


STOCHASTIC ITERATION OF STABLE PROCESSES 

BY 

K. B. ATHREYA. 

Abstract. Let {X (t); -=<t<=} n=1,2, ... be a sequence of i.i.d. 
n 

stable processes of order a so that for each n, w.p.l. 

X (0) = 0, 
n -1 

{X (t)} has independent increments, and 
n 

/t/- a X (t) has the same distribution of X (1). Define 
n n 

> 
Yl(t) = Xl(t) and recursively Y let) = X ley (t)) for n=l. n+ n+ n 

It ~s shown here that 

a) if a<l then anlog/Y (t)/ - log/Y (t)/ converges w.p.l. to 
n 0 

a realvalued random variable Y w.p.l. whose distribution is 

independent of t. 
1 

b) if a=l then a-In 2(10g/Y (t)/ - n~) i N(O,l) where ~ and 
n 

2 d 
a are the mean and variance of log/Xl (1) / and ~ means conver-

gence in distribution. 

c) if a>l then log/Y (t)/ converges ~n distribution and the 
n 

limit is independent of t. 

The limiting behavior of Y (t) and /Y (t) / are also deduced 
n n 

from the above. 
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STOCHASTIC ITERATION OF STABLE PROCESSES 

BY 

K. B. ATHREYA 1,2,3,4. 

1. Introduction. In a recent paper [1] the concept of sto-

chastic iteration was introduced by the author and was shown 

to be a generalization of the notion of branching processes. 

Roughly speaking the idea is this. Let {X (t,w); tET} 
n 

n=1,2, ... be a sequence of stochastic processes defined on a 

common probability space (n,B,p) where the index set T lS 

also the state space of the processes. Define Y1 (t,w) = 

> Xl (t,w) and recursively Yn + 1 (t,w) = Xn+1 (Yn(t,w),w) for n=l. 

Then the sequence {y } is called the stochastic iterate of 
n 

{X }. 
n 

If the X 's are i.i.d. random walks on the nonnegati
n 

ve in t e g e r 1 a t tic e , '~t hen for e a c h t the seq u e n c e { Y (t); n = 
n 

1,2, ... } is a Galton-Watson branching process with Y1 (t) as 

the initial number and the distribution generating the random 

walk as the offspring distribution. If the X 's are i.i.d. 
n 

random walks on the whole integer lattice then for each t the 

sequence {y (t)} is a se1fannihi1ating branching process (see 
n 

If the X 's are i.i.d. processes on [0,00) with statio
n 

nary and independent nonnegative increments then for each t 

the sequence {y (t)} lS a continuous state space branching 
n 

process with Y1 (t) as the initial amount. One can go on 

like this and realize branching processes in random environ-

ments, branching processes with state dependent population 
as stochastic iterates. 

growth and so onVIt is we11known (see [1]) that in most 

branching processes context the population either dies out 

or explodes and there is no stability. A natural question is 
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what happens to the stochastic iterate {y } of a sequence 
n 

{X } more general than the ones mentioned in the above exam
n 

pIes. Specifically, what is the limiting behavior of {y }. 
n 

We answer this question fairly completely when the X 's are 
n 

i.i.d. stable processes on (-00,00). There is a trichotomy de-

pending on the order a of the process. There is stability if 
n 

and only if a>l. For a<l, 
1 
2 

IY la has a limit and for a=l 
n 

1S asymptotically normal for some appropriate 

~. For a>l, Y (t) has a limit distribution independent of 
n 

t=l=O. 

2. Statement of the results. Let {X (t,w); -oo<t<oo} be a se-
n 

quence of i.i.d. processes defined by the conditions 

i) {Xl (t,w); t~O} has stationary 

Xl (O,w)=O w.p.l. and for any t>O, 

independent increments, 
-1 

-a 
t co: ~r(t) has a distribution 

independent of t. 

ii) {Xl (-t,w); t~O} 1S an independent copy of {Xl (t); t~O}. 

These hypotheses imply that the characteristic function of 

Xl (t) is stable and is of the form exp(t~(e)) where 

a . e 1Ta 
i a e - c I e I { 1 + 1 S fElT t a n2 } if a =1= 1 

{ 
i a e - c I e I a { 1 + i S I~ ~ log I e I} i f a = 1 

~(e) 

with a and S real, ISI;:::;l, c>O, O<a~2. 
-1 

-a' 
Further since t ::i (b) has the same distribution as Xl (1) the 

~l 
_ai', 

function ~(e) must satisfy t~(et , = ~(e) for all e real 

and t>O. 
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i) If 0',4=1 then a o and hence if 0',=2 then 

and B 
Xl (t,w) 

{ c 

This imposes the following constraints on a 

t~O} 1S a standard Brownian motion process. Note, however, 

that if O',4=i and 0',<2 then the process need not even be sym-

metric about the origin. 

8=0 but a need not vanish. Thus {Xl (t) 

t~O} is a none entered Cauchy process with drift at and a 
Xl (t) - at 

scale coeffe,cient c. Thus { t~O} is a standard 

ii) If 0',=1 then 

c 

Cauchy process. 

If O',~l then the support of the probability distribution of 

Xl (1) 1S the whole real line. This is so since the density 

function is analyttc at least on the strip 1 ImZ 1 < c. If 0',:::;1 

and 181=1 then the distribution of Xl(l) is une~~ide4 (~6bnded 

on the left if 8= -1 and on the right if 8=+1). For proofs 

of those observation see [4]. Notice that these are conS1S-

tent with our results. If the distribution of Xl (1) was one-

sided then from the classical branching process theory we 

would expect instability for {y.}. This 1S indeed the case 
n 

even if Xl (1) were not onesided so long as 0',<1. We are now 

ready to state our results. 

Theorem 1. Let 0<0',<1. Then, 

i) lim IY (t,w)1 exists w.p.l., but assumes only two values 
n-+oo 

n 

namely 0 and 00. 

n 
ii) lim IY(t,w) 10', exists w.p.L and equals exp {It/+Z(t,w)} 

n 
n-+oo 

wher Z(t,w) 1S a real valued random variable having on abso-

lutely continuons distribution that 1S identical to that of 
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00 

i aj~j where {~j: j=1,2, ... } are i.i.d. as loglx l (1) I. Thus, 

the distribution of Z(t,w) is independent of t. 

iii) On the set {w: It I + Z(t,w) > O} lim IY (t,w) I = 00 but 
n n 

{Yn(t,w)} need not converge if P{X I (l)<O}P{X l (l»O} > O. On 

the set {w: It I + Z(t,w) < O} limlY (t,w)1 = 0 and hence 
n 

Y (t,w) -+ 0 also. 
n 

n 

Theorem 2. Let a=l and ~=ElogIXl (1) I. Then; 

i) 
limIYn(t,w) I = { 00 

n-+OO 0 

w.p.I. if ~>O 

w.p.I. if ~<O 

ii) If ~=O then w.p.l. both 0 and 00 are limit points for the 

sequence {IY (t,w)l}' 
n 

iii) There exist no normalising sequence c such that c IY I 
n n n 

converges w.p.l. or in law to a nondegenerate proper limit di-

stribution. '-I 

iv) 
-2 

(IY le-n~)n ~ 
n 

e Na where N is a standard normal random 

variable, a 2 the variance of loglX l (1)1 and 
d 
-+ means conver-

gence in distribution. 

d Theorem 3. Let a>l. Then, Y (t,w) -+ Y where the random varl-
n . 

able Y has a distribution function independent of t given by 
(J;~.1 

P(Y~y) /:0 G(ylxl :') dH(x) 
o 

00 • 

where G(x) = P(X I (1) < x), H(x) = P{exp(.~ a-J~.) ~ x} 
J=l J 

~j'S being i.i.d. as logIX l (1)I. Further, the sequence 

{y (t,w)} cannot converge with probability one. 
n 

the 

3 . Proof of the theorems. Fix t+O. Then since the X 's are 
n 

stable processes we conclude that Y (t,w)+O for any n. Thus, 
n 
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logarithm of IY 1 to yield 
n 

-1 
z l(t,w) = n l(t,w) +a Z (t,w) n+ n+ n 

where Z (t,w) 10glY (t,w) I, 
n n 

0) 

for n=O,1,2, ... (By definition, Yo(t,w)=t w.p.l.) Suppressing 

t and w for conven~ence and iterating (1) yields 

Z 
n+l 

n -J' -(n+l) r: an. +a logltl. 
j=O n+l-J 

(2) 

Let F == cr(Y.(t); j=1,2, ... ,n) be the sub-cr-algebra generated 
n J 

by Y. (t) j=1,2, ... ,n of the basic cr-algebra B of the trip
J 

let (~,B,P) on which all the stochastic processes mentioned 

so far are defined. It is clear that the random variables 

{n.} are adapted to this family {F.} and that the conditional 
J J 

distribution of n. 1 given F. is independent of the conditio-
J + J 

ning and the same as that of log 1 Xl (1) I. This yields the 

following 

Lemma 1. Fix t*O. The random variables {n.(t,w); j=I,2, ... } 
J , 

are i.i.d. as 10gIXl (1)1 where the nj s are as in (1). 

With this background we now proceed to the proofs of the 

three theorems. 

Proof of Theorem 1. Here a<l. Multiply both sides of (2) by 

n+l 
a to get 

n+l 
a Z 1 n+ 

n 
r: aJn. + logltl. 

j=l J 

Since the n. 's are identically distributed and s~nce 
J 

(3) 

10glX I (1)1 has a finite mean (infact, all its moments are fi-
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00 

nite) we get E(LaJln.l) 
j=l J 

-1 
(Elnll)(l-a) < 00 and hence 

that L aJn. 
j =1 J 

converges w.p.l. This proves part (ii) of Theo-

rem 1. Part (i) is a trivial consequence of part (ii). Part 

(iii) follows by noting that under the hypothesis 

P(X I (l»O)P(Xl(l)<O) > 0 the sets {w: Y (t,w) is ultimately 
n 

positive and '{ w: Y (t, w) is ultimately negati
n 

vel have probability zero. 

Proof of Theorem 2. Here a=l. Equation (2) yields 

n+l 
z = n+l 

L n. + logltl. 
j =1 J 

The random variable loglX l (1) I has all moments and in parti

cular the mean and the variance. Part (i) easily follows by 

the strong law of large numbers. When ~=O, the law of the i-

terated logarithm asserts that w.p.l. the sequence 

{ L n. 
V2nloglogn j=l J 

1 
n 

: n=l, 2, ... } has the entire interval 

[-0,+0] as the set of its limit points. This shows (ii) and 

the fact that the sequence {Z } does not converge at all. To 
n 

prove (iii) we just note that since the n. 's are i.i.d. with 
J 

finite mean and variance there cannot exist constant constants 
n 

d 
n 

such that Ln. - d 
. 1 J n 

converges in law or w.p.l. Finally 
J= 

part (iv) follows from the central limit theorem. 

Proof of Theorem 3. Here a>l. Equation (2) and the fact that 

the X 's are i.i.d. yields the conclusion that Z 1 has the 
n n+ 

same distribution as 

* Z n+l 
n -J -(n+l) 
Lan. + a logltl. 

j =1 J 

As ~n the proof of Theorem 1, the ser~es converges 
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00 
* w.p.l. and the sequence Zn+1 converges w.p.l. to ~ a-Jn. 

j=l J 

This shows that Iy I converges In distribution to HC·). Now 
n 

note that 

l 
The function GCylxl a) lS continuous for x in (0,00) and boun-

d ded. Also Iy I ~ H. Thus Y ~ F where F is defined in Theorem 
n n 

3. The limiting distribution F is easily seen to be nondegene-

rate. Now {y } being a Markov Chain having a nondegenetate li
n 

miting distribution cannot converge with probability one. 
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