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ABSTRACT 

Some limit theorems relating to the number of partials in the 

a th generation alive at time t are reexamined. A single me

thod of proof is given and shown to work equally as well for 

certain generalizations. 
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SECTION 1 

1. Introduction 

Let {X(t)}t>O be a supercritical Bellman-Harris branching pro-

cess with age distribution F, and offspring p.g.f. f(s). Some 

attention has been given to the study of the limit behavior of 

the following random quantities: 

and 

th 
Uk(t) = number of particles of the k generation born 

before t 

number of particles of the kth generation alive 

at time t. 

Results can be found in [1], [21, [4], [7], [8], [9]. In each 

of these papers the technitue of proof is highly analytic. It 

turns out that some of the existing theorems can be gotten very 

quickly as a consequence of the structure of the process and 

the Berry-E:s'S',eertT,heorem. This technLque we feel is the natural 

one since it is simple and applies as well to a generalization 

of the process where the lifetime distribution of each genera

tion is varible. This case was recently studied by Fildes [4]. 

We now introduce the necessary notation and state our result for 

the clAssical case. Put: 

00 

f i 
ll. v dF(v), 

1 

(j2 = 

<p (x) 

0 

ll2 

1 

/27f 

2 - (lll) , 

1 2 --x 
e 2 

m. 
tJ"i f (1-) 

1 als 

m = ml 

x 
and <l>(x) = f <p(v)dv,-oo < x < 00 

-00 
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If Xk = number of particles in the kth generation, then it is 
-k 

well known [6] that lim m Xk = w.p.1 and if m2 < 00, the limit 
k~ 

exists in mean square. 

Theorem. Assume~. < --- ~ 
00, m. 

~ 
< 00 i 1,2, m1 > 1 and m3 < 00. 

Let tk = k~l + crlkt. Th~, 

(1. 1) 

Suppose in addition F is non lattice. Then, 

(1. 2) 

SECTION 2 

Proof of the Theorem 
L2 

We first prove (1.1). 
-k 

Since m Xk -+ W, it suffices to show, 

Following the notation of [6, Chapter 5], it ~s not difficult 

to check that, 
n. 

no~l 

2: 2: 
i 1 =1 i 2 =1 

where 

T.. . is the length of life of <!:k> 
~1~2···~k-1 ~ 

n.. . is the number of offspring produced by <!:k> 
~1~2"'~k-1 --

IA is the indicator function of the set A. 

We introduce some notation. Put for k > 1, 



and 

Then, 

n 
o 
L 
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n.. . 
~t~2·· ·~k-2 

L 

ik_l=l 

For any collection of random variables G, let a(G) be the 

a-field generated by G. Define for k > 1, 

{en. ,T~ ) for all <i.> such that j < k}. 
~. :to -J 
... J .... J 

Then, 

Conditioned on Gk - l , Uk(t k ) is just the sum of independent ran

dom variables with the typical term having variance equal to 

Hence, 

where * represents convolution and F(k)(t) 

k > 1. Also observe that 

F * F(k_l)(t), 
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The last expression 1S of exactly the same form as C2.I) except 

that the summation is over one less index. Thus we can repeat 

the calculation k-I times to obtain 

e = E(IUCt ) - ~(t)Xk]2) = ~ mk-jE(X~)B. (k) 
k . k j=I J J 

where 

B. (k) 
J 

2 2 
F(j_l) * F(k-j+I)(t k ) - F(j) * F(k_j)(t k ) 

and 1 < j < k-I 

I 

\ 

2 2 . 
It is easy to show that E(X .) = Oem J). Therefore, there 

J 
exists some constant A independent ofk such that 

m- 2ke < A 
k 

k 
L 

j=I 
m-(k-j) B.(k) 

J 

Let E > O. Choose N 
o 

such that L m- J < E 

Then for k > N , 
o 

m- 2ke < 2EA + 
k 

j > N 
o 

k 
L m(k-j)B.(k) 

j =k-N+I J 
o 

(2.2) 

We now apply the Ber:ry Ess€en\Theorem[5, pg. 201] to conclude 

that 

lim B. (k) 
k~oo J 

This proves (1.1). 

0, k - N +1 < j < k 
o 
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To prove (1.2) we first observe that 

IkOVk(t k ) - mcp(t)Xk = ~ (IkOI{S. <t k < S. } -m¢(t)) 

~k+l ~k ~'+l 

Thus if we condition exactly as before we obtain, 

where 

and 

= 
k 
L 

j=O 

Let N > O. Then using the extended :B~rry Es'Seen> !fheo·rem 
o 

[5, pg 210] it is not difficult to show that 

lim C. (k) 
k+oo J 

and 

sup IC.(k) I ~ Dl ~ 
l<j<k-N J J 

- - 0 

where Dl is a constant independent of k. 

Hence, 

k-N 
-2k (0 m-(k-j) _k

J
.) lim sup(m Ak ) = lim supfD 2 L 

k+oo k+oo j = 1 

where D2 is a suitable constant. Let E > 0 such that 

(2.3) 



and 
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-1 
Then for k > [E ] , 

[k~E-1]-1. -N 
"I: m-] k -<m 0 k 1 

k-]' k-N 1-r j=N 0 
o 

k-l 
I: 

j=[k-E- 1 J-l 

-1 
m- j k -< D k .-[k-£ J 

k-j 3 

for D3 a suitable constant. Since N is arbitrary we are done. 
o 

SEG'lION 3 

A Generalization. 

Suppose a particle in generation n lives a random length of ti

me governed by F which depends on n. One can easily check 
n 

that expressions similar to (2.2) and (2~3) hold in this more 
" 

general setup. In fact, the only thing that onet~eeds to carry 

through the arguments oft thee previ~tts s~eti~n -is -a,Bce;;r:r~Y5'~~~:€'e1't "4:0''

pe ,theorem for non-identically distributed random variables. 

Fortunately such results exist under suitable assumptions. 

[3, pgg 78 and 84]. 

We now intvoduce some notation and state the result. Let 

].1. 
1. 

f v dF. (v) 
1. 

k 
I: ].1. 

i=1 1. 

t = m + k k 

2 cr. 
1. 

fv 2 () 2 dF. v -].1 •• 
1. 1. 

k 2 
I: cr. 

i=1 1. 

Theorem. Assume there exist constants 0 < A < B < 00 such that 

A < inf 
2 

and f 3 
dF. (v) B . cr. sup v < 

1. i 1. 
1. 

Then 

lim 
rUk(t k ) 

W<l?(t)]2) 0 E\l k - = 
k-+oo m. 



Assume in addition 
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sup J v 4 dF. (v) t oo,F ~ 
1 n w 

1 

F,limsuplf(w)l<l 
Iwl+oo 

and for some L, 

lim'{sup Ifk(W) - f(w)1} = 0 
k+oo I WI >L 

where 

Je ivw = dFk(v), few) = Je ivW dF(v). 

( 
S V (t ) ) 

lim E [ k: k - ~W ~(t)]2 
k+oo m 

o 

where 
~ = Jv dF(v). 

Proof. The conditions of the theorem are sufficient to imply the 

required versions of the };j',erry Ks:se'g;flTheor;e;mgiven in (3). Q.E.D. 

Remark. The assumptions of Fildes imply ours. 

Conjecture. I believe that this method can be applied to the 

generalized age-dependent model to obtain analogous results. 
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