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1. Introduction and Summary 

The purpose of this paper lS to characterize the stocha­

stic matrices that can occur in non-homogeneous Markov bran­

ching processes with no deaths. 

We find that most of the results from [5] for finite sta­

te Markov chains can be generalized to these branching proces­

ses with appropriate modifications of the definitions. 

The simplest branching process is a Galton-Watson process 

which is a Markov process with discrete time and state spaceS~ 

'{O,1,2, ... }. The transition probabilities F = (Pik,iES,kES) 

satisfy the condition 

(1.1 ) 

where the summation lS over the set of indices kl,~ •• ,ki for 

which kl + "0 + k. 
1 

k. 

Thus the i'th row lS the i-fold convolution of the proba­

bility measure'{Plk' kES}. 

A continuous time Markov branching process also has the 

properti~sthat the transition probabilities satisfy the condi­

tion (1.1), see Harris [5], p.97. 

We shall here only consider branching processes for which 

PiO = 0, 1 = 1,2, ... , 1.e. processes for which no deaths can 

occur. Thus we consider the set B of stochastic matrice F = 
(Pik' kEN, iEN) for which conditions (1.1) holds, where N = 
(1,2, •.• ). 

Let us define 

00 

m (F) 

and call F regular if m(F) < 00. 

For the present purpose we shall use the following defi-
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nitions: 

1.1 Definition. A Markov branching process is a family 

{P(s,t), a < i < t < t < oo} 
- - 0 -

(1. 2) 

of matrices from B which satisfy the Chapman-Kolmogorov equa­

tions 

P(s,t) = P(s,u)P(u,t), a < ~ < U < t (1. 3) 

and the initial condition 

pes,s) = I (1. 4) 

together with the regularity condition 

m(P(s,t» is finite and continuous (1.5) 

1. 2. Definition. A stochastic matrix P E B is called im­

beddable if there exists a Markov branching process (1.2) 

such that 

pea,l) = P. 

The imbedding problem 1S then to characterize the matri­

ces that can be imbedded. 

It is easily seen that B is a semigroup under matrix mul­

tiplication and that the mappings 

and 

co 

P ~ L kPlk = m(P) 
k=l 

are multiplicative functions on B. 

Since the matrix P is given by its first row it is also 
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g~ven by the probability generating function 

00 

f~(z) = L Plkzk, 0 < z < 1. 
!¥ k=l 

The set of probability generating functions C ~s a semi­

group under composition and it is easily seen that 

f p p (z ) = f P (f P ( z » = ( f pi • f p ) (z) 
....... '1 .. ~ ---1 --2 - - 1- 2 

which-shows tliat ~he mapping from B onto C 

~s a homomorphiflm. 

Let fEe and fez) = 

Df(z) = 

00 k 
L Z Pk then we define 

k=l 

00 

k-l 
L kz Pk 

k=l 

and we call f regular if Df(l) < 00. 

The mappings 

and 

f -+ Df(O) 

f -+ Df(l) 

are multiplicative functions from C to [0,1] and [1,00] re­

spectively. 

Let us also remark that C is an example of a convex se­

migroup, which B is not, and that the extremepoints have the 

form 

k 
z 'k ~. 1, 2, 3 , • • • 

In the following we shall work mainly with C but ~n sec­

tion 5 we give yet another representation of B. 

We can now replace Definition 1.2 by 

1.3. Definition. The regular function fEe is called 

imbeddable if there exists a family' {f ,0 < S < t < t < 
s,t 0 -

oo} of ere gular functions in C such that 
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f = f of 
u,t' 0 < s < u < t • (1. 6) 

s,t S,u 

f e, (1. 7) 
s, s 

Df t (1) is finite and continuous, (1. 8) 
s, 

fO 1 f (1. 9) , 

We call f imbeddable in a homogeneous family if f can 
s,t 

be chosen to depend only on t - s. 

It is convinient to work with uniform convergence of 

functions in C but we shall also define strong convergence as 

uniform convergence of the derivatives. 

will be used repeatedly: 

The following result 

1.4. Theorem. Let f. E C converge pointwi.e to a functi­
n 

on f. If f is continuou. at z = 1 then fEe and f conver­
n 

ges uniformly to f. If further Df~(l) converges to Df(l) 
n 

then f .. converges strongly to f. 
n 

where 

A function of the form 

h (z) = 

00 

k 
L akz 

k=l 
o < z < 1 

00 

2, ••• , L a k 
k=l 

o 

is called an intensity function and it is called regular if 

Dh(1) < 00. 

It is easily seen that h is a convex function and strict-

ly convex unless h • O. We easily find the inequalities 

Dh(O) < h(z) < 0 (1.10) 

/Dh(z) I .s. Dh(1). (1.11) 
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It is important to notice that if fEe then f - e is 

an intensity function, where e(z) = z. 

(1.10) and (1.11) that 

We then find from 

If - el <. i-Df(O) < Df(l) - 1 (1.12) 

where we use the norm 

If - el = sup If(z)-zl. 
O<z<l 

we shall finally use the following 

1.5. Definition. By a regular measurable (locally inte-

grable) intensity valued function h t we shall understand a 

mapping from [O,t o[ x [0,1] into R which satisfies: 

h i(e) is a regular intensity 
t 

function for all t E [O,t o[' and 

h. (z) is measurable (locally integrable) 

for all z E [0,1]. 

(1. 13) 

The set of intensity functions is a convex cone and the 

extremal elements are proportional to 

k 
hk ( z) = z - z, k = 1, 2 , •.• (1.15) 

We shall now give a short account of the present paper 

and some of the previous work in this area. 

Section 2 contains an extension of the results in [3] 

and [4]where the idea is to change the time scale of the fami-

ly imbedding f in such a way that f t and f become abso-
• , s , • 

lutely continuous and one can then show that they are soluti-

ons to the backward and forward Kelmogorov diffenential equa-

tions. The main idea is to use 

lnDf6,t (1) (1.16) 
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as the new time scale. The backward Kolmogorov equation was 

studied by Caratheodory [1] who proved existence and uni­

queness of the s0lution. 

In section 3 we construct a product integral of a regu­

lar measurable intensity valued function. The approach taken 

is a generalisation of the method of Dobru~in [2] and the in­

tegral obtained is a special case of the integral studied by 

Neu1;>erger [10]. 

It is shown that the integral provides a solution to 

the backward and forward Kolmogorov equation. 

Section 4 contains a discussion of the imbedding problem 

and it is shown that the imbeddable functions can be characte­

rized as being infinitely factorizable or as the limits of 

triangular null arrays. 

It is also shown that finite compositions of functions 

generated by the extremal intensity functions can approximate 

any imbeddable function but the problem of a Bang-Bang repre­

sentation [7J has not been solved. 

Finally we find again the relation between imbeddable 

functions and the Kolmogorov equations, thereby proving again 

the results of section 2, but without the condition that 

f = e if and only if s = t. 
s,t 

As an application of these characterization we find th~ 

result that any imbeddable function satisfies the inequality 

Df(O)Df(1) > 1. (1.17) 

This inequality easily implies that the truncated bino­

mial and Poisson distributions are not imbeddable. 

The results ln section 4 are presented ln terms of pro­

bability generating functions but they clearly have a proba­

bilistic meanlng as follows: 

If fl, ••• ,f n are functions ln C then we can interprete 
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f. as generating the offspring distribution in the i'th gene-
1 

ration, and 

f 
n f l' n-

is then the generating function for the distribution of the 

size of the nlth generation. 

The condition 

0< Df.(1) - 1 < E 
- 1 -

then means that the expected number of offspring 1n each 

generation is close to 1 or that the increase in the popula­

tion is very small. 

That f is infinitely factorizable means that for any n 

we can think of f as the probability generating function of 

the nlth generation each of which has.a.n expected size close 

to 1. 

Finally the triangular null arrays are the mathematical 

,formulation of the following problem: What happens when one 

'observes a population after a long time, i.e. after many ge­

nerations, where in each of the generations the expected va­

lue is close to 1. 

The answer is like in the classical theory of limit the­

orems for sums of independent random variables that the pos­

sible limit distributions can be characterized as being 1n-

finitely factorizable. The product integral representation 

is then an equivalent of the Levy-*in~in representation. 

The last section contains a reformulation of the results. 

The main idea is to use Choquetls integral representation the­

orem to represent any stochastic matrix over N as an integral 

over the extremal stochastic matrices E. 

One can easily see that E 1S a semigroup and it turns 

out that one can identify the matrices on E that represent 

m 
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matrices in B. Thus the results about imbeddable matrices ~n 

B can be translated into results about processes with indepen­

dent increments on E. 

Most of the results of the paper are generalizations of 

the results on [4] and [6]. The presentation is intended to 

be selfcontained even though most of the results on the pro-

duct integral have been given by Neuberger [10]. The charac-

terization of the imbeddable functions as being infinitely 

factorizable and as solutions to differential equations are gi­

ven by Loewner [9] and Pommerenke [11] in the context of 

Schlicht mappings of the unit disc into itself. The derivati­

on~of the differential equations by changing th~ time scale 

was given by Goodman [12J. 

2. Change of time,:scale and differential 7quations. 

We shall in this section consider the family {f , 
s,t 

o < s < t < to 2 oo} of probability generating function satis-

fying the conditions 

f 
s, t 

f 
s,t 

e (=> S t 

Df t(l) 1S finite and continuous 1n (s,t) s, 

(2. l) 

(2.2) 

(2.3) 

We shall first prove the basic result on change of time-

scale 

2. 1 . Lemma. Under the assumptions (2.1), (2.2) and (2.3) 

there exists a change of time scale such that the functions 

f (z) satisfy a Lipschitz condition • 
. , t 

or 

A possible choice of time scale is 

~(t) = lnDf_ (1) 
b, t 

(2.4) 
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~ ( t ) = - 1 n D L~:>, t (0) • C;U5) 

Proof. From (2.1) we find that ~ and ~ are increasing 

and (2.2) implies that they are strictly increasing whereas 

(2.3) implies continuity. Thus any of them can serve as a 

change of time~ scale. 

Now (2.1) implies that 

f - f 
S-U, t s+v, t 

(f -e): ef 
s-u,s+v s+v,t' 

(2. 6) 

for 0 < s-u < s+v < t < t., and the inequality (1. 12) gives 
';0 

that 

I f - f I < 1 - Df (0) < Df (1) - 1. s-u,t s+v,t - s-u,s+v - s-u,s+v 

Now let us change the time scale by means of ~, then 

Df (1) = 
s-u,s+v 

and we ~et the Lipzchitz condition 

u+v 
e 

f t - f u+v 1 e t -1 s-u, s+v,t < e - < __ _ 
u + v u+v t 

A similar condition can be derived if ~ 1S used as the 

time seal}. 

We shall now apply Lemma 2.1 to the Chapman-Ko1m~g9~ov~ 

equations (2.1) in order to obtain differentiabi1ity of 

f t(z) and in order to derive the Ko1mogorov equations. . , 
2.2. Theorem. Under the assumptions (2.1), (2.2), and 

--- -

(2.3) there exists a change of time scale such that the inten-

sities 

h 
s 

= 1im (f -e)(u+v)-l 
uto,vto s-u,s+v 

(2. 7) 

exist for s { N, where N is a null set for Lebesgue measure. 
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The function h is a regular measurable intensity valued 
s 

function and Dh. (1) is locally integrable. 

Further the derivatives 

-1 
lim (f -f ) (u+v) 

u+O,v+O s+v,t s-u,t 
(2. 8) 

exist for s ( N and the function f (z) satisfy the backward 
. , t 

Kolmogorov equation: 

or 

Proof. 

,3 f (z) 
s s,t 

z - f t(z) s, 

-h ef t(z», s { N ss, 

t 

- Jh (f t(z»du. u u, 
o 

Let us first choose 

<p(t) = In Df", t(1) 
'0, 

as our time scale, then we can use the ~elatiQn 

Df (1) = 
s,t 

t-s 
e 

(2. 9) 

(2.10) 

From Lemma 2.1 we get that f (z) 1S absolutely conti-
o , t 

nuous and hence that the limit 

i~ f (z) -- lim (f t(z) - f (z»(u+v)-l 
s s,t u+O,v+O s-u, s+v,t 

(2.11) 

exists for s {N ,where N is aC'.null set. 
t,z t,z 

Now define 

Cg' = (f -e) (Df (1)-1)-1 + e 
s,U,V s-u,s+v s-u,s+v 

(2.12) 

From the inequality (1.12) it follows that g is a 
s,u,v 

probability generating function and it~is seen that D~ (1)= Os,u,V 
2. 

We then consider 
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g,s, t, u, v g.s,u,v· f 
s+v,t 

u+v -1 

(2.13) 

= ef -f )(e -1) +f 
s-u t s+v t s+v t " , 

From (2.11) it follows that the limit 

g t (z) = 1 im gs t u v (z) = -
s, u+O,v+O' , , 

af (z) + f t(z) s s,t s, 
(2.14) 

exists for z rational and i t N =U ~ where the union 1S . t, z 
taken over rational z. We now want to prove that (2.14) 

exists for all z E [0,1]. 

Take thereforez' and z" 1n [0,1] and use the convexity 

o f g: too b t a in 

I g (z') - g (zll)1 
s,t,u,v s,t,u,v 

<; Dg (1)12:' - z"1 
s,t,u,V 

= 2Df + t(1) 
t-s Iz'-z" I < 2e Iz'-z" I. s v, 

Thus for fixed sand t the family 

{ g u > 0, v > 0, u + v < t} 
·'S,t,u,v, 

is equicontinuous on [0,1] and hence the limit (2.14) exists 

for all z E [0,1] and defines a continuous function f on s, t 
[0,1]. By Theorem 1. 4 g . . s, t is a probability generating func-

tion and the convergence in (2.14) is uniform 1n 

Now choose a sequence t + 00 and define N = 
n 

For s t N we can find t = t >s and then 
n 

Ig rof g rof I 
s,u,v s+v,t s,u,v s,t 

< Dg (1) I f - f I s,u,v s+v,t s,t 

t -1 
< 2v(e -l)t 

z E [0,1]. 
00 

UN.· 
n=l 
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which proves that the limit 

1 im g • f 
uto,v+O s,u,v s,t 

exists and hence that 

gs = lirn g' 
u+O,v+Os,u,v 

exists and defines a probability generating function g • 
s 

If we define the intensity function 

h - '-.' s - Ig s 

then (2.7) have been proved. 

From the inequality 

- e 

(1-~' (z» (1-z)'-1 < D g (1) = 2 
-S,u,V s,u,v 

it follows for u + 0, v + 0 that 

Dh (1) + 1 < 2 
s 

and hence that h is regular and that Dh (1) 1S locally inte-
s s 

grable. 

In order to prove (2.8) we consider again (2.6). By 

dividing with u + v and letting u + 0 and v + 0 we get for 

s (£ N that (2.8), (2.9), and (2.10) hold. 

2.3. Proposition.. Let {f ,.0 < s < t < to} satisfy con­
s,t. - -

ditions (2.1), (2.3) and the equation (2.10) for some regular 

intensity valued function h such that Dh. (1) is locally in-s 
tegrable then 

Proof. 

t 
Df (1) = expJDh (l)du. 

s, t u 
s 

From (2.10) we get 

t 

1 - Df (z) = - DJh (f t(z»du. 
s,t s u u. 

(2. 15) 

(2.16) 
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Ih (f t(zr» - h (f (z"))1 u u, u u,t 

< Dh (1) Df (l)lz'-z"l 
u u, t 

< Dh (1) etlz'-z"l 
u 

which implies that the differentiation and the integration ~n 

(2. 16) can be interchanged. 

:rhus 

1 - Df t(z) s, 

for z 1 we get 

1 - Df (1) 
s,t 

which proves (2.15). 

2.4. Corollary. 

strong. 

t 

- fDh ef t(z)Pf (z)du. u u, u,t 
s 

t 
- fDh (l)Df (l)du 

u u,t 
s 

The convergence in (2.7) and (2.8) ~s 

Proof. Since (2.8) follows easily from (2.7) we shall 

only prove (2.7). By Theorem 1.3 it is enough to prove that 

Dh (1) 
s 

lim (Df (l)~l)(u+v)-l 
u+O,v+O s-u,s+v 

but this clearly follows from (2.15). 

3. The product integral. 

We shall here give a short account of the product inte­

gral that exists in the semigroup C. 

The integral is a special case of the integral conside­

red by Neu~erger [10] but we shall construct it here in the 

context of generating functions and prove the properties we 

need for the i m bed d in g pro b 1 em. 
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We shall use the notation 

n 
n f. = f1 .•••. 

. 1 1 1= 

First we prove the basic lemma. 

f • 
n 

3. 1. Lemma. Let h = hI + ... 

such that Dh.(o) > -1, i 
1 

+ h be regular intensity 
n 

functions = 1, ... ,n, 'then 

n n 
I n (e+h.) - (e+ L h.)1 < (-Dh(O))Dh(l). 
i=l 1 i=l 1 

(3.1) 

Proof. For n = 1 this is rather obvious and we assume 

that it has been proved for n = k. 

Then 

a(z) (
k+1 k+1 \ 
n (e+h.) - (e +L h')J:l(z) 

i=l 1 i=l 1 

k k 
n (e+h.)(z+hk l(z)) - (e+ L h.)(z+hk· 1· (z)) 
'1 1 + '1 1 + 1= 1= 

k 
+ L (h. (z + hk 1(z)) - h. (z)), 

. 1 1 + 1 1= 

since by assumption 0 ~ z + hk+1 (z) ~ 1. 

We now uge the induction hypothesis and the convexity of 

h. to obtain 
1 

k k 
la(z)1 < (-LDh.(O))(LDh.(l)) 

i=l 1 i=l 1 

k 
+ L Dh.(l)lhk l(z) I 

. 1 1 + 1= 

and from (1.10)we get 

k+1 k 
I a (z) I < (- L Dh. (0)) ( L Dh. (1)) 

i=l 1 i=l 1 
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which proves the result for n ~ k + 1. 

We want to build the product integral of the regular 1n­

tegrab1e intensity valued function h , u E [s,t] which we shall 
u 

denote by 

t 
nee + h du) 

u s 
(3.2) 

and we therefore let T = {t l , .. ~,tn} denote a partition of 

[s,t], 

s = t < 1 

and let ITt max (t. 1- t . ) • 
1 · 1 1+ 1 <1<n-

< t = t 
n 

We then define 

and 

H(u,v) 
v 

= fh dx, x 
u 

n-l 

s < U < v < t, 

fT· = n (e + H (t .• t. 1»' 
i=l 1 1+ 

(3.3) 

The set of partitions T form a directed set under refine­

ment and we want to prove that lim fT exists, where the limit 

is taken under refinements. The limit will then be denoted by 

the symbol (3.2) and will be called the product integral of 

h on the interval [s,t]. 
u 

We shall first prove the following 

3 • 2 . Lemma. If D h. Cl ) is integrable El n [s, t ]~, the n there 

exists a function aCT) such that 

aCT) + 0 as IT! + 0 

and such that for any refinement U of T we have 
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Proof. Let T ='h., i = l, •.. ,n} and let U = {ti .. , 
L LJ 

J 1, .. 1I,n., 
L 

i = l, ••• ,n} be a refinement of T such that 

t. 
L 

= -, < u. 1 
L . 

and define 

f. = e + H(t.,t. 1) L L L+ 

n.-l 
' .. L 

= e + .~, L H (u .. , 
ui(j+l» j =1 LJ 

and 
n.-l 

L 

Si = n (e + H(u .. ,u· C 1)' 
j=l LJ L ] + 

For ITI sufficiently small we can apply Lemma 3.1 and 

we get 

If ,-fTI 
'N 

ti~l ti+l 
1f.-g.l< 

L L -
(- f Dh (O)du) J Dh (l)du. 

u ., u 
t. t. 

L L 

Using this evaluation we obtain 

n-l 
Inf. 
i=l L 

n-1 
n g.1 

i=l L 

n-1 k-l n-1 k-l n-l 
< L I n f.r of : 0 n g:. - n f." g'. ,n :s: g., 

k=l i=l L k i=k+l 'L i=l L "'k i=k+liL 

n-1 k-l k-1 
L I n f.r 0 f - n f.'. ~ I 

k = 1 i = 1 L k i = 1 L .. 'k 

n-1(k-l \ 
< L i.n Dlii(l)}lf k -g!k/ 

k=l' L=l 

n-1 
L 

k=l 

k-l ti+1: t1t+l tk~i 
n 0+ (Dh (l)du)( f Dh (l)du)(- f Dh (O)du) 

i=l t~ u tk u tk U 
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< 
t k+ l rn - l 

sup (- f Dhu(l)du) n (1 + 
l<k<n-l tk -k=l 

Now the last factor converges as a product integral to 

exp 
t 

fDh (1)du - 1 
u 

s 

and the first factor tends to zero since Dh. (1) is integrable 

an [s,t]. 

3.3. Theorem. Let h be a measurable intensity valued 
u 

function such that Dh. (1) is integrable on [s, t]. Then the 

product integral of h on [s,t] exists. 
u 

Proof. 

I T I '"f. O. 
n 

Take a sequence of partitions T such that 
n 

Consider the family 

, {iT ' n = 1, 2, • . • } • 
n 

From the inequality 

t. ','1' , 1. ~ , 

J D h tl (1 ) d u ) I z ' 
t. 

1. 

- z" I 

(3.4) 

it follows that the family (3.4) is equicontinuous. By Arze-

la-Ascolis theorem this implies the existence of a probability 

generating function f and a subsequence n l such that 

lim fT f. 
n'-.+oo n ' 

We want to prove 

lim fT f. (3.5) 
T 

Take E > O. We want to prove that there exists a parti­

tion Tlsuch that for any refinement T of T, we have 
o~ 0 
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(3.6) 

Now take n l so large that 

1fT - fl < £/2 
n l 

(3.7) 

and such that aCT ,) ~~/2 and take Tn = T ," 
no n 

From Lemma 3.2 we find that for any refinement T of T 
o 

we have 

which together with (3.7) gives (3.6). 

3.4. Corollary. Let Dh. (1) be integrable on [s,t]; then 

t t t t 
/n(e+hudu) - e - fhudu/ * (-fDhu(O)du)iDhu(l)du. 

s s s s 
(3. 8) 

Proof. We let T = {t l , ..• ,tn } denote a partition of 

[s,t] and define 

h. 
1. 

~.+' 1:' -' 1. 

f h duo 
u 

t. 
1. 

For ITI sufficiently small we can apply Lemma 3.1 and 

taking the limit over T we obtain (3.8). 

Let in particular h = h, u E [s,t] where h is a regular . u 

intensity function then we define 

1 
e(h) = n(e+hdu). 

o 
(3.9) 

The definition of the integral then immediately gives 

the following results: 

3.5 Corollary; Let hl, ... ,hiu and h;;: hl+ ••• +hn be regu­

lar intensity functions, then 

1 n 
lim (e+nh) =e(h) (3.10) 
1lJ;+OO 



-19-

I ~ e(h ) - e - hi < -Dh(O)Dh(l) 
i=l 

and in particular 

and 

I e(h) - e - hi < -Dh(O)Dh(l). 

We also have 

t 
e«t-s)h) = n(e+hdu) 

s 

( 'n -1 )k 
lim ~n e(hik) = e(h). 
k~ 1:=1 

(3.11) 

(3.12) 

C3.l3) 

(3.14) 

3.6. Theorem. Let h be a regular measurable intensity 
-'--. --------- t 

function such that Dh. (1) is locally integrable and let 

Then 

f s , t 

t 
n(e+h du). 

u 
s 

f =f .f ,O<s<u<t 
s,t s,u u,t 

and Df (1) 1S finite and continuous. 
s,t 

(3.15) 

Further f ~t(z) is absolutely continuous and satisfies 

the backward Kemogorov equation 

:)! f = - h,' • f s Et N. 
\S s, t ss, t • 

From this follows that 

Df t(l) s, 
exp 

t 

JDh (l)du. 
u 

s 

(3.16) 

(3.17) 

Further f 
s , • is absolutely continuous and satisfies the 

forward Kolmogorov equ atTon;-

dt,f t(z) = Df (z)h (z), t Et N. ,s, s,t t 
(3.18) 
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Proof. The relation (3.15) follows immidiately from 

the definition of the product integral. We find from (3.3) 

that 

n-l t k + 1 
-1 

1 < (l-z) (l-fT(z» n (1 + 
k-l 

f Dh (1)du). 
u 

tk 

Taking limits over T and letting z t 1 we get that 

t 

l~Dfs t(l) ~ exp fDh (1) du, 
, s u 

which proves that Df (1) ~s finite and continuous. 
s,t 

and 

and 

In order to prove (3.16) we consider 

I s+v I 
(e + f hxdx) • fs+v,t - fs-u,t 

s-u 

I (e + 
s+v 
f h dx - f ), 

x s-u,s+v 
s-u 

f I • s+v, t 

s+v 
f Dh (l)dx. 

x s-u 

Now choose N such that for s ( N we have 

_ls+v 
lim (u+v) f h dx h 

u+O,v+O s-u x = s 

_ls+v 
lim (u+v) f Dh (O)dx 

x u+O,v+O s-u 

_l s +v 
lim (u+v) f Dh (l)dx 

x u+O,v+O s-u 

Then we get that 

Dh (0) 
s 

Dh (1). 
s 

lim Cu+v)-l[Ce + 
u+O,v+O 

f· . - f .] s+v,t s-u,t 0. 

(3.19) 

(3.20) 

(3.21) 
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Since 

-1 
1im (u+v) 

s+v 
f h .~. f dx = hr. 

u+O,vi-O s-u x s+v,t s 
f 
s,t 

we get that 

d f = 1 i m (u +v) -1 ( f - f ) 
s s,t ui-O,vi-O s+v,t s-u,t 

exists, and that 

d f 
s s,t 

- h,· • f ,s Et N, 
S s,t 

which proves (3.16). 

Now consider 

If -f ' • 
s,t+v s,t-u 

t+v 
(e + J hxdx) 1 

t-u 

If r·f -f s,t-u t~u,t+v s,t-u 

t+v 
(e + J nxdx) 1 

t-u 

t+v 
< Df (l)lf - e - J hxdxl s,t-u t-u,t+v t-u 

t+v t+v 
< Df (1) (-

s,t J Dh (O)dx)( J Dh (l)dx) x x 
t-u t-u 

For t Et N we get that 

1im (u+v)-l(f - f 
t+v 

O 0 s,t+v s,t-u 
ui- ,vi-

(e + J hxdx)) = o. 
t-u 

This is rewritten as follows: 

-1 
(u+v) (f t+ (z) - f (z)) s, v s,t-u 

-1 -1 
+ a ( u , v ) ( f ( z) - f ( z + a ( u , v) ))a ( u , v) (u + v ) , 

s,t-u s,t-u 

where 

t+v 
a(u,v) = J hx(z)dx. 

t-u 
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I 

For each z < 1 the differentiation of fs,t(~) at z is 

uniform in (s,t) and hence 

-1 
lim a(u,v) (f (z) - f (z+a(u.v» 

u+O,v+O s,t-u s,t-u 
Df (z). 

s, t 

From (3.19) we get that 

-1 
lim a(u,v)(u+v) - ht(z) 

u+O,v+O 

and hence f (z) is differentiable at t for z < 1 and 
s , • 

at: f t(Z) = Df (z)h(z), t I( N. : s, s,t t 

This relation clearly holds for z = 1 as well. 

Notice that the relation (3.17) implies that the conver­

gence in (3.5) is strong, since 

n-l 
DfT(l) = n (1 + 

k=l 

t .. ~. 
1. + 1 

converges to 

t 
exp JDh (1)du 

u s 

J Dh (1)du) 
u 

t. 
1. 

]1£(1). 

~~heorem. Let h t be a regular measurable intensity 

function such that Dh. (1) is locally integrable. 

Then the equation 

z - f (z) s,t 

with initial conditions 

t 

= - Jh (f (z»du u u,t 
s 

f = e 
s, s 

(3.22) 

(3.23) 

has a unique solution given by the product integral (3.2) 

Proof. This follows from Caratheodory [1] p.674 since 

the function hs(~) satisfies the Lipschitz condition 
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1 h (z) - h (z I ) 1 < Dh (1) 1 z ' - z 1 s s - s 

where Dh (1) is locally integrable . . 
3.8. Theorem. Let h t and h~n), n = 1,2, ••. denote regu-

lar measurable intensity valued functions such that 

Dh(n)(l) ~ 
t 

c, n 1, 2, .•• 

1 
If for all real functions g, such that Jlg(t) Idt < 00 

o 
we have 

then 

Proof. ---

1 
h(n)g(t)dt 

1 
lim J = J htg(t)dt t 
n~oo 0 0 

1 
(e+h(n)dt) 

1 
lim n = n(e+h dt) 

0 
t o t n~ 

Let us use the notation 

fen) 
s, 1 

I 
n(e+h~n)dt). 
s 

(3.24) 

The product integral satisfies equation (3.16) and hence for 

s' < s" 

s ' , 

If~~,i(z) - f~~~,l(z)f < f Dh~n)(l)dt < (s"-s')c. 
s f 

Similarly 

If(n)(z') - f(n)(zll)1 < Df(n)(l)lz'-z"l 
s,l s,l - s,l 

1 
Iz'-z"l exp fDh~n)(l)dt < Iz'-z"l exp c. 

s 

Thus the family of functions 

1, 2 •••• } (3.25) 

is equicontinuous, and by Arzela-Ascoli's theorem there exists 
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a probability generating function f 1(') and a subsequence 
s, 

n I such that 

lim f(n')(z) 
n'-+oo s,l 

f l(z) s, 

uniformly in s E [0,1] and z E [0,1]. 

From (3.16) we get 

- z 

for n' ~ = get that f (i) satisfies the equation (3.22). By 
• , 1 

Theorem 3.7 the solution 1S unique and given by the product 

integral of h t on [e,l]. Thus any limit point of the set of 

functions (3.25) must be the product integral and hence the 

family converges,as was to be prove~. 

4. The imbedding prob1~m for Markov branching processes. 

In order to formulate the results about the imbedding pro­

blem we shall define the~otions of infinite factorizability 

and triangular null array. 

4.1. Definition. Let f be a regular function in C. Then 

f is called infinitely factorizable if for all n there exist 

fl, •.• ,f n such that 

Df. (1) - 1 < E. i 
1 

• f 
n 

1,~ •• ,n. 

If for all n there exists f such that 
n 

then f is called infinitely divisible. 

4.2. Definition. 

'{f k' k = 1 •.•• ,N • n n, n 
that 

A triangular null array 

1,2 •... } of functions 

1S a family 

1n C, such 
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1im 
n 

The marginal product ~s 

f = f 
n n,l 

and the limit of the array ~s 

n 
n f 

k=l n,k 

the strong limit of f . 
n 

4.3 Definition. A Poisson generating function is of 

the form e(h) where h is an extrema1 intensity function, see 

(1.15). 

The next theorem sums up the results about the imbedding 

problem and presents various characterizations of the imbed­

dab1e functionsCin C. 

4.4. Theorem. Let f be a regular function ~n C, then 

the following s~q.tements are equivalent: 

f ~s imbeddab1e 

f ~s infinitely factorizab1e 

f ~s the limit of a triangular null a~ray 

f is the strong limit of a finite composition 

of generating functions of the form e(h) 

(4. 1) 

(4.2) 

(4.3) 

(4.4) 

f is the strong limit of a finite composition of 

Poisson generating functions 

f has the representation 
1 

f = n(e+h du) 

° u 

for some regular measurable intensity va­

lued function~ht for which Dh.(l) is inte­

grable on [0,1]. 

(4.5) 

(4.6) 

There exist absolutely continuous functions £.(4.7) 

* and f. and a regular measurable intensity 

valued function h t for which Dh. (1) is in­

tegrable on [0,1] such that 

d 
-f' 
d t 1:-



____ J 
and 

Proof. 

f o 

~f 
dt t 

fO 

= 

= 
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e, fl = f 

-h t . ft' t It N 

r 
, fl, fl = e, 

I 

where N is a null set for Lebesgue measure. 

(4.1) 

{f ,0 < S < t < s,t -

~ (4.2). If f is imbeddab1e in the family 

I} then since Df t(l) is continuous and 
s, 

mUltiplicative we can ch 0 0 sea par tit ion 0 = t 0/ < t 1 < ••• < 

t = 1 such that n 

Df\, ~1) - 1 < E, i = O, ••• ,n-l 
ti' t±~L; 

and define 

f. = ft;,,',' t'.:.,." i = 0, ••• ,n-1. 
1. i' ''1.+1 

This proves that f is infinitely factorizable. 

(4.2) -+ (4.3). If f is infinitely factorizab1e then for 

E + ° we can choose n 

and 

f = 

f 1 ••• , n, , 

f 
n,l 

f 'N n" n 

D f k'( 1) - 1 < E , k = 1, ... , N • n, _ n n 

This proves that f is the limit of the triangular array 

, { f k} • n, 

(4.3) -+ (4.4). Now let f be the limit of the triangular 

array{f k}' We want to replace it by the array'{e(f k- e )}. n, n, 
Now the usual trick gives for g k = f - e 

n, n, k 

I Nn 

n f 
k=l n,k 

Nn I - n g 
k=l n,k 



Nn k-l 
< L n 

k=l i=l 
f .of 
n,~ n,k 
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k-l 
n f .• g 

i=l n,~ n,k 

N 
n 

< L 
k=l 

k-l I I n Df .(1) f k - e(f k- e ) 
i=l n,~ n, n, 

N 
n k-l 

< L 
k=l 

n Df .(l)(Df k(l)-I)(l-Df k(O» 
i=l n,~ n, n, 

The assumptions imply that 

and that 

and hence that 

lim Df (1) = Df(l) < 00 
n n 

lim 
n SUPk (1-Df n , k (0» 

N 
n 

n e(f k-e) 
k=l n, 

o 

converges uniformly to f. 

ce, i.e. that lim Dg (1) 
n n 

We want to prove strong convergen­

Df(l) and we therefore evaluate 

Dg (1) 
n 

Now 

N 
n 

n Dg k (1) = 
k=l n, 

o <-In Dg (I} - In Df (1) 
n n 

N 

N 

ex p,( ''In(Df k(l)-l)j\. 
k=l n, 

N 
n 

L - In Df k(l) + Df k(l) - 1 
k=l n, n, 

< Ln(Df k(l»-l(Df k(1)-1)2 
k=l n, n, 

N 
n 

< sUPk(Dfn~,k(l)-l) L (Df k(l)-l). 
k=l n, 



-28-

The first factor converges to zero and the last factor 1S 

bounded since for 

we get that 

N 
n 

L (Df k(l)-l) < 
k=l n, 

which is convergent. 

-1 
(In 2) In 

N 
n 

n Df k(O 
k=l n, 

(4.8) 

Hence gn converges strongly to f and (4.4) is proved. 

(4.4) -+ (4.5). Let h be an intensity function 

00 

h (z) 
k 

H ak(z -z) 
k=2 

00 

see (1.15). 

n 
Now define h (z) = 

n 
L akhk(z) then it follows from the 

k=2 

results in Corollary 3.5 that e(h ) converge strongly to e(h). 
n 

From (3.14) it follows that 

converge strongly to e(h ) as m tends to infinity. 
n 

ves (4.5). 

This pro-

(4.5) -+ (4.3). This follows easily using the infinite 

divisibility of the Poisson generating functions. 

(4.3) -+ (4.6). Let f be the limit of a triangular null 

array. Then it can be approximated by the array {g k = 
n, 

e(f k-e)L n, 
If we define 



and 

and 

then 

and 

Therefore 

where 
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N 
n 

n gn, k' 
k=l 

N 
n -1 

Pn • k = (Df (1 ) - 1) ( LIP f (1) -1») 
, ~,k k=l n,k 

o = 

t = n,k 

t < t < n,O n,l 

1 
e(f k-e) n, n (e 

d 

1 

gn = n (e 
6 

k 
I p . 

. 1 n, J J= 

< t n,N 
n 

+ (£ k-e)dt). n, 

+ h~n)dt) 

1, 

h en) -1 
t = (f k-e)P k' t E [t k-l t k[' n, n, m" rn, 

We know that g converges strongly to f and we have to 
n 

extract a convergent subsequence of the family 

'{hen) • ,n = 1,2, .•• } 

and then use Theorem 3.8 to prove the representation of f. 

Let us first evaluate 

Dh(n)(l) = 
t 

N 
n 

I (Df k(l)-l) 
k=l n, 

(4.9) 

which by (4.8) is bounded by some constant c uniformly in 

t E [0,1] and n, sin c e f·,~ con v erg e s ·s t r 0 n gl y . i: ~ f ~. 
n 

In or4er to apply Theorem 1.A we define the probability 

generating functions 

fen) (z) 
t 

= 
00 

k 
I p (k ,In, t) Z • 

k=l 

Notice that by (4.9) we have 
N 

Df(n)(l) = c- 1 ( In(Df (1)-1) ~~) < 2. 
t k=l n,k 

(4.10) 
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In order to find a convergent subsequence we consider 

first the functions 

'{p(l,n,.), n = 1,2, .•• }. 

These functions belong to the unit ball K of 1 [0,1] which 
co 

is compact in the 1 1[0,1] topology. Thus there exists a 

function p(l,.) E K, ~nd a subsequence'{n li } such that for 

all g E 1[0,1] we have 

1 
lim !g(t)p(l,n,t)dt = 

1 
!g(t)p(1,t)dt 

° ° 
where the limit is taken over the subsequence' {nli }. 

The functions 

, {;p! ~ , n 1 i ' . ), i = I, 2, • • ~ } 

are also in K and hence there exists a function p(2,.) E K 

and a subsequence' {n 2.} such that for g E 11 [0,1] we have 
1-

1 1 
lim !g(t) p(2,n,tldt = !g(t)p(2,t)dt 

° ° 
where the limit is taken over the subsequence' {n 2 ':}. Continu-

1. 

lng this way we find a family of functions' {p(k'.)$ k = 1,2, .•• } 

c: K such that 

1 
lim !S(t)p(k,n,t)dt 

I 
!g(t)p(k,t)dt 

° ° 
where the limit is taken over the diagonal sequence{~ .. }. 

, "11 

There clearly exists a null set N such that nor t ( N, 

we have p(k,t) ~ 0, k = 1,2, ... 

From the inequality (4.10) we get 

co co -1 
~ p(k~n,t) < m-I ~ kp(k,n,t) < 2m 

k=m k=l 

which implies that for t ( N we get 

co 

~ p(k,t) 1. 
k=l 
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Now define the probability generating function 

00 k 
L p(k,t)z , t ~ N. 

k=l 

We want to prove that for g E L1 [0,1] we have 

1 
lim fg(t)f~n)dt 

o 

where the limit is taken over the subsequence {n ,}. 
i1. 

1 
If get) > 0 and Jg(t)dt = 1 then 

o 

1 
lim fg(t)f(n)(z)dt 

o t 

for each fixed z E [0,1]. But the functions are probability 

generating functions and hence by Theorem 1.4 the convergen­

ce is uniform in i E [0,1]. 

This result 

and if we define 

can easily be extended to all g E Ll [O,l] 

c(ft(z)-z) 

then we get that for all g E Ll[O,l] 

1 
lim fg(t)h~n)dfi 

o 

where the limit is along the sequence'{n .• } and hence the 
1.1. 

assumptions of Theorem 3.8 are satisfied and we conclude 

that 

f lim f 
n 

1 
= lim nee + h(n)dt) = 

o t 

where the limit is along the sequence'{n .• } . 
1.1. 

(4.6). 

This proves 

(4.6) -4 (4.7). This follows from the properties of the 

product integral given in Theorem 3.6. We define 



and 

(4.7) -'j> (4.1). 

f 
s,t 
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t 
tHe + h du) 
o u 

1 
= nee + h du). 

t 
u 

If we denote by f the integral 
s,t 

t 
nee + h du) 

u 
s 

then this family imbeds f. Notice that by (3.17) we have 

that Dfs~t(l) is finite and continuous. 

This completes the proof of Theorem 4.4. 

The previous results are all~ for non-homogeneous chains 

but we can clearly prove the following theorem using the same 

techniques: 

4.5. Theorem. Let f be a regular function in C, then 

the following statements are equivalent: 

f 1S imbeddable in a homogeneous chain. 

f 1S infinitely divisible. 

f is the limit of a triangular null array 

with identical components in each row. 

f 1S of the form e(h) for some regular inten-

sity function h. 

f 1S the strong limit of a finite composition 

of Poisson generating functions. 

There exists a regular intensity function h 

and absolutely continuous functions f. 

* and f. such that 

f 

and 

(4.11) 

(4.12) 

(4. 13) 

(4.14) 

(4.15) 

(4.16) 
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e. 

Proof. Omitted. 

Karlin and McGregor [8] studied the imbedding problem 

for homogeneous chains and gave various criteria for non-im-

beddability using complex function theory_ They proved that 

at large class of distributions including the Poisson and Bi­

nomial distribution could not be imbedded. 

One may still ask whether these distributions can be im­

bedded in non-homogeneous chains. 

We shall now give a very simple necessary condition for 

imbeddability which can be used to exclude certain distribu-

tions. 

00 

4.6. Theorem. If fez) 
k L Pkz 1S imbeddable then 

k=l 

Df(O)Df(l) > 1 (4.17) 

or 

.00 

PI L kPk > 1 
k=l 

(4.18) 

Proof. It is easily seen that the set of functions 1n 

C satisfying (4.17) is a semigroup and that it is closed un-

der strong convergens. By (4.5), (Theorem 4.4) it is there-

fore enough to prove (4.17) for the Poisson generating func-

tions. 

Let therefore 

for some k 

k h(z) = A(Z -z), 

2, • •• and A > 0 then 

DfCO) = exp Dh(O) = exp(-A) 
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Df(l) = exp Dh(l) = exp A(k-l) 

which proves (4.17). 

fies (4.17). 

4. 7. Cor 0 11 a ry • 

ven by 

If h s 0 then fez) = z which also satis-

The truncated binomial distribution gi-

n n n -1 
fl(z) = «(l-7T)Z+7T) -7T )(l-7T ) 

o < 7T < 1, ° ~lz ~ 1 is not imbeddable. 

distribution given by 

The truncated Poisson 

f 2 (z) = (exp (-p(1-z)) - exp (-p)) (l-exp (-p)) 

o <p <.00; 0 < Z < 1 is not imbeddable. 

Proof. We find 

fn(1-7T)]2 n-l 
L < < 7T . 

_< n 
1- 7T 

Now 

1 1 
-(n-l) 

1 1-7T n 1 
n-l k (n~l 7T k )n 

2 

T=1T" = L 7T > = n n n k=l k=l 

which proves that 

and hence fl is not imbeddab1e. The corresponding result 
-1 

for f2 follows by setting 7T = 1 - pn and letting n + 00. 

The results in Corollary 4.7 are about the truncated 

distributions because we have only investigated dist.r-ibutions 

on N = {1,2, ••• }. 

The results can, however, be interpreted in the context 

of supercritica1 branching p~o~esses on S =< {O,1,2, ••. } as 

follows. 
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00 k 
L Pkz and assume Df(l) = 

k=O 

00 

L kPk > 1 then f 
k=O 

is called supercritica1. For any supercritica1 f there exists 

a unique point a E [O,l[ such that 

f(a) = a. 

We shall call a the fixed point of f. 

We shall then call such an f with fixed point a imbeddable 

if there exists a family {fs,t' 0 < s 2 t 2 to} of supercriti­

cal functions such that (1. 6), (1. 7), (1. 8), and (1. 9) holds 

together with the condition (4.19) 

Now define 

and 

f tea) = Ci'., 0 < s < t. s, 

w(z) = (l-a)z + a 

IV -1 
f = W .• f • W. 

(4.19) 

It is :asi1y seen that f is ~n C and that if f is imbed­

dable then f is imbeddab1e in the sense of definition 1.3 

Hence by Theorem 4.6 we get 

Df(O)Df(l) > 1 

but this ~s equivalent to 

Df(a)Df(l) > 1. 

Thus we have proved. 

4.8. Theorem. In order that a supercritical probability 

generating function f with fixed point a be imbeddable in a 

family of supercritica1 functions with fixed point a it has 

to satisfy the condition 

Df(a)Df(l) > 1. ..... 

In this sence Corollary 4.7 implies that the Poisson di-
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stribution with A > 1 and the binomial distribution with np > 

1 are not imbeddable. 

5. Applications to processes with independent increments. 

In this section we shall sketch some applications of the 

results in section 4 to processes with independent increments. 

Let us first note that the set of stochastic matrices on 

NI = N U{~} is a convex compact set in the topology of entry­

W1se convergence.The--eXiieme poinis-Ji: are the stochastic matri­

ces with entries equal to 0 or 1 and since each row must con­

tain a 1 this is the same as the set of functions mapping N' 

into N', 1.e. (N,)N' 

A simple application of Ch6quet's theorem on integral re­

presentation of ~oints 1n convex compact sets then gives the 

following theorem. 

5.1. Theorem. Any stochastic matrix on N' has a repre-

sentation 

P fE]J(dt) 
E 

where ]J is a probability measure on E and the integration is 

to be understood as entrywise integration. 

It is easily seen that if P 1S a stochastic matrix on N 

then ]J 1S concentrated on the set of extreme stochastic ma­

trices on N or on the set of mappings from N into N. 

Now observe that E is a semigroup under matrixmultipli­
N . 

cation or equivalently that N i~ a semigroup under compositi-

on. 

It 1S easily seen that for 

we get 

P(]J) = fE]J(dE) 
E 
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P(~*v) = P(~)P(v) 

where * denote convolution of the measures on E. 

We are 

measures on 

therefore led to consider the set of probability 

NN, 1.e. stochastic processes with discrete time 

Nand s t at efspaceN~ 

5.2. Theorem. Let ~ denote a random walk on N then 

P(~) E B, i.e. P(~) is the transition probability matrix of 

a branching process. 

Proof. Let Xl, ••• ,Xn , ..• be independent random variable 

with values in N and with common distribution 

Let ~ be the distribution of the random walk 

S 
n 

n 
= t X., n 

k=l 1 

1 , 2, ••• 

Then ~ 
N 

lS a probability measure on N or on E and we 

therefore compute 

P (~} .. 
lJ 

fE . . ~(dE) 
E lJ 

= ~{EIE .. = I} 
lJ 

Thus the i'th row of P(~) lS the i-fold convolution of 

the first row which means that P(~) E B. 

Notice that this relation between random walks on N 

and branching processes is one to one and just reflects the 

fact that given a probability measure p on N one can either 

construct a random walk or a branching process from p. 

Thus there is a relation between the imbedding problem 

for branching processes and the imbedding problem for proces-
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ses with increments that are independent and take values in 

the set of random walks on N. We shall not rewrite theorems 

4.4, 4.5, and 4.6 in this new formulation. 

To illustrate the connection further we notice that the 

semigroup operation in NN is that of composition or subordi­

nation, but that is exactly the one used in branching proces-

sese Consider the following array 

, {X .. , j EN, i E N}. 
~J 

of independent random variables with values ~n N. For each i 

the variables'{X .. , j E N} have the same distribution p .. 
~J ~ 

Now construct the measures ~., i E N as the random walk 
~ 

on Nco r res p 0 n din g t <? p., t hat ~ sin cd!l_ce d . by the m a p pin g 
~ 

s. = 
~n 

n 
IX .. ,nEN .. 

j = 1 ~J 

Let S., ~ E N denote the sample path 
~ 

'{S., nEN}, 
~n 

and consider the stochastic process 

where the composition is that of subordination. Thus 

is the random variable that determines the s~ze of the k'th 

generation when the zero'th generation had n individuals. 

5.3 • Theorem. The process 

, {T k en), n EN} 

~s for fixed k a random walk on N, and the p~ocess 

'{Tk(n), kEN} 
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1S for fixed n a Galton-Watson process starting with n indi­

viduals. 

Proof. Obvious from the above remarks and the constructi-

on. 

Let us finally conclude that we have had four different 

representations of the semigroup we are working in. 

(5. 1) The set of probability measures on N with a convo-

lution * given by 

00 (k) 
L P2(k)Pl (n) 

k=l 

corresponding to taking a sum of a random number of random va­

riables. 

(5. 2) The set of probability generating functions with 

composition as the semigroup operation. 

(5. 3) The set of stochastic matrices satisfying condi-

tion (1.1) with matrix multiplication. 

(5.4) The set of random walk measures on the semigroup 

NN with convolution. 

Notice that (5.1) and (5.2) are connected with a linear 

mapping and so is (5.3) and (5.4). In (5.3) and (5.4) we have 

a non-convex semigroup with a bilinear semigroup operation 

and in (5.1) and (5.2) we have a convex semigroup with a se-

migroup operation which is not bilinear. In (5.1) and (5.2) 

we obtain the infinitessimal generators by just subtracting 

the identity and this is not the case in (5.3) and (5.4). 
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