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1. Introduction and Summary 

The purpose of the present paper is to illustrate the concept of an 

extreme family as defined by Lauritzen (1974) and to define a class of 

statistical models for discrete observations generalizing classical 

exponential families. 

In the classical formulation, a discrete exponential family is a 

family of probability measures (PS' Bf8) , where the parameter space e is 

a subset ofk-dimensional Euclidean vector space, the probability function 

being given by 

k 
L:S.t.(x) 

i=l J. J. 
e 

where xEE, a discrete set, ti are real valued functions and S = (Bl , .•. ,8k ). 

If one observes independent identically diftributed random variables Xl"",Xn 

with the common probability for given by (1.1), the joint probability will X. 
J. 

be given by 

~e, (ft,(x,0 
= a(s)n( II b (x. ))_ ei=l J. j=l J. J J 

j=l J 
(1.2) . 

Now, pJn) is aga:ln an exponential family ·with the same parameter space as 

before. Somehow this is not a coincidence. If we try to look closer at the 

elements of the exponential family, we might understand this fact. 

The function b is a common reference measure defining the support of 

the measures (PS' SEe), and a(S) is a normalizing constant. The functions 
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(tl, ..• ,tk ) are the sufficient statistics, and as an experiment is repeated, 

the sufficient statistics for the combined experiment is obtained as the sum 

of the sufficient statistics for the experiments in the repetition: 
J 

The reason for this is that the function 

8.t. 
~ ~ 

is a homomorphism of the range space of (tl ' • " ! , tk ) into the group ( (0,00), • ) : 

The idea in this paper is that most results about exponential families 
'l-.. 

essentially are based on the above properties only. We shall therefore try to 

defin~ a class of families of distributions via these properties. 

If we again look at (1.1), (1.2) and (1.3) we see that we never substract. 

In fact, we only use that the algebraic operation + is associative and 

commutative. A set with a composition which is associative and commutative 

is here called a ciommutati-ve semigroup~ We shall establish some of the simple 

results about these in Section, 2. 

Let us consider another family of distributions (p 8' 8 f€») , where 

e =' {l, 2, ••• ,}, and 
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where x E E = {l,2, .•. } and is the indicator function of the set A, 

i.e. 

if x E. A 

otherwise 

Consider Xl, .•• ,Xn independent indentically distributed as above. Their 

joint probability is given by 

Pe(n) (xl'...' xn) = 1 ({ } ) en X{l, ..• , e } rrax xl'· •. , xn 

The same situation as before is actually present if we replace t(xl )+ 

t(x2 ) by max{t(xl ), t(~)}. Just g~(x) = X{l, : •• ~ e}(x) may vanish 

in this ~ase whereas exponentials are always strictly positive. The 
i'. 

support of the measure p. 
e in this last example varies with 

is not the case in the first example. 

eEe, which 

In section 7, part I of Barndorff-Nielsen (1973), there is a detailed 

discussion of. problems connected to maximum likelihood estimation in exponen-

tial families. The maximum likelihood estima,te in regular canonical 

exponential families is shown to exist iff the observation happens to be so, 

that the value of the sufficient statistic falls within the interior of the 

convex hull of the support of the measures in the family, transformed by the 

sufficient statistics. This means that if the boundary of this convex hull 

has positive probability, one might very well get an observation from which 
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it is impossible to estimate. To solve this problem it is proposed there 

to make a suitable extension of the model, the extension being defined for 

families where the set of possible values of the set of sufficient statistics 

is assumed to be finite. The extension is called the completion of an exponen-

tial family. 

The measures in the completion of an exponential family have certainly 

their support varYing with the parameter, and the "fixed support" property 

therefore does not seem to be essential to the nice results existing for 

exponential families. 

The families defined in the present paper are shown to be "complete" in 

the sense that the maximum likelihood estimate of the parameter always 

.exists. 

In section 3, the families are defined and some examples are dis·cussed. 

In section 4 we show the existence and uniqueness of the maximum likelihood 

estimate of the unknown parameter in such families. 
\> 

In section 5 we s·how that the family of Markov chains made up by sequences 

of sufficient statistics from successive independent repetitions of an experi-

ment giving rise to a general exponential model, is in fact an extreme family 

of Markov chains as defined by Lauritzen (1974). 

In section 6 we shall briefly discuss the relation between the models 

defined in the present paper and the completion of an exponential family as 

defined by Barndorff-Nielsen (1973). 

2. Commutative Semigroups 

Commutative semi groups· will play an essential role in the present paper. 

We shall quote the definition. 
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Definition 2.1 Let M be a set and * a composition rule on M. (M,*) 

is said to be a commutative seroigroup if * is associative and commutative 

Le., if 

ii) \la,b EM: 

As we shall only consider commutative semigroups throughout this paper, we 

shall just write "seIUigroup" instead of "commutative s eroi group " . Examples 

of such semigroups are 

1) (N,+ ) where N =. {:L,2, ... } . -
2) (N 'v) , where xvy = max {x,y }. 

3) (N,,,), where x--y = mirdx,y}. 

4) (~+, • ) , where ~+ is the set of nonnegative real numbers. 

Now, let (M, *r) be a semigroup. 
"-

Consider the set M consisting of all 

homomorphisms ~:(M,*) + (~+,.), i.e., s~tis~ing for all a,btM 

" If ~l' ~2 E M, the mapping ~1·~2 defined by 

is obviously in M and it is a trivial exercise to· veri~ that (M,·) is a 

semigroup. (M,.) shall be called the dual semigroup to (M,*). 

If we have two semigroups (M,*) and (N,O) we can form the product 

of these 
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(M,*) x (N,o) = (M x N,®) ~ 

where 

This is again a seruigroup. The dual to a product can easily be obtained 

from the duals to the elements in the product: 

Proposition 2.1: The homomorphisms of (M x N~) into (R+,o) are exactly 

those ofth~ form 

~(m,n) = ~(m) ~(n) 

A A 

where ~ eM and ~ EN. 

Proof: If ~(m,n) = 0 for all (m,n), ~ is of the form described. We 

assume that ~(m',n') > O. The equation 

= ~(ml ,n) ~(m,n I) 

gi ves as (m' ,n I) is fixe'd: 

~(m,n) = ~(m,n I) Semi ,n) = 
~(m' ,n') 

Further we have for any m, nl' n2 : 

gem) hen) 

(2.1) 

(2.2) 
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As this holds for all m, nl we must have a constant such 

that 

(2.3) 

Analogously there is a c2 such that 

(2.4) 

From (2.1) and (2.2) we get that = 1 and if we define 

A A 

we get from (2.3) and (2.4) that ';McM and ';NEN and from (2~2) that 

';(m,n) = gem) hen) = c2 gem) clh(n) = ';M(n0 ';N(n) which was to be proved. 

As mentioned in the introduction, the support of the measures in the 

families we consider may very often vary with the parameter. This will of 

course not be in a completely arbitrary fashion but in a fashion compatible 

with the algebraic structure of the sufficient statistics. To investigate 

this aspect, the following concept will be of relevance: 

Definition 2.2 Fe M is said to be a face of M if 

i) F is a subsemigroup of M and 

ii) cEF t\ c = a*b -> at:F t\ bEF 

The faces of M are exactly the possible positivity regions for elements in 

A 

M: 



-8-

Proposition 2.2: Let F eM. F is a face of M iff there is a <';0(1 such that 

F = {aEM: <,;(a) > o} 

"-

Proof: If F = {atM: <,;(a) > o} for some <,;eM, then 

so F is a subsemigroup of M. If c~F and c = a*b, then 

and hence <'; (a) and .; (b) both must be positive, i.e., aEF and btF. 

If on the other hand F is a face of M, we can define 

if a~F 

otherwise • 

<'; is easily seen to be a homomorphism and the result is proved. We also have 

Proposition 2.3: M is a face of M 

The proof is obvious. 

Proposition 2.4. If 

is a face of M. 

(F.). I is a family of faces of M, 
1 lE: 

Proof: Immediate from the definition. 

then 

Remark: From propositions 2.3 and 2.4 it follows that for any aEM there is 

a unique smallest face of M, F (a), such that aE-F( a) . 
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.~\ 

Propositions 2.1 and 2.2 enable us to establish a result about faces of 

Proposition 2.5: F is a face of M x N iff F = FM x FN, where FM and 

FN are faces of respectively M and N. 

Proof: According to proposition 2.1, all homomorphisms ~ of (M x N ,®) 

into (~+, • ) are of the form 

A A 

where ~ EM and ~N EN. ,Now 

(2.1) 

The proposition 2.2 and equation (2.1) together yield the result. 

Example 2.1: Let us consider the semigroup (Nlj{O}, +). Let 

~(l) = e, some non-negative real number. We must have ' 

It follows that the only faces of (NU{O},+) are' {a} and NU{O} 

Example 2.2 Let us consider (N, v). Let" nf.N be fixed. The smallest face 

containing n must contain all integers less than or equal to n as 

n v x = n if x < n 
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On the other hand, b, ... ,n} is obviously a face of (N, v). Hence all faces 

of (N, v) are N itself and subsets of the form U, ... ,n} for $ome nE.N. 

"'-

Now let t;;E..N be positive exactly on {I, ... ,n}; it must satisfy 

t;;(xvn) = t;;(x) t;;(n) = t;;(n) for x < n. 

As s(n) is strictly positive, we get 

t;;(x) = 1 for x < n 
= 

and hence that the ~homomorphisms of (N,+) are indicator functions of 

faces, 

t;;(x) = X (x) 
{I, ... ,n} 

for some n-E N U{oo}. 

Example 2.3: If we now form the product (~, v) x (~{ O}, + ) it follows from 

proposition 2.1 that all homomorphisms are of the form 

t;; (x,y) = X (x) • eY 
{I, ... ,n} 

for some nE N U {oo} ( and e > O. From proposition 2.5, we get that the faces 

of this monoid are 

{l, ... ,n} x NU{o} neN -
" , 

·{l, •.. ,n} x {a} , nE N ! 

-
N x glJ{0} and N x {a}. 

/. 
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3. General Exponential Models 

In the following we shall consider an at most denumerable set E, a 

semigroup (M,*) and a mapping t: E + M. We shall think of E as the sample 

space and of t as a sufficient statistic. Let Ml = t(E) and define 

recursively 

Mn = M} * Mn _l , for n = 2,3, ... 

This is done for the fo+lowing reason: if we make n independent observa-

tions of a random variable on E, we shall assume that the sufficient statistic 

will be 

t (x ) * ... * t (x ) 
1 n 

and hence M = t(n) (~) .. 
n 

We shall assume that we can infer the size of the experiment from the 

statistic, or, in other words, that 

M nM = rj, whenever n i m m n 

For convenience we don't want M to be bigger than necessary, hence 

we assume that 

M :I 00 1Mn 
M 

Let v be a a-finite measure on E so that v(x) is positive for all 
A 

XEE. Let Mv denote the normalized dual to M: 

Mv = {S€M:I v(x) s(t(x)) = I} 
xeE 

A 

and assume that MV is non-empty. 
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A statistical model for a random variable X taking values in E is a 

family ;p of probability measures on E. 

Definition 3.1: ;p is said to be a general exponential model if there 

exist M, t and V as above, such that 

Hemark: It is no restriction to assume that for any s,::'M, there is a 

S~M such that. s(s) > 0, since if this is not the case, we can look at 
V 

M' =' {sEM: 3sEMv: s(s) > O} 

which clearly is a semigroup and 

t' = tiE' , V' = viE'. 

Since this clearly gives us an equivalent statistical model we shall assume 

this throughout the paper. 

Let us first see in what sense this looks like a "classical" exponential 

model. Suppose we have observed n independent random variables from the 

above distribution. The joint probability function is 

p~n) (xl' •.. ,x ) =(.IT V(x.)) • s(t(xl))"'s(t(x )) 
s n l=l l n 

=( IT v(x.)) s(t(xl )*"'* t(xn )) 
i=l l 

(3.1) 
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~ MA If we comnare (3.1) with (1.2) in the introduction, we note, that with sf • 1:" 

b the Common reference measure. The statistic V plays the same role as , 

('t· t n) i.e. the sufficient statistic plus a t corresponds to 1"'" k' , 

. . f th 'ment ~EM: corresponds "colIDting variable II indicating the s~ze 0 e exper~ . s V 

to the flIDction 

e.t. 
l ~ 

so the normalizing constant aCe) is taken into ~ and the experiment size 

into the statistic t, 

The above defined models differ from the exponential models in several 

respects. First the range space of the statistic is a semigroup instead of a 

subset of a vector space, the parameter space is the normalized dual of this 

semigroup instead of a subset of a vector space, and there is no assumption of 

anything like finite dimension. Furthermore we shall see that in general 

the support of the measures in the family will depend on the parameter l;, 

as it will not always be positive. As derived in the previous sections, 

the possible positivity regions for S will be the faces of the semigroup (M,*). 

From (3,7) and the Neyman factorization theorem it immediately follows that 

t (X )* ... * t(X ) 
1 n 

is sufficient for the parameter l; from observation of Xl"",Xn ' 

The relation between these models and the classical exponential models 

should hopefully be more apparent from the examples below. 
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Example 3.1 (The Bernoulli Distribution) 

Let E = {O,l} and v(O) = V(l) = 1. Let (M,*) be the subsemigroup of 

(M I ,*) = (N U {O} ,+) x (N, + ) 

given by 

00 

! ' 
M=i 1M V n' n=l 

where M = {\x,y): x+y = n} 
n 

Let t(l) = (1,0) and t(O) = (0,1). '" The elements of M are all of the 

form 

e> 0 
= ' 

n > O. 

we immediately get that 

<l>n=l-e 

Bence, the model 

if x = 1 

if x = 0 

where 0 ~ e ~ 1, is a general exponential model. The difference between 

this model and the classical exponential family version of the Bernoulli 

distribution is that e = 0 and e = 1 are included. in the model. 
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Example 3.2 (The Poisson distribution). 

Let E =~ U{O} and vex) = -+ . . x. Let 

We have 

00 

M=U M , where M = {(x,y); y = nL n n 
n=l 

~ 

Let t(x) = (x, 1) . We get 

00 
A 

< >L: 1 eX F ~ Mv = 1 e,n x! n 
x=O 

<=> n = -e e 

Hence, the model 

vex) Fe -e (t(x)) ,e 

where e > 0 is a general exponential model. Again the inclusion of e = 0 

is the only difference between this and the classical approach. 

So far, the examples considered have basically been exponential models in 

the classical sense apart from adding some degenerate distributions. The 

following examples show that the models in fact can be quite different from 

the classical exponential models. 



-16-

Example 3.3 (The uniform distribution). 

Let E = N and v(x) = 1 for all xEE. Let (M,*) ·be the subsemigroup of 

given by 
• 00 

M = U Mn' where M = {(x,y): y = n} 
n 

n=l 

A 

Let t(x) = (x, 1) . The elements of M are all of the form 

~ have 

F EM <==;> t n X{l, ... ,e}(x) = 1 e,n . V x=l 

1 <=> n = - eEN e ' 

Hence, the model 

Pe {X = x} = V (x) Fe!. 
'e 

(t(x)) 
1 

= e · X{l, ... , e} (x) , 

where e = 1,2, .•. , is a general exponential model. 

Combining examples 3.1 - 3.3 we get the following: 

Example 3.4 (Doubly truncated geometric distribution with unknown truncation 

points). Let E = Nand v(x) = 1 for all xEE. As our semigroup (M.*) we 

choose the subsemigroup of 
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(M' , *) = (N, v) x (N U {oo }, II) x (N, +) x (N, + ) 

given "by M = Uoo 

n=l 

M, where 
n 

M1 = {(x,x,x,l): XE N} 

and M is recursively defined as 
n 

M = M1 * M for n = 2,3, ... 
n n-1 

A 

Let t (x) = (x,x,x,l) . The elements of M ~ .. are all of the 

Fe 1 (x,y,z,n) = ,n,I\,)1 

where 8EN U{oo}, n~NU {oo}, A >0 and )1 ~ o. - - - -
We get 

e 
A 

F E Mv <~ e,n,A,)1 L x=n 

< ;:. n < e < 00 A 1 and 
1 

e = - = - n + , )1 

n < e <00 A :f 1 and 1 -A8+1_An 
or , 

or n < 00, 8 = 00, A < 1 

- = )1 

and 1 
)1 

1.-1 

form 

1 



H~nce the m.odel 

where A > 0, e 2:,; 11, I n EN and 

4>(A,n,6)= 

1 
6-n+l 

A-I 
l..e+~l..n 

I-A 

An 

is a general exponential model. 
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if 1..=1 and 6 < 00 

and e < DO 

if A < 1 and 6 = 00 

Finally we shall consider an example, where the general exponential model 

is different from a classical one in the sense of infinite-dimensionality of 

the parameter space. 

Example 3.5 (The completely free distribution). Let E be any denumerable 

set, and V(x) = 1 for all xeE. Let (1'4,*) =~U{O}, consisting of all mappings 
---

- - -- -------- ----
f from E to N U{O} where {x: f(x) :f. O} is finite and non-empty. 

------ ----- -~-~---~----_ ----------0----- --------- __ -

The composition rule is poi~twise addition 

~f*g) (x) = f(x) + g(x) • 

00 

We have the partitioning of M = U 1 M, where n= n 

If we let t(x) = X{~}' we can see~ that the sufficient reduction of a sample 

of' size n becomes the "fr~quency ta.ble", i.e., t (n) (xl"" ,xn ) is the 

function in ENU{O}, 

in the sample 

haying the value 

'" 

n in x x iff x occurs exactly n x 

M consists of the elements 

times 
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ge (f) =ll e(X)f(X) 
xcE 

where e is any mapping from E into the non-negative real numbers. we have 

Hence, the model 

where' esatisfies 

( 
X{ } (y)) , 

<-i> L: Jl e (y ) x = I 

E YEE Xf 

. <=> :L: e ( x) = I 

x€E 

e (x) 2: 0 for all 

I: e(x) = I 
xE.E 

xEE 

is a general exponential model. Other examples could be generated ad libitum. 

4. Estimation in general exponential models 

We shall consider the following estimation problem: 

Let Xl' ""Xn be independent and identically distributed on E with 

FE; {X = x} = v(x) E;(t(x)) ., 

'" where V and t are known and as in the previous section and E; E Mv is 

unknown. O . En, ur sample space lS the parameter space is Mv and the like li-

hood function becomes 

n 
L(xl ,·· ~ ,xn ' l;) = II v(x. ) 

x=l l 
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As mentioned earlier, t(n) given by 

A 

is sufficient for c ~ and ~ is clearly a maximum likelihood estimator of 

~ iff 

A 

~(t ) = 
o 

where to = t(XI)*···*t(xn ) 

In the following we shall establish the existence and uniqueness of 

for any n and xl"" ,x . 
" n 

First we prove a lemma: 

Lemma 4.1 Let M~ = {~EM: LXEE v(x) ~(t(x)) < I} . 
pointwise topology. 

A* Mv is compact in the 

\-c 
Proof: Let be a sequence of elements in As is 

compact, we can always find a subsequence so that for any s ~ M, 

where 0 < E; (s) <: 00. 

we have to show that this limit in fact is.an element of 

From Fa tou s lemma, we . get 

:E V (x) IE; (t (x)) 

x€E x€.E 

v(x) ~ (t(x)) < 1 
n. = 

J.. 

(4.1) < lim inf 
= 
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We shall now just prove that ';(s) < + 00 and that 

';(s * t) = ';(s) ';(t) . 

But as teE) = Ml and vex) > 0 for all x.f.E, (4.1) gives that ';(s) < + 00 

for all s € Ml . Now, if s € Mn = Ml * ... *Ml , where Ml appears n times, 

we have 

= lim'; (s) = lim (.; (s ) ... .; (s») 
i+oo ni i+oo n i 1 ni n 

where and s * •.. *s = s. 
1 n 

This gives that ';(s) < 00 for all 

s E.M since 

A 

.; (e) = lim'; (e) = 1, 
i -tOO n i 

and also that .; EM. The le:nuna is proved. 

We can now show the existence of the ~mum likelihood estimate for any 

A A 

Proposition 4.1: there is a .; E Mv ' such that 
A 

~~so) = ~up ';(sO) > O. 
';E M 

V 

Proof: 

As ~ is compact and the mapping .; + ';(s) is continuous, there is a 

so that· 

.;~ ~sO-) = sup ';(sO)- -- • --­

~EM~ 

';*(sO) must be strictly positive (see the remark to Definition 3.1). 

But if 

)' vex) .;* (t(x» - c· < 1 
M 



then ~: M -+ R defined as 
-+ 

s EM 
n 

is in M~ and ~(sd >s*(~, which is a contradiction. 

c=l, g(s)=s*(s), gEMv and 

which was to be proved. 

Renee we must have 
.' 

Next we prove the uniqueness of the maximum likelihood estimate. 

Proposition 4.2: 
A A 

then sl = s2' 

Proof: For s E. M let 

J 

A' 

Define s: M -+ R by 
-+ 

A . 
s(s) = for s c~ . 

Cauchy-Schwarz inequality gives 

l: vex) ~(t(x)) ~(l: v(x) ~l(t(X))) (:E' v(x) ~2(t(X)))= 1, 
XEE . xEE xEE 
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A ,A A 

as ~l and ~2 are in Mv. We the·refore have 

A A 

~l ~ ~2 => 2: v(x) ~(t(x)) < 1. 
xfE 

But then 

.~ 

which is a contradiction. Hence gl = g2 = g which was to be proved. 

The next result giving some more detailed information about the maximum 

likelihood estimate should be compared to the results in section 7, part I 

of Barndorff-Nielsen (1973). 

Proposition 4.3: The positivity region of g where €(so) = sup ~(so) is 

exactly the 'face F (sO) • 

Proof: As g(so) > 0, we have from propos\tion 2.2 that 

+ A. A 

M (~) = {seM: ~(s) > o}=2.F(so) 

S I £M 
n 

have 

for some n and S "= S *s *···*s '.' 1 2 n· 
.- - ':,::'.~-

+ A 

in M (~)\F (sO) • Then 

is a face, we then 

At'least one of them, saysl , must be outside F(sO) since F(sO) is a 

submonoid and the sum is outside F(SO). Now let 

A 

{~ (s) 
~I(S) = 0 

for SEF(sO) 

otherwise 

,I 



and define ~: M + ~+ by 

~ (s) 
_ ~I(S) 

-(2 \)(X)~I (,t(X)))n 
xr:E 

A 

Clearly ~ E. M\) and 

A 

for s EM • 
n 

Therefore ~(so) > ~(so)' which is a contradiction. Hence we must have 

which was to be proved. 

So, the support of the estimated measure is closely tied to the way the 

observations can occur. If is observed after n experiments~ t(x. ) 
1. 

be in the smallest face containing So for all i = 1, ..• ,n as 

must 

The estimate contains this information as the support of PA is reduced to the 
~ 

subset of E, where t(x) EF(sO)' 

5. Extreme Families of Random Walks on Monoids 

First we introduce the definition of an extreme family of Markov chains as 

given by Lauritzen (l974) . 

. Let (E, n=1,2, ••. ) be a family of discrete~ at most denumerable spaces 
n 

and Q = (Qmn) a family of matrices with elements qmn (x,y), 
m~n 

xEE,yt:E, m n 

satisfying 

qmn (x,y) > O~ ~ qmn(x,y) = 1 - xcE m 
and 

~ ~p = ~ for m~n < p 



,n(Q) denotes the set of sequences of probability measures ~ = (~ , n = 1,2, ... ) 
n 

such that ~n is a probability measure on E 
n 

and 

~ = Q ~ for all m < n . 
. m mn n 

m(Q) is a convex set and @(Q) shall mean the extreme points of m( Q). The 

00 

family of Markov chains on II E 
n=l n 

defined by the initial distributions 

and the transition probabilities for m < n 

~n (y) 
a .. (x y). for 1Im(X) ~ 0 
"mIl ' ~ (x ) J-' 1" 

m 
p~ {X = y/X = x} = 

n m otherwise 

where ~ takes all values in @(Q), is called the extreme family generated by 

Q. 

For all ~ Em(Q), the matrices ~ de-fine the "backward conditional 

probabilities''', i.e. 

for m < n 

and ~n the marginal distributions of Xn , i.e. 

. p~ {X = x} = ~ (x) 
n n 

Now consider the sequence of spaces M , n=1,2, .•. 
n 

. corresponding to a general exponential model. Let 

= 

00 

where M = U M n=O n 
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where Xl"" ,Xn are independent and identically distributed as 

where ~EM 
V 

"We have a (s ) 

a as a*l(s) 

"We have 

Yl ' Y2'··· 

P~ {Yn=y} > 0 

P~ {X = x} = vex) ~(t(x)) , 

is llilknown , Let 

'\' 
a (s ) = / vex) .<--J 

xEE: t( x)=s 

> 0 for all seMI' Define the. n'th convolution 

= a (s ) and 

. a*n(s) = L a(a) a*(n-l) (b) for m=2,3,-... 
a*b=s 

for al,l s EM. 
n 

co 

*n 
a 

forms a Markov chain on II M 
n=l n 

and we have for m < n 

Pc {y = xl Y = y} 
s m n 

*(n-m) a 

of 

and 

We shall now consider the system of backward conditional distributions 

(Qmn)m~ = Q with elements q (x,y) x E.M ,yeM given by 
llln m n 

qmn(x,y) 

We shall find ~(Q) and in fact show that 

2 a*(n-m) (a) 

a:a*x=y 
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i.e. exactly the family of Markov chains made up by sequences of sufficient 

statistics from successive repetitions of experiments giving rise to random 

variables following a general exponential model. 

First we need a lemma. For fl = (fln ,n=1,2, ... )Em(Q), x EMk' k=1~2, ... 

define the sequence T fl by x,k 

T fl (a) = x,k n 
fl (a) 

n 
otherwise 

Lemma' 4.1 

Proof: 

Clearly, if ~ (x) = 0, T fl = fl 
. K x,k and hence ' T, fl E m( Q) • 

x,k 

If ].ik(x) 'f 0, we have 
~" 

T fl (a) 
x,k n 

aEM . n 

as fl was known to be in m( Q) • 

= 

Further, we get 

".---, 

> .J. __ -i 

b E.M 
n 

bEM 
n 

q (a,b) T fl (b) 
mn x,k n 

~ 
/ L __ .I 

c: c*a=b 

a*m(a) a*(n-m) (c) 

, a*n(b) 

fln+k(b*X) a*n(b) a*k(x) 

~ (x) a*(n+k) (b*x) 



Now 

and 

1 
~(x) 

. {b*x: x EM } eM k' n - n+ 

so we have the inequality 

*m *k < a (a) a (x) 
= * (m+k) ( ) a a*x 

= 
a*m(a) a*k(x) 

* (m+k) ( ) a a*x· 

= T 'l..\m(a) , x,k 

or in'short, 

1 
~k(X) 

1 
~(x) 

~ 
b~M 

n 

I 

q (a,b) T ~ (b) mn x,k n 

I 
* (m+k) ( ) * (n-m) ( ) a a*x a c 

d E.Mn+k c:c*(a*x)=d 
a*(n+k) (d) 

~:. 

I q 
m+k, n+k (a*x,d) ~n+k(d) 

dEMn +k 

T ~ (a).?: I q (a, b) T k ~ (b) • 
x,k m - b E. M mn x, n 

n . 

~n+k(d) 

But by (5.1) both sides of (5.2) add up to one when summing over a € M , 
m 

and hence we must have equality and ~herefore T k ~ ~m(Q), which was to x, 

be proved. 
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] A 

].1 c.(;(Q) <=> .J l; EM 
\) 

Or, in words, the extreme family generated by Q consist of Ifrandom walks ", 

where the t (X) 's are independent and identically distributed with the distri-

bution of Yl = t (Xl)~i ven by 

].11 (x) = a(x) l;(x) for some 
"-

l; EM 
\) 

Proof: The proof consists of the following steps. First we use lemma 4.1 to 

obtain a representation of any ].1 Em( Q) as a convex combination of other elements 

(Tx k].1) in m(Q). If ].1 then is extreme, ].1 must be eClual to these other 
, 

elements, which gives us an eCluation. This eCluation is essentially the 

homomorphism eCluation and we can then establish "=>". The proof of this and of 
'. 

lemma 4.1 is a direct generalization of the proof of an equivalent result for M 

being the k-dimensional integer lattice in Neveu (1964) and Martin-L~f (1973). 

T "<=" h t o prove we s ow hat a proper mixture of homorphisms, cannot be a 

homomorphism. 

Suppose now that ].1 e m( Q) is extreme, i.e. ].1 e & (Q) ~ We note that the 

eCluation for ].1 £:m( Q) • 

implies that 



as ( ) 0 for all b E:Mn+k .' Hence (5.3) can be rearranged to 
~,n+k a,b > 

u (c) • T fJ (a) 
. l\. c,k n 

b c:. Mn+k c: c*a=b 

This gives fJ as a convex combination of T k fJ, c6M f,or all c, -K. k = 1,2, ... 

and as fJ was supposed to be extreme, 

fJ (a) = T k fJ (a) for all k = 1,2, ... and CE.M,' n c, n -K. 

Thus, for all c E.~, k = 1,2,... such that_~(c) > 0, we must have 

If we let 

(5.4) becomes 

But as 

fJ (a) 
h (a) = _n __ 

n a*n(a) 

~" 

~(c) = 
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(5.5) must hold for all n, k, a E.Mn , c.sM. As M nM = \D 
~K n m for m::f n, 

we can define a mapping S from M to ~+ by 

. s( a) = h (a) for a E.M 
n n 

If ~ is extreme, we then have 

~ (a) 
n 

As f.l is a probability, we have 

A 

i.e., that S eM. We have proved "=>". 
V 

Now suppose that 

'" for some S £ M • a V 

All elements in )TI(Q) are mixtures of the elements in ~(Q). It follows 

from what we proved before that the set of sequences 

where' 

(5.6) 

contailins ~(Q) • A fortiori any f.l Em(Q) can be represented as a mixture of 
~ 

So 
elements of the :Eorm (5.6) This is in particular true for f.l Hence, 

"'-

there is a probability measure P on M so that 
V 

for all xE.M 
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But (5.7) is equivalent to 

So (x) =jA S(X) d p(s) for all x EM 

s E Mv 

Using the homomorphism property, we have 

But (5.8) implies that 

proof is complete. 

6. Additional Comments 

p{s } = 1 and hence that 
o 

s (x * x) o 

is extreme. The 

The families defined in the present paper are sometimes identical to the 

completion of a regular canonical exponential family as defined by Barndorff-

Nielsen (1973). 

Let T be a finite subset of the k-dimensional integer lattice~ 

Define T b~y 
n 

Tl = T and T = T + T n n-l 
for n=2,3, ... 
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M = {(t,n): t E T , n EN} 
n 

with the composition 

(s, m) * (t, n) = (s + t, m + n) 

If we have a general exponential model on a space E with t (x) = (g (x), 1), 

where g is a mapping from E onto T, this model can be identified with 

the completion of the canonical exponential family generated by V and g 

in exactly the same way as in Martin-Lgf (1973). This situation is present in 

example 3.1 of the present paper. 

If g(E) = T contains more than integer lattice points, this is not 

necessarily the case as the following example shows. 

Example 6.1 Let E = {(O,O), (1,0), (0,1), (\"2/4,1/2)}. 

where 

M = {(x,y,n): (x,y) ~E ) 
n n 

where E is recursively defined as 
n 

El = E and En = E + En_l for n = 2,3, ... 

and the composition on (M,*) is defined as 

(x, y ,n) * (x', y'. n ,) = (x + x', y + Y I, n + n'). 
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Let v(x,y) = 1 for all (x,y) in E and 

t(x,y) ~ (x,y,l) 

The completion of the exponential family generated by V and t would 

consist of all probability measures of exponential type with support equal to 

E, {(O,O), (O,l)}, {(O,O), (1,0)} or {(O,l), (1,0)} as well as the probabili­

ties degenerate at (1,0), (0,0) and (0,1). Eecause (j2/4,1/2) is in the 

interior of the convex hull of E, no probabiliw in the family would be 

degenerate at this point. 

The subset F of M given by 

(6.8) 

is obviously a face of M. Hence the general exponential model corresponding 

to V, t ,and M will contain the probability degenerate in ((;2/4, 1/2). 

This example illustrates the essential difference between the completions 

defined by Barndorff~Nielsen (1973) and the models in this paper: the 

"completions rr are defined via geometrical concepts in Rk or via topological 

considerations whereas the general exponential models are derived via algebraic 

structure in the statistics, thus letting the actual observations playa more 

prominent role. If one after n experiments in the above example obtains 

the value of the statistic to be (~~2/4, n/2), this must be because 

(j2i4, 1/2) was observed n times. This is reflected in the estimated pro­

bability measure, which will be degenerate at ( . ./2/4, 1/2) as can be seen 

from proposition 4.3. 
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