parameters (q,e—xt),

t
and theresult is therefore obtained from Rider (1962), who not only

géve the formula used above, but also numerical tables. Further

formulas and apprbximations were provided by Govindarajulu (1962).

Corollary. For fixed q as t =

E()\/X|Bt>0) -1,

Theorem 3.1 may be used to provide a lower bound on E(ﬁ/x), which by

Theorem 2.2(&) is bounded above by 1.

Theorem 3.2. Let -7 = At. Then

-q7
1 - e 4 v (3.2)
(- q-1 7 kY '
=1

e =1 e™ -1 k

Proof. First notice that

E(X/A) =E(B/(xs,)[B, =0)P(B = 0) +E(B,/(As,) B, >0)P(B,>0]

13



where E{B,/(7\S,)|B, =0) =0 and P(B, >0} =1 - ¢TI By Jensen's
t t t. t.

inequality

N 1
> >
B(/nlB 20) 2 5o B, >0)
and the result is then immediate'from Theorem 3.1.

Remark. Denote the right-hand side of (3.2) by a (7). Then
— q

it is seen that for fixed q as 7 = ®

aq(?’) =1 - 7‘(q—1)e-"7+ o(7e-7)

which in conjunction with Theorem 2,2(a) in particular proves the mean

convergence 1lim E(A/X)=1 of Theorem 2.2 once more and also yields a
Y > . .
bound on the rate of convergence.. (Notice the special case q = 1.)

As 7 =» 0, we have aq(?) - 2q/(2q+l).~ 1 - (Qq)-l + (hqg)-l whereas
the exact result by Theorem 2.2(b) is lim E(X/x) =q log(l+q-l) ~

-1 2\ -1 r=0
1 - (2a) =+ (397) "

We finally call attention to the fact that aq(?) is not monotone.

|

As an example, al(V) has & minimum at 7 = 1, at which point it

1

attains the value 1 - e = = .632, The possible numerical usefulness

of this inequality is discussed further in Section 5 below.

14




4. Approximations from maximum likelihood theory

A straightfdrward though of course not in general warranted applica-
tion of asymptotic distribution reSQlﬁs ﬁuch as those given gy Keiding
(1974 ) is to approximate the moments of tﬁéiestimator by thé moments in
the limiting distribution. The asymptotié results are that
{q(ewG - 1)}% (>:/>\-1) is asymptotically normal (0,1) for fixed t
and g—= 0 and asymptotically Studeﬁt with 2q d.f. for fixed g
and t —> . | : |

Consider first the normal approximation. This invites the hypothesisv
of E(N) =N and P(\) = 0 and the usual inverse information approxi-
mation for the variance

Var (VM) ~ 1)

The Student approximation again invites the hypothesis of no bias

or skewness and since the variance of the Student distribhtion with 2q
d.f. for q >2 is q/(g-1), we would expect

1

(a-1) (M - 1) (-

Var (i/x) ~

Comparing (4.1) and (4.2), it is seen that the price paid for the
limiting randomness as t-—= o, discussed at length by Keiding
(1974), is that the variance should be considered as if the process

had started with one individual less.

15



Returning to the case of independent replications as q —=» o,
more refined approximations to the moments of the maximum likelihood
estimators were given by Haldaﬁe and Smith (1956). In a general
framework of "curved exponential families" Efron (1974) showed in
particular how the second approximation for the‘variance may be
interpreted in terms of what he defines as the "statistical
.curvature”.. We. give below the approximations to the expectation,

the variance, and the coefficient of skewness in the case of the

birth process.

16



Theorem 4,1. Let v =At. Then as q —>« for fixed v,

\ T
E(%\\_\) -1 - e - e +21 + O(%) s
a(e’ - 1) Kl
var(y) = = |1+ = 7+ (5 - 0 + 20wz ror-T)el ) (),
ale’-1) v qg(='-1) : q

and the coefficient of skewness

[(E(A)ZT (el - 1) - srel | o1,y
= 5/2. RV E a

E
p = (4.3)

il

log L{A), and define the information as

Proof. Let £(}))

2.
1l

-B(072(0)) = BLDLN)] = &
A

The covariance matrix 5 of the sufficient statistic (Bt’st> is given

by (Puri 1966)

\t —\\
DA Var(Bt) = qe) (e/t - 1),
. . 1, 2at . 2t At
ng = Var(bt) = (1{—§ (e AT i) - EN e7 3,
A
. i At LNt
Zip = Ty = Cov(B,8,) = ae™ (5 (77 - 1) - %)
Following Efron (1974), let now
log A Bt
n(\)\) = and X =
-\ 54



be the vectors of canonical.parameters and canonical statistics, respectively.
Then 4(A) = n(%)'X, and therefore moments of £, DZ, etc. are easily obtained

‘ ‘ ‘ 2
directly from £ - as given above. In particular, define a = E{(D4(N\) D 4(N\)}.

Then since E(D4(A)} = O,

o
I

E(Dn(N) "X DPn(A)'X) = Cov(Dn(A)'X,Don(A) 'X)

Il

Dn(A)'E Dn(A) = -ate U8

Tet furthermore

: 2
b:E{%@>D§R@ = E(D2(A) D°4(N)) + E[(DE(N))7]

~Then since (see Bartlett (1953Db))

DE(DZ£(A)) + 2B(DA(N) D26(M)) + EL(Ds(A)P] = 0, 44y

we obtain

b = —DE[DQE(?\)} -a= -2—% [7\te7\t S My 1]
A

Haldane and Smith (1956) gave the approximate expectation as

B(R) = A - —2— +o(a)
2(qi) |

and the first result is now easily proved; similarly, they gave the

18



approximation of the skewness B as

CELDI0)I0T - 30, o3/
B = +0(q /%)
q1/2 ij/E
and the result concerning B isvproved using (4.4) once more.
For the variance, we want one extra term, which is quite complicated

in Haldane and Smith's original formulation. We shall therefore quote

Efron's (1974) version, which is

>
b
n
o’
no

|

(c” +

+ - -3
= 3 » ) + 2DE(A x)] + 0(a.7)

N

All gquantities have been defined above except the "statistical curvature"

c given by c2 . [Mliaa, M being the symmetric matrix with elements

Mij = Din(k)' by Djn(K). It may be seen that
: 2
2_1 [ 1 (At) eE%t]
] 1 - e"?\t (e—)\t - 1)3

We refer to Efron 's paper for further discussion of this concept and a
rigorous derivation of the approximation. The variance approximation
is now derived by carrying ﬁhrough the necessary algebra and using

N

the approximation to E(A-A) derived above,

19



5. Nﬁmerical results

By direct numerical integration we have tabulated the expectation,.
variance and coefficient of skewness of g, and a detailed table of the
results is available (Beyer 197L4). We give in this Section first a
report on the integration procedures used and then a discussion of the

exact behaviour of the first three moments along with a numerical evaluation.

of the approximations and inequalities proposed in the earlier Sections.

a. The numerical integration

The integrals wq(y,m,r) given by (2.2) had to be computed for
1 <m<r<3 and a representative set of parameter values 7y and q.
Since lim y(y,m,r) =0 if m<r and 1 if m=r, it turned dﬁtvto

Y= 00 ‘ §
be advantageous to compute - 1 - wq(y,m,m) instead of wq(y,m,m) itself.

The integrand of 1 - wq(y,m,m) haé a peak gpproximately located at
me_yq. and since we did not succeed in transforming the integrand to
avoid this, we first truncated and then split the actual in%egration
,intervai at the point &4 me_yq., thus obtaining two intervals, one
around the peak which was densely tabulaﬁed and another with more
sparse evaiuations°

Using an adaptive Simpson gquadrature procedure by ILyness (1969,1970)
in double precision on the IBM 370/165 at "Northern Europe University

Computer Center" in Lyngby, Denmark, the computations were done with at

least .8 correct significant digits in the ¥'s, giving the bias and the

20



variance with a similar accuracy and the skewness with L correct
significant digits for a large range of parameter values in the
region 0.0001 <y <10 and ¢ =1, 2, ..., 15. Bach wq(r,m,r) was
computed separately and the recurrence relation (2.3) might then be
used to check the accuracy.

A detailed report on the numerical integration is available

separately (Beyer 197k).

b. The expectation.

Tt is stated in Section 2 that E(A/A) <1 and that E(A/A) —> 1
aszkt or q —> ®. Table 1 gives a sample of values, we use 7y = At

throughout.

It appears that E(A/X) is increasing and concave in q and increasing

in y, cf. the Remark at the end of Section 2 above.

We derivedin Theorem 3.2 the inequality E(A/A) > aq(v), where
aq(r) was defined in the Theorem. aq(Y) is very accurate for Y = O,
but then it decreases and only for large y 1is it of any numerical

significance.

Theorem 4.1 states the approximation

1
+ 0o(%) -
7
e’ -1) q
This approximation of the bias is remarkably good even for g as small
as 5.

In Figs.1l-3 we show the exact expectations together with the lower
limit (called "Jensen inequality”) and the approximation for

g =1, 2 and 10.

21



. TABLE 1

Expectation of AN/A

1 2 5 10 15 100
0 6931 ,8109 9116 .9531 .9681 ;9950
-5 L7173 8309 .9235 +9600 .9730
1 .Th31 8517 10935u .9669 9777 .9966
2 L7976 8931 L9575 .9790 9861
T ',8991 .9587 ,9866 .9938
8 989k 9977 999k -9997

22



06—

—_— Exact

/ ——-=— ML approximation
05K | ~—— Jensen inequality
l | | | | Y
0 ‘1 2 ‘3 A

Figure 1. E()A/)) and approximations for q=1.
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Figure 2. E()A/)) and approximations for q=2.
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Figure 3. E(A/)\) and approximations for g=10. |
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‘c. The variance

The asymptotic results of Section 2 concerning the variance are that
Var(x) —>0 as q—>w or t—>® and that Var(i) —> o as t
as t —> 0 for fixed q} Approximations to the variance were discussed
in Section 4. We give in Table 2 the exact variances, the Studeﬁt
approximation (h,E), the inverse information approximation (M.i) and the
refined approximation from Theorem k4.1 for .Y = 0.1, 1, 10, 20 and
selected values of Q.

It is seen that for small y and not too‘small values of g, the
traditional inverse information approximation (q-ﬁ> @) is quite good.
The second normal approximation 1s a definite improvement over the first
for v = 0.1 and 10 and g > 2 but‘for Yy =1, the second approximation
only improves the first for large q. The Student approximation (y —> ®)
behaves better than fhe normal for 7y = 10 and 20 but worse for
v = 0.1 and 1; We notiée the rather irregulaf'behaviourof'the exact

variance for q = 1 and large y. In this case the limiting Student

distribution has infinite variance.

ad. The skewness:

The coefficient of skewness PB(v,q) is positive for small 7,
(in fact, B(y,q) —> o as y —> 0 by Theorem 2.%), then becomes
negative with larger v and reaches & minimum from which it approaches O.
This is, however, not true when gq =1 1in which.éase B —> -~ - as

¥ —> o . Zee Figs. 4 and 5. The root v = Yq of B(v,a)=0 is decreasing

in g and we conjecture that as q —> o, it approaches.0.606, being the
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TABLE 2

Variance of %/% and approximations.

Stud=nt First _ Second
approx. normal approx. normal approx.
. (k.2) (h.1) Theorem 4.1
Y q t - Exact q — o q >
1 o L.976 9.508 1.184
2 9.508 3.278 L, 754 2.673
0.1 5 2.378 1.61k 1.9¢2 1.569
10 1.0885 C.8737 0.9508 0.8676
15 0.6792 0.5987 0.6339 0.5969
o1 o0 0.L689 0.5820 0.6650
2 0.5820 0.2737 0.2910 . 0.3120
1 5 L 0.1k455 0.1105 0.1165h 0.1198
10 0.0064E5 0.05860 0.05820 0.0590L4
15 0.0k157 C.0390k 0.03880 0.03917
100 0.005879 0.005828 0.005820 0.005828
1 0 68.13 L.sh 9.12
| ox 2 L.540 L. 786 2.270 34186
‘ 5 1.1%5 1.139 0.9080 1.091
10, 0.50k45 0.5051 C.hshe 0.4998
1 - 71,05 2.06 L1
D O%% 2 2.061 2.0C1 1.031 1.54€
3 1.031 1.031 0.687 0.916

* ’ .
© All values have been multiplied bty lO’f

.
All values have been multiplied by 107.

9
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root of the approximation (h.S). This limiting value is marked on Fig. 5.
*

Similarly, the minimum point Yy of PB(y,q) decreases in q with the

conjectured limit of 2.78, which is the minimum of (L4.3).

The approximation depends only on g through the factor qml/g

and
therefore reflects neither these details in the sign pattern and minimum
point nor the particular behaviourof p(l,y) as y —> ®. Table 3
gives some information on the validity of the approximation. ‘The

general conclusion from the data presented there and our other investi-

gations is that the approximation is only able to give a very rough guide,

and i1s particularly misleading for small (.
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TABLE

3

Exact and approximate coefficients of skewness

Exact values with 4 significant digits, approximate
number of decimal places.

values to the same

q 1 5. 10
Y Exact  Approx. Exact Approx. Exact Avpprox.
.0001§ 106.1 100.0 Lk .90 bh.71 |31.65 31.62
1 3,190 2.613 1.249 1.169 .8582 .8264
.5 1.115 0.233% 246k .loke .1290 L0737
6 9417, L0116 .152% ,0052 06018 .00%67
.7 L7997 - .170% 07322 - 07618 L.002671L -~ .053867
.8 6782 - 3237 .004713 - .1kL751f- .0LkE6T6 - 10235
4768 ~ .5690 | - .1108 - 2545 |- .1287 - .1800
1.5 .0958% - .9606k]| - .3280 - .L2g6 |- .27h0 - .30%8
2 - 2118 -1.1628 | - 4877 - .5200 |- .3676 - .3677
5 -2.175 -0.91k | - .7039  -. Lo89 |- .3735 - - 2892
10 -14.83 -0.18 - .17k - 0784k |- .07329 - .05540
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Figure 4. The coefficient of skewness B()A) for 'q=1, 2, and 5 and O <yter10.
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Figure 5. The coefficient of skewness (1) for q=1,2,5,10,15 and O 2.7.52.2.

|
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Part IT; The pure death procesgs

6. The moments of the maximum likelihood estimator

The distribution of the minimal sufficient statistic (Df’st)
(

is given in the following way, With probability e—qut, (Dt’st> = (0,qt).
Otherwise the density, with a similar notation as in Section 2, is
d d~1 -ps 5 4
(9 pe e ™™g (2 -a+a), a=12,..,00<s<ab.  (6.1)

Accordingly, the distfibution of the maximum likelihood estimator 'Dt/st
is given by being O with probability e—qpt and otherwise has the

density

2 g 4 d-1 -pd a
u Z(g)dut e“/ugd(t——q+d), a>o0 .
d=1 u

This density has a similar irregular shape as that described in Section 2
above concerning the birth process. These results and references to
previous work leading up to them were given by.Hoem (1969), see, however,
also Puri (1968).

Let n = pt and, as in Section 2,

e dt = (l—e"x)/x s X

1A%
@)

Theorem 6.1, Define Cq(n,m;r) = E(Dim)/sz), where m and r are

nonnegative integers and a(x) = ala«l) **+ (a=x+l). 'Then gq(n,m,r) =0

for m>» g and gq(n,m,f) =w for r > d. Otherwise O < Qq(q,m,r) <

and may be computed as
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o0 _ar-1 ' ‘ '
t ) = P L PO 4 eI a
n

Proof. The proof is rather similar to the proof of Theorem 2.1 above and

we shall only outline the s+eps

Notice first that for m > q, both sides of the equation are O.

By (6.1) we get for m < q

) o q(d) d-r -n(g=a) 7 ¥
o € (T\;m>r) = 2; IR € L f T 8 (X) dx
d Qo VAT . 0 (x+q~d)r d

For all’ values of d < g, the integrand in the above integral

will be bounded and nonnegative over ‘the support [0,d]. Since

g (x) = qu—l for x € (O,l), where ¢ > O 1s a constant, the

integral for 'd = ¢ ‘becomes

- -1~ .
c f e nx xg r dx + a finite contribution ,
0
so that the integral is finite if and only if r S q-1
In that case, we now proceed as for the pure birth process
to get

(g~ cla-d)x oo

. (a-m)
”mﬂr @<X\ZA—(M (o1

and the main result is obtained by completing the sum.

33
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The moments may now be obtained as in the Corollary of Theorem

2.1 above.
As 1 —> o, it is obvious (see e.g., Keiding (1975)), that

D, —> q so that fl —> q/8 &a.s. where 8, being the sum of the

exponentially distributed life-lengths of the q individuals that

1
)

were alive at t = 0, i1s gamma-distributed (q,u— It follows from

well-known properties of the gamma distribution that p'rE(q(m)/sr)
o (m) () L . ’ :
q /(q 1) , which is in particular O for m > q and « for

r > q. It is a consequence of the following Theorem that the moments derived

for finite t converge to the moments of the limiting distribution.
Theorem 6.2. As Ut —> =,

§q<ut,m,r) = p E(Dim)/si) —> q(m)/(q-l)(r)

Proof. This result is obvious by the remarks above for m > g and for

r>9q. If m<g and r<g we may by a change of variable rewrite
(6.2) as
(m) x—l)r—l m o -nx g-1
¢ (nym,r) =g/ [ (no(nx)}" [e ™ + no(nx)]™ 7 ax .
q 1 (r-1).

Choose to so large that e ™ < no(nx) = (l—e_nx)/x for all n > n,= ut -

The integrand is then bounded above by
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(X_l>r—l

(=N (no(nx)}®

>r—l

‘eq-m pdm (x-1

< 7
= (r-1). Xq

for n§ > ”o’ which is integrable (since r < q), and the result may

be obtained by dominated convergence.

Corollary. As pt —> o

BU(/WT) —> o/((a-1) ), r=1,...,01,

and in particular

E(3/n) —>.q/<q—1) s a4 =25 -,

Var(ifu) — o&/0(a-1)% (@2)) , 4 =3k, ...,

and the coefficient of skewness>

. 1
B(l) —> lL(q-2)»/2/(q-5) s q = 14,5,

Theorem 6.3.
(a) B(R) > u
q

| (b) For fixed q > 2, lim‘E(ﬂ/u) = q log(—g—) and lim E(u/n) = —= .,
R R el == o1
ut =0 ULt = o0

(c) For fixed A >0 and t > 0 lim E(u) = y.
. q >

Proof. The second part of (b) was proved above and the rest of the

proof is similar to the proof of Theorem 2.2. We omit the details.

35



7. The expectation of the inverse estimator

In a similar vein as the study in Section 3, one may investigate
[~ which is the maximum likelihood estimator of u—l. A c;reful study
of small sample properties of ﬁ- wés in fact performed by Bartholomew
(1963), cf. also his references. Also, an inequality similar to the

result of Theorem 3.2 above may be derived. However, the resulting

lower limit is less than 1 and the result, thus being weaker than

Theorem 6.3(&),is omitted.
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8. Approximations from maximum likelihood theory

For fixed t and large q we may derive similar approximations to
the moments of {I as was done in Section 4 for X. AThe reéults are given
in Theorem 8.1 below, the proof of which is very similar to that of

Theorem 4.1 and hence is omitted.

Theorem 8.1. Let n = pt. Thenas g - e for fixed n,

~ l - _‘T] - _'T] ) )
E(;,L/H) =1+ e_n Eﬂe -+O(—’l§) , (8.1)
Ql - e ) q
var(i/k)
= . ] ' ) ]
- [1 # =T (h+{2n"-100-T)e T4(31" +10q42)e e 5”}]
q(1l-e ) q(l-e )
+o(3) (8.2)
q
and the coéfficient of skewness
(a om0 (1ea My _ oz 7N
p(p) - ELE - BO72 _ Mi-e ) - one _, oly (8.3)

Cwar()?? 0 QMPremd/2 T e

Remark. It is easily seen that the approximafion to ﬁhe bias is greater
than 1, cf. Theorem %.%, arnd that the approximation to the skewness 1is
positive for all 1.

AAs n —®, 1t is interesting to verify that the approximations are
in accordance (to the order of approximation considered) with the exact

results of the Corollary of Theorem 6©.2.

Thus as 1 - », the approximate expectation tends to
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1+ 1/q +‘O(l/q2)‘= q/(q-1) + O(l/q?), the variance has the limit
2 2
(1/a)(1 + L/q) + o(l/q5) =q /{(q-1)" (g-2)} + o(l/q5) and for the
L L/2 1/2
skewness we obtain L/q + 0(1/a) = 4(a-2)"""/(a-3) + 0(1/q). However,
we shall discuss in Section‘9 below that in some cases it is advantageous

to amend the approximations by making them exact in the limit n -,
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9} Numerical results

As for the birth process, we have tabulated the first three moments

of {i, and a detailed table is available  (Beyer 1974).

a. The numerical integration
The same adaptive Simpson quadrature procedure as described in
Section 5a above was used. ©Some care had to be taken in order to assure

that the cutoff point in approximating the integral was chosen properly.

For details, see Beyer (197L).

b. The expectation

The expectation E({/u) is an increasing function of 7 and
a decreasing function of q; its limiting behavior is stated in

Section 6. An improved version of the approximation (8.1) is given by

e pe M
E(L) ~ 1 4 228 omE 5
. (a-1)(1 - &™)

and 1s quite precise even for quite small values of d and all but very
small values of 7. Table 4 gives some values of the exact and

approximate expectations.

c. The variance

The variance appears to decrease in ¢ &and 7. The limit
behaviouras 1 ——> © is given in Ssction € and as q —> » , Var(])
seems to go to 0. (This could of course be proved rigorously by géing
through the details of the derivations of Section 8.) Finally,

Var(ji/p) =< for g =1 and 2 and —> ® as 7 —> 0 for fixed q > 3.

39



TABLE L

Exact and approximate expectations of ﬁ/p in the death process

q _ 10 50
Exact Approx. Exact Approx. Exact Approx.

1.116 1.125 1.05L 1.056 1.0101 1.0102

1 1.121 1.129 1.056 ~1.057 1.0105 1.0105
1.1hh 1.1L6 1.064 1.065 1.0119 1.0119

1.172 1.165 1.07k4 1.073 1.0135 1.0135

1.21k4 1.197 1.091 1.088 1.0163 1.0162

1.248 1.243 1.109 1.108 1.0199 1.0198

1.250 1.250 1.111 1.111 1.020k4 1.020
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Two approximations to Var(ji/i) are given in (8.2). We present
in Table 5 some values of the exact variance, the first approximation
given by [q(l—e“n)]-l, the amended first approximation
qg/[(q—l)g (g-2) (1-e )], the second approximation given by (8.2)
and an amended version of that obtained by multiplication by
qu/[(q—l)2 (g-2) (q+4)]. The amendments all have the purpose of yielding
exact results as 1 - ®.
It is seen that the amendments are worthwhile only for larger values

of 7 and that the second approximation, thus amended, is quite good.

d. The skewness

The skewness B(n,q) is infinitely large as 7 — 0. For increasing
n, B(n,q) decreases until it reaches a positive minimum, then increases
toward the asymptotic value given in Section 6. For g <3, p=e. The
value nq where p = 0 1s increasing in q and we conjecture that the
limiting value is .528, being the minimum of the approximation (8.3).

The approximation is of course not able to reflect the moving
minima. We show in Fig. 6 the exact coefficients of skewness for q = 5
and 10 and 0 < n < 2. The asymptotes as n —o and the limiting minimum

point are also indicated. The dashed curves represent an amended approximation

. -1/2
obtained from (8.3) by replacing g / by the limiting value

1/2 . . . . . £ 4 = 10
B(m,q) = (q_g) / /(qm5). This approximation is quite good orA'q

and not too small 7.
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TABLE 5

The Variance of ﬁ/u and approximations

First Am. First Second Am. Second
q Exact approx. appr. appr. appr.
5 2.733 2.102 5,474 2.575 3.725
10 1.186 . 1.051 1.622 1.169 1.289
20 .5569 .5254 . 6468 .5550 . 5694
50 .2150 .2102 . 2280 2149 .2158
-5 .6065 .3164 .82Lk0 As571 .6613
10 .2052 .1582 2hL1 .1934 .21%2
20 0891k -.07910 .09738 .08789 .09017
50 .03312 .03164 .03432 .03305 .03319
5 .5540 2313 L6024 .3783 5473
10 .1679 .1157 .1785 524 .1680
20 .06865 .05783 .07119 .06701 .06875
50 .02470 .02313 .02509 02460 o2kl
5 .5208 .2000 .5208 .3600 .5208
10 .1543 .1000 .1543 .1400 L1543
20 .06156 .0500 .06156. .06000 .06156
50 .02169 .0200 .02169 .02160 .02169
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~

Figure 6. The coefficient of skewness R(u) and approximations for q=5 and 10.
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