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1. _Introduction and Summary

The purpose of the present paper is to illustrate the concept of an
extreme family as defined by Lauritzen (1974) and to define a class of
statistical models for discrete observations generalizing classical
exponential families.

In the classical formulation, a discrete exponential family is a
family of probability measures (PG’ 0¢@), where the parameter space @ is

a subset of k-dimensional Euclidean vector space, the probability function

being given by

Py (x) = a(8) b(x) &' - (1.1)

~

where x¢E , a discrete set, ti are real valued functions and 6 = (61,...,6k).
If one dbServeS'independent identically digtributed random variables Xl""’Xn
with the common probability for Xi given by (1.1), the joint probability will

be given by

:%:9 :Ez t.(xj)

P (), 0x) = 5(0) (ngb(xJ )>~ S (1.2)

Now, Pén) is again an exponential family with the same parameter space as

‘before. Somehow this is not a coincidence. If we try to look closer at the

elements of the exponential family, we might understand this fact.

The function b is a common reference measure defining the support of %

the measures (PG’ 0¢®), and a(6) is a normalizing constant. The functions




(tl,. .,tk) are the sufficient statistics, and as an experiment is repeated,
the sufficient statistics for the combined experiment is obtained as the sum

of the suf?icient statistics for the experiments in the repetition:
) (e x ) = (k) bl bt () @)
N 2o X 5 (% .o 5 (X . .

The reason for this is that the function

is a homomorphism of the range space of (tl’°7"tk) into the group ((0,%),<):

& ((tl,'...,tk) b (speeensy)) = ((tl,...,tk)> N (RN

The idea in this paper is that most results about exponential families
' %

essentially are based on the above properties only. We shall therefore try to
define a class of families of distributions via these properties.

If we again look at (1.1), (1.2) and (1.3) we see that we never substract.

In fact, we only use that the algebraic operation + 1is associative and

commutative. A set with a composition which is associative and commutative

is here called a commutative semigroup. We shall establish some of the simple

results about these in Section 2.
Let us consider another family of distributions (PG’ 6€0), where

6="{1,2, ... ',}, and




Fo ) =5 Xq,..00 &

A

vhere x€¢E = {1,2,...} and X, 1s the indicator function of the set A,
i.e.

1 if x€A

XA(x) =
0 otherwise .

5+.+.5X 1independent indentically distributed as above. Their
1 n

joint probability is given by

Consider X

£

ol X{l,...,e} (maX{xl,...,xn})

Pe(n) (k)0 ee0x,) =

The same situation as before is actually present if we replace t(Xl)+

e}(x) may vanish
2

t(xg) by mak{t(xl), t(xz)}. Just ge(x) = X,
in this case whereas exponentials are alW%ys strictly positive. The

support of the measure Pé in this iast ekample varies.with‘ GEC), which

is not the case in the first exaﬁple. .

In section 7, part I of Béfndorff—Nielsen (1973), there is a detailed
discussion of problems connected to maximum likelihood estimation in exponen-
tial families. The maximum likelihood estimate in regular canonical
exponential families is shown fo exist 1ff the observation happens to be so,
that the value of the éufficient statistic falls within the interior of the
convex hull of the support of the measures in the family, transformed by the
sufficient statistics. This means that if the boundary of this convex hull

has positive prob&bility, one might very well get an observation from which



it is impossible to estimate. To solve this problem it is proposed there

to make a suitable extension of the model, the extension being defined for
families where the set of possible values of the set of sufficient statistics
is assumed to be finite. The extension is called the completion of an exponen-
tial family.

The measures in the completion of an exponential family have certainly
their support varying with the parameter, and the "fixed support" property
therefore does not seem to be essen£ial to the nice results existing for
ex?onential families.

The families defined in the present paper are shown to be "complete" in
the sense that the maximum likelihood estimate of the parameter always
exists.

In section 3, the families are defined and some examples are discussed. |
In section U we show the existence and uniqueness of the maximum likelihood :
estimate of the unknown parameter in such‘families. |

In section 5 we show that the family of Markov chains made up by.sequences
of sufficient statistics from successive independent repetitions of an experi-
ment giving rise to a general exponential model, is in fact an extreme family

of Markov chains as defined by Lauritzen (197L4).

In section 6 we shall briefly discuss the relation between the models

defined in the present paper and the completion of an exponential family as

defined by Barndorff-Nielsen (1973).

2. Commutative Semigroups

Commutative semigroups will play an essential role in the present paper.

We shall quote the definitionm.



Definition 2.1 Let M be a set and ¥ a composition rule on M. (M,¥%)

is said to be a commutative semigroup if * is associative and commutative

i.e., 1if

i) Ya,b,ceM: a = (b%c) = (axb) % ¢ ,
ii) Va,beM: axb =D % a

As we shall only consider conmmutative Sémigroups throughout this paper, we

shall just write "semigroup" instead of "commutative semigroup". Examples

of such semigroups are

1) (N,+) where N = {1,2, ...}.

2) (N,.), where x.y = max{x,y}.

~

3) (N,~), where =x~y = mih{x,y},

~

L) (§+,‘); where R, is the set of nonnegative real numbers.
)

Now, let (M,*) be a semigroup. Consider the set M consisting of all

homomorphisms &£:(M,%*) - (R+,°), i.e., satisfying for all a,b€éM

£(a) &(b) = E(axd) .

If El’ 6261\71, the mappin_g é’;’l°£2 defined by

£,°8(a) = & (a) E,(a)

is obviously in M and it is a trivial exercise to verify that (ﬁ,-) is a

semigroup. (M,) shall be called the dual semigroup to (M,¥).

If we have two semigroups (M,*) and (N,°) we can form the product

of these
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(M,*) x (N,0) = (M x N,®) ,
where
(m),n)) @ (my,n,) = (m % my, ny ©ny)

This is again a semigroup. The dual to a product can easily be obtained

from the duals to the elements in the product:

Proposition 2.1: The homomorphisms of (M X N&) into (R+,-) are exactly

those of the form

g(m,n) = EM(m) EN(n) ,

A

where EMéM and E;NéN.
Proof: If &(myn) = 0 for all (m,n), & is of the form described. We

assume that &(m',n') > 0. The equation
Y

E(m#m', non') = &(m,n) &(m',n")

= &(m',n) &(mn') (2.1)
gives as (m',n') is fixed:

clmn) = SR ERR - o) n(a) (2.2)

Further we have for any m, nl, Nyt

£ (m%m, nl°n2) = g(mwm) h(nl°n2)

l

1
o,
B




As this holds for all m, n, and Ny, we must have a constant c:L such

that

h(nl°n2) =cg h(nl) h(ne) . (2.3)
Analogously there is a s such that

g(ml*mz) = ¢, g(ml) g(mz) (2.4)

From (2.1) and (2.2) we get that c; ¢, =1 and if we define :

EM(m) = ¢, g(m)

EN(n) =cq h(n)

we get from (2.3) and (2.4) that g il and g€ and from (2.2) that

g&(m,n) = g(m) hin) = c, g(m) clh(n) = EM(m) EN(n) which was to be proved.
As mentioned in the introduction, the support of the measures in the

families we consider may very often vary with the parameter. This will of

course not be in a completely arbitrary fashion but in a fashion compatible

with the algebraic structure of the sufficient statistics. To investigate

this aspect, the following concept will be of relevance:

Definition 2.2 FC M is said to be a face of M if

i) F is a subsemigroup of M and
ii) c¢FA c = axb => acF AbeF

The faces of M are exactly the possible positivity regions for elements in

M:
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Proposition 2.2: Let F C M, F _is a face of M iff there is a geﬁ such that

F = {aeM: &(a) > 0} .
Proof: If F = {aeM: £(a) > 0} for some Eeﬁ, then
asFA DeF = E(axb) = &£(a) E€(®) >0 ,
so F 1is a subsemigroup of M. If c¢F and c = a¥b, then

0 < g(axd) = &(a) &(b)

and hence &(a) and £(b) both must be positive, i.e., acF and beF.

If on the other hand F is a face of M, we can define
1 if a=F
iO otherwise .

£ 1is easily seen to be a homomorphism and the result is proved. We also have

Proposition 2.3: M 1s a face of M

The proof is obvious.

Proposition 2.4. If (F.). . is a family of faces of M, then F = m F,
—_ i ;eI —_— feT i

is a face of M.

Proof: TImmediate from the definition.

Remark: From propositions 2.3 and 2.4 it follows that for any a¢M there is

a wnique smallest face of M, F(a)> such that acF(a).



Propositions 2.1 and 2.2 enable us tho establish a result about faces of

product semigroups @

Proposition 2.5: F is a face of M XN iff F = FM X FN’ where FM and
FN are faces of respectively M and N.
Proof: According to proposition 2.1, all homomorphisms & of (M X N,®)
into (I‘{v_'_,*) are of the form
E(m,n) = g (n) Em) ,
where «SMEM and ENEN. - Now
{(m,n): ¢ (m,n) > 0}
= {(m,n)= Ey(m) > OAE (n) > o}
= {m= Eym) > 0} x {n: &) > O} . (2.1)

The proposition 2.2 and equation (2.1) together yield' the result.

semigroup (NU{0} ,¥). Let

Exa@le 2.1: Let us consider the

€(1) =6, some non-negative real number. We must have

It follows that the only faces of (NU{0},+) are {0} ana NU{0}

Let: neN be fi;ced. The smallest face

Example 2.2 Let us consider (N,v).

containing n must contain all integers less than or equal to n as

nvx=n if x<n .
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On the other hand, {1,...,n} is obviously a face of (N,v). Hence all faces

of (N,v) are N itself and subsets of the form {l,...,n} for some neN.

~

Now let Efﬁﬁ be positive exactly on {1,...,n}; it must satisfy
Elxva) = E(x) E(n) = E(n) for x < n.
As &(n) is'strictly pésitive, we get
E(x) =1 for x<n ,

and hence that the only homomorphisms of (N,+) are indicator functions of

L~

faces,

for some né N U{wo},

Example 2.3: If we now form the product (N,v) x (NLKO},+) it follows from

proposition 2.1 that all homomorphisms are of the form

E6y) = Xy, L,y () 0 8

for some n€ NU {~}' and 6 > 0. From proposition 2.5, we get that the faces

of this monoid are

f,...,n} x 20} nex

1y .
{1,...,n} x {0}, nenN |

N x MAo} and N x {0}. |
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3. General Exponential Models

In the following we shall consider an at most denumerable set E, a

semigroup (M,%) and a mapping t: E > M. We shall think of E as the sample

space and of t as a sufficient statistic. Let M = t(E) and define

recursively

= * = :
Mh Mi Mh—lf forn=2,3,... =

This is done for the following reason: if we make n independent observa-
tions of a random variable on E, we shall assume that the sufficient statistic

will be

t(n) (X

l""’xh)‘= t(Xl) LARRE t(Xh) >

and hence %1=tmj(ﬁw.
We shall assume that we can infer the size of the experiment from the

statistic, or, in other words, that

Mmf\Mh = ¢, whenever n #m .

For convenience we don't want M +to be bigger than necessary, hence

we assume that

Let Vv be a O-finite measure on E "so that v(x) is positive for all

xe¢BE. Let Mb denote the normalized dual to M:

M= Eeﬁ:z v(x) E(t(x)) =1

Vv
xcE

and assume that ﬁﬂ is non-empty.



R =

A statistical model for a random variable X taking values in E is a

family 9 of probability measures on E.

Definition 3.1: ? is said to be a general exponential model if there

exist M, t and Vv as above, such that

Pep <=> jgeﬂ\): P{X = x} = v(x) &(t(x))

Remark: It is no restriction to assume that for any s&M, there is a

geﬁ\) such that . £(s) > 0, since if this is not the case, we can look at
M' = {seM: 3&&\): E(s) > 0}
which clearly is a semigroup and

/ E' = ¢ T (t(B)M")

t' = t]E', V' = V|E'.

Since this clearly gives us an equivalent statistical model we shall assume
this' throughout the éaper.

Let us first see in what sense this looks like a '"classical' exponential
model. Suppose we have observed ‘n independent random variables from the

%
above distribution. The joint probability function is

. n
B ) = vxp)) ¢ el e )

=(1vy)) Bl eeoe wx)) (3.1)
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with EeM. If we compare (3.1) with (1.2) in the introduction, we note, that

the common reference measure. The statistic

V plays the same role as b,

! 3 3 3 . . l a
t corresponds to (tl""’tk’n)’ i.e. the sufficient statistic plus

"eownting variable" indicating the size of the experiment. EeMv Forresponds

to the function

k

Z .eiti

(tl,...,tk,n) > a(@)? et

so the normalizing constant a(6) is taken into & and the experiment size
into the statistic +.
The above defined models differ from the exponential models in several
respects. First the range space of the statistic is a Semiéroup instead of a
. subset of a vector space, the parameter space is the normalized dual of this
semigrouplinétead of a subset df‘a vector space, and there is no assumption of
anything like finite diﬁension. Furthermore we shall see that in general

the support of the measures in the family will depend on the parameter &,

as it will not always be positive. As derived in the previous sections,

the possible positivity regions for & will be the faces of the semigroup (M,%).

From (3.7) and the Neyman factorization theorem it immediately follows that
beeenX ) = b (X Do 5(X )

is sufficient for the parameter & from observation of Xl""’Xn'
The relation between these models and the classical exponential models

should hopefully be more apparent from the examples below.
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Example 3.1 (The' Bernoulli Distribution)

Let E = {0,1} and v(0) = v(1) = 1. ILet (M,%) be the subsemigroup of

(0',0) = (FUT0},4) (1, 4)

given by

[e o]
Lo .
M=\\J1'Mn, where M = {(x,y): x+y = n} .
n=

Let (1) = (1,0) and t(0) = (0,1). The elements of M are all of the

. form

Fg

>
B
. v
s
1]
@
=
@
v
o
3
v
o

e immediately get that

~ 1.0 0.1
€ <= =
Fem M\) O + 06N 1

<= n=1-20

Hence, the model

-9 if x=0 |,

where 0 <6 <1, 1is a general exponential model. The difference between
this model and the classical exponential family version of the Bernoulli

distribution is that 6 =0 and 6 = 1 are included in the model.



-15-

Example 3.2 (The Poisson distribution).

Let E = NU{0} and v(x) = == . ILet

x! °

(4,%) = (NU{0},4) x (u,+)

We have

(o0}
]

M= kv) M, where M= {(x,7); v = n}.
n=1

Let t(x) = (x,1). We get

x=0
<= n = e'e
Hence, the model
= x} = ) — ex -0
Pe{X = x} = v(x) Fe,e_ (t(x)) = e R

where 6 > 0 is a general exponential model. Again the inclusion of 6 =0

is the only difference between this and the classical approach.

So far, the examples considered have basically been exponential models in
the classical sense apart from adding some degenerate distributions. The
following examples show that the models in fact can be quite different from

the classical exponential models.
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Example 3.3 (The uniform distribution).
et E=0N and v(x) =1 for all x¢E. Let (My*) Dbe the subsemigroup of

_(M"*) = (g,v) X (g5+) .

given by

‘00
M= kv) M, where M = {(x,y): v = n}
n=1
Let t(x) = (x,1). The elements of. M are all of the form
n;O .

‘ = y
Fe n (x,y) - X{l:--oae} \\(X)n ? eeE’

S

We have
Fo,nt My < X; N Xqp,...,6y®. =1

<=> 7 = %—, BeN

Hence, the model

, 1
x = x}t=vix) Fe,-]é- (t(x)) =5 Xgq,...,0} (x)

where 6 = 1,2,..., 1is a general exponential model.

Combining examples 3.1 - 3.3 we get the following:

(Doubly truncated geometric distribution with unknown truncation

Example 3.k

points). Let E = N and v(x) =1 for all xeE. As our semigroup (M,#) we

choose the subsemigroup of
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(M's%) = (N,v) x (WU{=}, ) x (N,+) x (N,+) ,

~

, - )
given by M =\\,} Mh, where

n=1

Mi = {(x,x,x,1): xe N} ,

and Mh is recursively defined as

Mn = Ml * Mh—l for n = 2,3,...

Let t(x) = (x,x,x,1). The elements of M vare all of the form

Fe,n,)\,u (XaYaZ:n) =

X, ... 61 X, @) AT

where 66N Ufe}, neNU{w}, A > 0 and u>0.

We get

9.
A . X _
Fo,maut I < E AMu=1

<=>nN<6<o, A=1 and %-= b -n+1
S +6+1 4N
D S
< < o = =
or n <6 s AF 1 gn@ y o1
Aﬂ



-18-

Hence the model

- = &f X
Pe,nd)\ {X - X-} ¢'\>\,T‘.,.6) )\ X{n, cee e} (X) )

where X > 0,6 >n, . neN and

i 1

@—n+l if A =1 and 6 <
B0un,0)= (=2 ir A4 1 ena 6 <o

SAEHU

£:£. if A <1 and 6 =«

is a general exponential model.
Finally we shall consider an example, where the general exponential model

is different from a classical one in the sense of infinite-dimensionality of

the parameter space.

Example 3.5 (The completely free distribution). Let E be any denumerable
set, end Vv(x) =1 for all xeE. Let (M,*) NU{o} consisting of all mappings

£ from E to NU{0} where {x f(x) # 0} is finite and nonnemptvgv"

The composition rule is p01ntwise addition

(rxg) (x) = £(x) + glx)

. e 4 e 3 Y
We have the partitioning of M =U M , where
n=l "n
{fz;f(x - } .
x€E
If we let t(x) = xig}ﬁ we can see, that the sufficient reduction of a sample
S
of size n Tbecomes the "frequency teble", i.e., n) {x ,..‘,MD) is the

E. . ; . ; )
function in "N U{0}, heving the value n, in x iff x occurs exactly n_ times

in the sample (xﬂz,u.,xh). M consists of the elements
- .

¢
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. (£) =17 o(x) T
6 x&E

J

where 0 1s any mapping from E 1into the non-negative real numbers; We have

R Xro1 )\ -
gg €1, <=>Z (17 o(y) {ad )= 1

xeE vek

=Y e(x) =1

x¢B
Hence, the model
Py {x = x} = v(x) g (X{X}) =0(x) ,
where 6 satisfies

6(x) >0 for all x¢E and

:E: 6(x> =1 X
Xx€eE

is a general exponential model. Other examples could be generated ad libitum.

4, Estimation in general exponential models

We shall consider the following estimation problem:

X  Dbe independent and identically distributed on E with

Let Xi,...,X

P, {X = x} = v(x) &§(t(x)) ,

. N
where V and t are known and as in the previous section and § 6N% is

unknown. Our sample space is En, the parameter space is ﬁv and the likeli-

hood function becomes

Lt oo s E) =x£§ vix ) Bl (x Jreeew 1)),
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n)

As mentioned earlier, t given by

t(n) (xl,...,xn) = t(xl)*°~-*t(xn)

is sufficient for. & and 2 is clearly a maximum likelihood estimator of

3

g iff

%(t‘O) = sup E(to) ,
EGM\)

where to = t()&)%...*t(xn) .

In the foliowing we shall establish the existence and uniqueness of §& .

for any n %nd xl,...,xn.

First we prove a lemma:

A

o _ P < E .
Lemma 4.1 Let Mb {Ex:M. erE vix) g(t(x)) < 1p . M 1is compact in the

pointwise topology.

4, A~
Proof: Let El, 52,... be a sequence of elements in Mﬁ. As [0, WJM is
compact, we can always find a subsequence En s En 5+s. S0 that for any seM,
1 2

Eni(s) 2 E(s) .

where 0 < & (s) < o !

We have to show that this limit & din fact is an element of &i.

From Fatoub lemma, we get .

1 .(h.l)

A

vix) E(t(x)) < Limint S v(x) £ (t(x))
Z X X S :]i-.f[)looln Z X ni X

X€E ' xekE
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We shall now just prove‘ that £&(s) < + « and that

g(s * t) = £(s) &(t)

But as t(E) = M. and v(x) >0 for all xeE, (L.1) gives that £&(s) <+

1
for all seMl. Now, if sth = Ml*-n*Ml, where Ml appears n times,
we have
E(s) = 1im & (s) = lim (g (s,) & (s )) = E(s,) " E(s_) ,
jvoo By Cisw By 1 n, 1 n
Where s e € M, and sl*---*sn = s. This gives that &(s) <« for all

120"
s €M since

CE(e) =lim g (e) =1,
js0 4

and also that Eeﬁ. The lemma is proved.
f

We can now show the existence of the mgximum likelihood estimate for any

Dy XpseessX 0

Proposition 4.1: For all 5,€M, there is a E&M , such that E(_so) = sup E(so) > 0.
’ Ee M\)

Proof:

A

As Mf) is compact and the mapping & + &(s) is continuous, there is a E*éMi

so that
gie('So?j= swp E(s) .
géﬁg

E*(so) must be strictly positive (see the remark to Definition 3.1).

But if

v(x) &% (t(x)) =c <1
;%;g x | x c
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then /é: M->13+ defined as

E(s) = £%(s) (::l-) for s €M

is in Ai and E(sa >_E*(EO), which is a contradiction. Hence we must have
c =1, &(s) =¢g*(s), gell ana

Bla) = sw E(g)

e M\)

- which was to be proved.

Next we prove the unigueness of the maximum likelihood estimate.

Proposition 4.2: If ?;l(so) = %2(50) = sup F’(SO) , then gl = %2.
geM\).

Proof: For s&M let

£(s) = L fE (s) Ey(s) v

~

Define ?, M+R+ by

E(s) for & .
(Zwm E (6 <x>>>k *

E(s)
xeh

~ A
-

Obviously £eM\). Ir El=52 for all seMl, El=E2 for gll s eM.

Cauchy-Schwarz inéquality gives

> vix) E(s(x) < (z v (x) El(t(x») (z:- v (x) €2<t<x>>>= 1,

xR xX€E xeE
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as El and '22 are in ﬂv. We therefore have
8 46 = X v E(s(x) <1
xekl
But then

~

E(s,) >\./%l(‘so) Ealsg) = Easg) = Elsg)

/J ~N ~ A
which is a contradiction. Hence El = 52 & which was to be proved.

The next result giving some more detailed information about the maximum
likelihood estimate should be compared to the results in section 7, part I

‘of Barndorff-Nielsen (1973).

Proposition 4.3: The positivity region of E where g(so) = sup E(so) is

£eM,

exactly the face F(so).
Proof: As g(so) > 0, we have from proposition 2.2 that
M (8) = {seM: £(s) > 0} D F(s)

Suppose that M+(g) # F(so), i.e., there is an s' in M+(§)\F(so). Then

. A
s'&€M for some n and s''=s) #s,kccc¥s . As M (§) is a face, we then
have ‘ : !
S
Hsl?...,sne,M ()N M
At least one of them, say 's), must be outside F(so) since F(so) is a

submonoid and the sum is outside F(so). Now let

g(s) for SEF(SO)
g'(s) =

0 - otherwise
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and define §&: M~ R+ by

Clearly EEM\) and

zv(x) g (t(x)) < 1.

xeR

Therefore E(so) > %(so), which is a contradiction. Hence we must have
+ A

which was to be proved.

So, the support of the estimated measure is closely tied to the way the

observations can occur. If s is observed after n experiments, t(xi) must

0

be in the smallest face containing g for all i = l,...,n as

5p = £y Jur e wb (X))

The estimate contains this information as the support of P, 1is reduced to the

g€
subset of E, where t(x)eF(so).

5. Extreme Families of Random Walks on Monoids

First we introduce the definition of an extreme family of Markov chains as

given by Lauritzen (197L).

- Let (En, n=1,2,...) be a family of discrete, at most denumerable spaces

and Q = (Qnm)m<n a family of matrices with elements qmn(x,y), x€E , y€E ,
satisfying -
a,, (xy) 2 0, > a, (%y) =1
x€E
m
and B
= <n <
anan Qmp for m<n<p.




M(Q) denotes the set of sequences of probability measures | = (un, n=1,2,...

such that un is a probability measure on En and

= < .
4Um an pn for all m<n

M(Q) 1is a convex set and &(Q) shall mean the extreme points of M(Q). The

family of Markov chains on H;;l En defined by the initial distributions

pH {x, = x = (x)

and the transition probabilities for m <n
w () :
qmn(X;y)'ﬁ;'(;)— for u (x) #0

PH (X =ylx =x}= |
n m )
un(y) otherwise

where U takes all values in &(Q), is called the extreme family generated by

Q.
For all MeM(Q), the matrices Q_ define the "backward conditional

. Pl
probabilities", i.e.

u ' = = | = . < |
P ﬁ%n xIXn y} 4 n (x,y) for m<n
and pn the marginal distriﬁutions of Xn’ i.e.

P {x = x} = (%)
n n °

Now consider the sequence of spaces Mh, n=1,2,... wWhere M = Un=O Mh

~corresponding to a general exponential model. Let
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where X .,Xn are independent and identically distributed as

100"

Pe X = x} = vix) gt(x)),
vhere Eéﬁ\) is unknown. ILet
N
als) = ./, v(x)
xeE:t( x)=s
: *
We have of(s) >0 for all s €M . Define the. n'th convolution o« a of

1

%
0 as.a l(s) = ofs) and

oc*n(s)v= Z of(a) a*(n-l) (b) for m=2,3,...
a¥b=s

We have oc*n(s) >0 for all s¢ Mn'

Y., Y

1° “o? n=1l n

PE {Yn=y} >0

P AY =y|Y =x}-P {Y =x}
_ _ _ & nY''™m £ m
Pf: L, = XlYn =y} = PE{Yn=y}

( f"i ot (nom) (a) E(a)) o Px) E(x)

a: a¥x=y

o 2 y) Ely)

- o ™ (x) —5‘ oF (a-m)

*
o ty) asa¥x=y

We shall now consider the system of backward conditional distributions

(Q‘mn)m<n = Q with elements qmn(x,y) x€M,yeM given by

% <
(yy) = &L o Gflemm)
tm Y OL*n (y) .a‘:éa;m:y > *

We shall find &(Q) and in fact show that

[e0)
... forms a Markov chain on II M and we have for m < n and
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&(Q) ={u: :’E‘EEM\): w (x) = o (x) E(X)}

i.e. exactly the family of Markov chains made up by sequences of sufficient
statistics from successive repetitions of experiments giving rise to random

variables following a general exponential model.

First we need a lemma. For W = (un,n=l,2,...)e mQ), =x €M, k=1,2,...

define the sequence T U by
X,k

un_l_k(a*x) oc*k(a) Ot*n(X>
w (x) oF (n+k) (

if (x) >0
a¥x) "
U (a) otherwise

n

Lemma 4.1 pemQ) = Tx kUﬁm(Q) .

Proof:

U = U4 and hence lT)'c,k pemiQ).

b

Clearly, if uk(x) =0, T .
.

If uk(x) # 0, we have

z T (a) = —F— o z T a o) L)
X,k [ ‘uk(x) Z a*(n+k)(b) n+k
aeMn beMn_l_k a:a¥x=b _
. \ —
R S _
- Uk(x) }: " qn,n+k(x’b) un+k(b) =1 : >(5’l)
béMn_l_k :
as U was known to be in M{Q).
Further, we get
< _ _
[_).4 qmn(a’b) Tx,k un(b)
beM
n
- Z \; o ®a) o (n-m) (c) Un+k(b*x) ) o (x)
A a*(b) W Ge) i) oy

beM c:c¥a=b
n
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e ) o () 1 Z; < #(mH) ) oF(Rm) () .
T w(m¥k), (x) , 2. #(n+k) ntk '
¢ (aix) M b EM  ciceasb @ (bsx)
Now
{crcxa = b} Q{c:c*a%x = b¥x}
and
' ;X <
{b#x: xeMn} M s
so we have the inequality‘
2.
, q_(a,p) T u (b)
beu mn X,k "'n
n
* . -
o m(a) Of,*k(X) 1 . A \—\-\-—; . OL*(m-'_k)(a*X) OL*(n m)(c) (d)
SR CT o PRI CI I 2 ) ) Mok
deM c:cx(a%*x)=4
n+k
S
*m *k
- o (a) o (x) 1 <
- % (m+k ) u (%) Z_, qm+k, n+k(a'*x’d) un+k(d)
o (axx) k dem
n+k
= TX,k Um(a) s
or in short,
T . u(a)> ? g (a,0) T . u (o) . (5.2)
X,k "m —b“é-"Mn mn | X,k 'n

But by (5.1) both sides of (5.2) add up to one when summing over aeMm,

and hence we must have equality and therefore T . pem(Q), which was to
. 2

be proved.
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Proposition 4.1

nes@) <> Jeefl: ux) = o™ Elx)

Or, in words, the extreme family generated by Q- consist of "random walks',

where the t(X)'s are independent and identically distributed with the distri-

bution of Yl = t(Xl) given by

ul(x) = o(x) &(x) for some & éﬁ? .

Proof: The proof consists of the following steps. First we use lemma 4.1 to

obtain a representation of any peEM(Q) as a convex combination of other elements

(TX Xk p) in Mm(Q). If u then is extreme, U must be equal to these other
> e e e e o

elements,ﬂwhich gives us an eqﬁéﬁién. thi; equation is essentiglly the
homomorphism equation and we can then establish "=>"_  The proof of this and of
lemma 4.1 is a direct generalization of the proof of an equivalent result for M
being the k-dimensional integer lattice in Neveu (196L4) and Martin-Lof (1973>.' i

- To-prove "<=" we show that a proper mixture of homorphisms, cannot be a

N

homomorphism.

Suppose now that peM(Q) is extreme, i.e. pe&(Q). We note that the

equation for wEM(Q).

~ t:w a*n(a) u*k( )
WO 0 R (g e ) O
ok c:c*a=b

implies that
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un(a),=0=>un+k (a*c) =0 N

Hence (5.3) can be rearranged to

as Qn,n+k(a’b) >0 for all beMn+k.'

u (a) = s ; “k(c) : Tc,k un(a)

n

This gives U as a convex combination of TC X H, C(:'Mk for all k = 1,2,...
b .

and as | was supposed to be extreme,

un(a) = Tc,k un(a) for all k = ],"’2"” and c el .
Thus, for all ceM, k = 1,2,... suéh that pk(c) > 0, we must have
un+k(a->ec) i un(a) W, (c) (51
oc*Tn+k)(a*c) o B(a) a*k(c) e
If we let
u (a)
hn(a) = —il;l_—— >
o (a) :
(5.4) becomes
h +k(a*c) = hn(a) hk(c) ' (5.5)

But as

uk(c) =0 =} uﬁ_'_k(a*c) =0
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(5.5) must hold f ‘
or all n, k, aEMn, ceMK. As MnﬁMm =@ for m#n,

We can define a mapping £ from M to R, by
E(a) = h_(a) for aeM
n n °

and by (5.5) £ e,

If u is extreme, we then have

M (a)

*n(

= £(a) <= b (a) = a*(a) E(a).

o "(a)

As U 1s a probability, we have

' o -
’ Lun(a) =Loc*n(a) gla) =1 ,
a a

1.e., that £ &M . We have proved "=,

Now suppose that

g o oA
. uno(x) = a*n(x) Eo(x) for some EoéM\) .

All elements in M(Q) are mixtures of the elements in §&(Q). It follows

from what we proved before that the set of sequences
E A
{u=, gem } »

where’

wE0) = o) £ (5.6)

i i
b

contains &(Q). A fortiori any  pe(Q) can be represented as a mixture of
EE— o S ) % g o
elements of the form (5.6) This is in particular true for u O. Hence, /

~

there is a probability measure P on M\) so that for all xe€M
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W) € () = f o) £k ar(E)
géﬁv :

But (5.7) is equivalent to

Eo(x) =J/. E(x) a4 P(§) for all >x:eM
3 »

Using the homomorphism property, we have

= j{ E(x # x) a4 P(E) = . (£(x))% a p(g) -
M
v

EéM\; Ee

(5.7)

(5.8)

But (5.8) implies that P{EO} = 1 and hence that EO is extreme. The

proof is complete.

6. Additional Comments

The families defined in the present paper are sometimes identical to the

completion of a regular canonical exponential family as defined by Barndorff-

Nielsen (1973). s

Let T be a finite subset of the k-dimensional integer lattice,

. Define Tn by
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Let (M,%) be the semigroup

M= {(t,n): ter , nel}

with the composition
(s, m) % (t, n) = (s + t, m + n)
If we have a general exponential model on a space E with t(x) = (g(x), l),

where g 1s a mapping from E onto T, this model can be identified with

the completion of the canonical exponential family generated by Vv and g

in exactly the same way as in Martin-Lof (1973). This situation is present in

example 3.1 of the preseht paper.

If g(E) = T contains more than integer lattice points, this is not

necessarily the case as the following example shows.

© M
Let M —' Un=l n’

Example 6.1 Iet E = {(0,0), (1,0), (0,1), (Y37}, 1/2)}.

where

Moo= {x5y,n): (xy) eEnﬁ |

where En is recursively defined as

El =E and En =E + En—l‘ for n=2,3,...

and the composition on (M,%) is defined as

(x,y,n) # (x', y',n) = (x+ x', y+y', n+n").
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Let v(x,y) =1 for all (x,y) in E and

S

t(X:y) = (XaYa l)

The completion of the exponential family generated by v ana f ﬁoﬁid

consist of all probability measures of exponential type with support equal to

E, {(0,0), (0,1)}, {(0,0), (1,0)} or {(0,1), (1,0)} as well as the probabili-
ties degenerate at (1,0), (0,0) and (0,1). Because (Jz—/—f;, 1/2) dis in the

interior of the convex hull of E, no probability in the family would be

degenerate at this point.

The subset F of M given by

P - (n 2, -;l) : nel (6.8)

is obviously a face of M. Hence the general exponential model corresponding

to Vv, t and M will contain the probability degenerate in (VE?&, 1/2).

This example illustrates the essential difference between the completions

defined by BarndorffANielsen'(l973) and the models in this paper: the

. . k 5 ;
"completions'" are defined via geometrical concepts in R or via topological
considerations whereas the general exponential models are derived via algebraic

structure in the statistics, thus letting the actual observations play a more

prominent role. If one after n experiments in the above example obtains

€ —
the value of the statistic to be (n‘/é/h, n/2), this must be because

(Vﬂikh, 1/2) was observed n times. This is reflected in the estimated pro-

bability measure, which will be degenerate at (\ﬁEVu, 1/2) as can be seen

from proposition L4.3.
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