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SUMMARY 

Three OC equivalence concepts: fracti1e, slope and moment 

equivalence, and two ASN optimality concepts: minimax and Bayes 

ASN optimality, are discussed in relation to double sampling 

tests. As measure of the inverse efficiency, lE, is used the 

ASN for the double sampling test divided by the sample size 

for the equivalent single sampling test. 

rf 

The OC and ASN functions for double sampling from a nor-

mal population with unknown mean and known variance are studied 

and optimum double sampling tests of given strength are deter

mined corresponding to the various equivalence and optimality 

concepts. Rather complete tables of these tests are given. 

The OC and ASN functions for double sampling from a Pois

son population with unknown mean are studied. No simple mathe

matical method for determining optimum double sampling tests 

exists in this case, but a method of tabulating optimum and 

nearly optimum tests has been devised and some examples of tab-

les are given. Finally approximation formulas are discussed. 

Keywords: DOUBLE SAMPLING TESTS; OC EQUIVALENCE; OC 

FRACTILE; OC MOMENT; ASN OPTIMALITY; INVERSE EFFICIENCY; 

MINIMAX ASN DOUBLE SAMPLING TESTS; BAYES ASN DOUBLE SAMPLING 

TESTS; TABLES OF OPTIMUM DOUBLE SAMPLING TESTS FOR NORMAL AND 

POISSON POPULATIONS; APPROXIMATIONS TO OPTIMUM DOUBLE SAMP

LING TESTS; MINIMAX ASN SPRT. 
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1. Introduction. 

The purpose of the present paper is to determine optimum doub

le sampling tests within the framework of the usual theory of 

testing statistical hypotheses. Taking into consideration the 

large body of theory existing for testing hypotheses by se

quential samplipg, see for instance the book by Ghosh (1970), 

it is a peculiar fact that similar results do not exist for 

d 0 ubI e s am p 1 in g . Of course, double sampling may be considered 

as a special case of sequential sampling and from th~t point of 

view no new general theory is required. It takes, however, 

a considerable amount of work to arrive at the results for 

double sampling from the general theory. 

We shall begin with some general considerations on the opera

ting characteristic (OC) and the efficiency of a test expres-

sed by means of the average sample number (ASN). Next we 

shall derive the OC and ASN functions for double sampling 

from normal and Poisson distributed populations. Finally we 

shall determine the optimum double sampling tests for vari

ous restrictions on the OC and various ASN optimality crite-

ria. The mathematics used will be the usual methods for opti-

mization under constraints and the resulting equations will 

be solved iteratively by numerical methods. 

The tests considered have the form: Take a first sample of 

size nI' compute the average xl' accept if xl ~ ha' reject if 

xl ~ hr and take a second sample of size n 2 if ha < xl < hr' 

Use the combined sample of size n = n l + n 2 to compute the 

average x, accept if ~ < h and reject otherwise. For single 

sampling we shall write nO for the sample size, ~O for the 

average, accept if ~O < hO and reject otherwise. 

A more effective test may be obtained by letting the second 

sample size depend on xl' Even if this test is slightly more 

effective and the theory perhaps simpler than the one consi

dered we shall not discuss it further because we regard the 

test with fixed second sample size as the more practical. 
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The first paper on double sampling is the one by Dodge and 

Romig (1941). They did not, however, use the ASN as measure 

of efficiency but used instead the average total inspection 

since they assumed that rejected lots should be totally in~r 

spected. 

There exists an old rule of thumb saying that if there is not 

sufficient evidence in a sample to reach a conclusion then 

one should take a second sample twice as large as the first 

and draw the conclusion from the combined sample. This rule 

has been used in Military Standard 105A(1950) and the subse

quent editions Band C. Let (hO,no) be a suitably chosen 

single sampling attribute plan. The five parameters of the 

corresponding double sampling plan are then disposed of as 

follows: n l = 2n O/3,n 2 = 4n O/3, the rejection numbers for the 

first sample and for the combined sample, are set equal and the 

two remaining parameters are determined such that the OC's 

for the single and the double sampling plans match closely. 

In Military Standard 105D(1963) the relations were changed to 

n l = n 2 ~ 0.63 nO and the restriction on the two rejection 

numbers was removed. 

Bowker and Goode (1952), Zeigler and Tietjen (1968) and Zeig

ler and Goldmann (1972) have used similar rules, viz. n l ~ 

0.4 nO and n 2 = 2nl or n l ~ 0.6 nO and n 2 = nI' the remaining 

three parameters being fou~~ such that the double sampling OC 

is closely fitted to the given single sampling OC ln particu

lar for the acceptance probabilities 0.95 and 0.10. 

Hamaker and van Strik (1955) have glven a thorough discussion 

of the efficiency characteristic ASN/no for double and single 

sampling attribute plans with matching OC's. 

Owen (1953) has determined double sample tests for the normal 

distribution. His first procedure has n l = pnO' n 2 = nO' the 

same test Slze as for the single sample test, but no use of 

the first sample is made at the second stage. His second pro-

cedure has n l = pn O' n 2 = nO - n l and the same test size for 

single and double sampling. In both cases p is determined by 
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minimizing the ASN under the null hypothesis leading to p ~ 

0.50 and p ~ 0~A5 respectively for a test size between 0.01 

and 0.10. 
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2. Terminology and definitions. 

We shall only discuss the case of one unknown parameter e and 

one-sided tests with a differentiable QC, p(e) say, decrea-

sing from I to Q. The power function, I - peS), may therefo-

re be considered as a distribution function with a density 

- pi (e), moments etc. This is the same consideration which led 

R.A. Fisher to introduce his fiducial probability. However, 

we do not consider peel as a probability distribution and e as 

a ~andom variable, and we do not want to get involved in the 

discussion on the meaning of fiducial probability. We just 

want to use the concepts and techniques developed in probabi~ 

lity theory as simple and familiar modes of characterizing the 

function p(e). 

We shall therefore speak of - pi (e) as the QC density:, E{8 r }= 

-JerdP(e) as the QC moment of order r, the solution of the 

equation p(e) = S, Q < S < 1, which will be denoted by 8S~ as 

the B QC fractile etc. If it is clear from the context that 

we are speaking of the QC distribution we shall leave out the 

QC. 

This terminology is very convenient. For a normally distribu-

ted random variable we may say that the single sampling QC di

stribution is normal and the QC distribution for the symmetric 

SPRT is logistic. For a Poisson distributed random variable 

the single sampling QC distribution is a gamma distribution. 

All these results are of course well-known. 

Using this terminology we shall state three definitions of QC 

equivalence and ~rength. 

Tests having the same 1 - a and S QC fractiles, b < S < 1 - a 

< 1, ~i1l be called fractileequivalent. Such tests are 

said to b eo f strength ( 81 ,ex ,e 2' S), e 1 < e2 • if P ( e I) = 1 - a 

and p(e 2 ) = S. This is the usual definition of strength with

in the Neyman-Pe~rson .~heory. 

Tests having thesameQGmedian and the same QC slope !(or QC 

dens ity} a tthatp oin t wi1lb ecalled (median) s IOpeequ i va-



lent. Such tests are said to be of strength (8 0 , sO), So > 0, 

if P(8 0 ) = 1/2 and _pI (8 0 ) = sO. This is the definition of 

strength proposed by Hamaker (1950). It may be regarded as a 

limiting case of the fractile definition. 

Tests having the same OC mean and variance will be called mo-

ment equivalent. Such tests are said to be of strength (E{8}, 

V{8}). 

For given location of the OC, 1.e. for given (8 1 ,8 2), 8 0 or 

E{8}, a test SI is said to be stronger than another test S2 

if SI has the steeper OC curve, i.e. if SI has smaller a and/ 

or S, larger So or smaller V{8} than S2' 

Since a single sampling test is defined by means of two para

meters (hO,n O) it is fully determined by specifying two "pro-

perties" of the OC distribution. Anyone of the three defi-

nitions of strength may therefore be used to determine a sing

le sampling test and there exists a one-to-one correspondence 

between them. A double sampling test is defined by means of 

five parameters (ha' hr' h, nI' n 2 ) and specification of the 

strength of a test as above therefore only introduces two re-

lations between the five parameters. It is usual practice to 

disregard the differences between OC's within an equivalence 

class and select the test within the class which is best with 

respect to the ASN. 

Consider a class C of equivalent tests and let ;(8,S), SEC, 

* denote the ASN. As usual S EC will be called ASN optimum at 

8 = 8 if o 
rested in 

- * n(8 0 ,S ) = inf 
SEC 

determining S* 

In particular we are inte-

~uch that sup ;(8,S*) = inf sup ;(8,S). 
8 SEC 8 

Such a test will be called minimax ASN. 

function, w( 8 ) say, and the average 

Consider now a weight, 

; (S) = J;(8,S)dw(8). 
w 

A test S* E C is said to be Bay~ ASN with respect to w if 

; (S*) = inf ; (S) for SEC. 
w w 

In particular we may restrict attention to two values of 8 such 

that the minimax ASN test is defined by 
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and the Bayes ASN test with respect to w is defined by 

n ( S * ) = in :f{ wIi: ( el' S) + (1- w ) n ( 8 2 ' S) }, 0 < w < I. 
w SEC 

A test SIEC is said to be better than a test S 2EC • f' 
l.~ Ii:(8 1 ,SI) 

< Ii:(8 1 ,S2) arid n(8 2 ,Sl) < n(8 2 ,S2) with strict inequality l.n 
- -
at least one place, and a test S*EC is said to be admissible 

* if there exists no test l.n C better than S . 

For a given OC equivalence class of double sampling tests we 

shall determine the ASN optimum test according to the above 

criteria. 
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Part 1. Double sampling from a Rormal population • . ; - - - - -, .... 

3. The OC function, its derivatives and moments. 

Let x be normally distributed with unknown mean e and known 
2 

variance cr. The standardized normal density and distributi-

on functions will be denoted by ~ and W, and we shall write 
2 2 2 2 

T = cr /n and T. = cr In. for i = 0, 1, 2. From the five pa-
~ ~ 

rameters (h a ,h r ,h,n l ,n 2 ) we define n = n l + n 2 , p = nl/n, 

y = (h - h )Iill/cr,y = (h - h)rnl/cr and the standardized a a r r 
variable v = (h - e) rn/cr. 

Theorem 1. The double sampling OC for the normal distribution 

equals 

Proof. 

00 (al-u/p\ v . (r l-UIP) 
= J~(u)w· . )du + J~(u)WI . .. du, 

v Il-p -~ \ Il-p 

= vIP + y • r 

The probability of acceptance equals 

or equivalently 

(1) 

From each of these expressions p(e) may be found using the 

fact that the distribution of (il,x) is bivariate normal with 

coefficient of correlation equal to IP. Hence, E{illi} = x 

and V{illx} T 2 el-p)/p such that 

Using the second of the two expressions for pee) we get 
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p(e) 

h (X-h ----) ( ) _ f<p __ r / _p_ ~ x-e dx 
T I l-p T T 

-00 . 

which is identical to (1). 

Remark. For computational purposes it should be noted that 

where 

OOf (ru-k \ 
L(h.k.r) = <P(u)<P, r=:t}du 

h Vl-r 

has been tabulated in National Bureau of Standards (1959). 

Derivatives of the QC. 

The four partial derivatives of D(v,y ,y ,p) will be denoted a r 
D', D', D', D', respectively, and further we introduce Z 

v a r p a 
Ya/11- p , Zr = Yr/!l=P, a 2 = vlI=P + zalP and r 2 = vlf=P - ZrlP. 

Differentiating (1) and using Lemma 1 1n the Appendix we get 

and 

Noting that 

~(al-ulP) = al-u/p 1 
dP ~ ~ 2p(1-p) vl-p vl-p 

and using Lemma 1 we find 

Z 
a 

+ -2p 

-1/2 -1/2 
Db = ip [(l-p) '{~(rl)~(r2)-<p(al)~(a2)} 
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-1/2 -1/2 =ip [(1-p) cp(v){cp(Zr)-Cp(Za)} 

Similarly we obtain 

Hence, the OC density becomes _pI (S) = D' /T and (lP/(ln = D'v/2n. 
v v 

> > We note that D' < 0, D"> 0 D' > 0 and (lP/(ln = 0 for v = O. 
a r' v < < 

All the derivatives are simple to compute by means of a table 

of the normal distribution. 

For a symmetric double sampling test, i.e. for h - h 
a 

we shall write y = y = y and Z = Z = Z, which means a r a r 

h - h, r 
that 

D is a function of (v,y,p) only. All the formulas above may 

be used directly apart from D'and DV, Instead we have 
a r 

D' 
Y 

The OC moments. 

(3) 

Let ~k denote the moment of order k for the standardized nor-

mal distribution, 

let mk(Z) denote 

k = 0,1, •.•. 

i.e. ~2k+l = 0 and ~2k = 1.3'00' (2k-l), and 

the incomplete moment mkCZ) = !Ct-Z)kcp(t)dt, 
Z 

The properties of mk(Z) have been discussed by Hald C1967i). 

Theorem 2. The OC moment of order k about h for the normal 

'{ k} k{ k} double sampling test equals E CS-h) = (-T) E v ,where 

.. k} k-l(k) (l::.J2)(k-i)/2{ ( k } 
E{v = ~k+ L " ~', mk . Z )+(-1) mk .(Z ) • . L L P -L r -L a L=O . 

(4) 

Proof. Before writing D' in the form (2) we have as an in
v 

termediate expression 

D' 
v 
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The first term of E{vk } = JvkD'dv therefore equals ]Jk' {<T?(Z ) -v r 
<p(-Za)} = ]1k{l-m O(Zr) -mO(Za)}. In the second term of D~ we 

first make the transformation u = t + v which g~ves 

As 

00 --.,'-'- ,-, -

J~(t+v)~(t/{~p + Za)dtj~~p . 
o 

00 
k k k-i 
L: (i)]J. (-t) 

i=O ~ 

00 k 
f v ~(t+v)dv f (u-t)k~(u)du 
-00 -00 

E· {vk} the contribution to becomes 

= 

k ook_i ,-.-.- J~.-.
L: (~)]1. (-1) k f t ~ (t,l.:-'Ll + Z ) d t I' ~l P i=o ~ ~ 0 y -p a -p 

k k k(1_P\(k-i)/2 
L: (.)]1. (- 1) ,-; mk . (Z ), 

. 0 ~ ~ p -~ a 
~= 

where we have used that 
~ 

(-1) ]1. = ]1 .. A similar evaluation 
~ ~ 

of the third term and a simple reduction leads to (4). 

Remark. The first two moments are 

(5) 

and 

The moments are easily found from a table of mk(Z) or by means 

of the relation 

since Hhk(Z) has been tabulated in British Association (1951). 
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~.-!.9..:!:!ivalent ~ingle ISamplingtests and :e£ficiency. 
\ .. 

Let Us denote the solution of the equation ~(u) = S, 0 < S < 1. 

Similarly we shall write Vs = vs(Ya'Yr'p) for the solution of 

D(v,ya,yr,p) = S. Hence, 8 S = h - TV S ' 

For the single sampling test (hO,nO) the OC is P l (8) = 

~«hO-8)/TO)' i.e. the OC distribution is normal with locati

on parameter hO and s~ale parameter TO. For the double samp

ling test the OC is P 2 (8) = D«h-8)/T, Y ,y ,p), i.e. the OC a r 
distribution has hand T as location and sca.lej __ paramet~!s and 

(Ya'Yr'p) as shape parameters. 

For a given single sampling test the three definitions of 

strength in Section 2 lead to the following relationships 

and 

= 82ul_a-8luS 

ul-a-u S 

For a given double sampling test we find 

and 

crA/ 1VT8T, 

(7) 

By means of,the formulas for (hO,noY we may find three single 

sampling tests for 'an.y given double sampling test,each single 

sampling test corresponding to the definition of strength cho-

sen. 



-13-

Of course this is nothing else than fitting a no.,.!:I(J.al distribu

tion to the given doubl~ sa~pling OCdi~t~ibtition, using three 

different (rather primitive) methods of fitting. Other methods 

may be used as well. 

The approximation D(h-8)/T) ~ ~«hO-8)/TO) may also be ex

pressed in terms of the fractiles, i.e. h - VpT ~ hO-u p TO or 

For fractile equivalence we get 

Slope equivalence gives 

and moment equivalence leads to 

vp ~ E{v} + AU p ' 

where A2 = V{v} has been defined in (7). 

Of the three approximations the last one is the simplest to 

compute because tables of mk(Z) are readily available whereas 

tables' of the fractiles of v do not exist. 

Note that the coefficient of up gives ~ which is an im

portant quantity for the evaluation of ASN/nO. 

By means of higher moments it is easy to obtain better apprOXl

mations to v p ' for example by a Cornish-Fisher expansion. The 

double sampling OC distribution has considerably longer tails 

than the equivalent normal distributions. In Table 1 a com-

parison has been given of the exact values of v p ' the Cornish

Fisher approximation based on the first four moments and the 

three equivalent normal distributions defined above. 
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Table 1. Values of vp and four approximations. Ya 

y = 0.899. P = 0.436. r 

lOOP 

0.1 

0.5 

1.0 

2.5 

5.0 

10. lJ 

20.0 

50.0 

80.0 

90.0 

95.0 

97.5 

99.0 

99.5 

99. 9 

Exact 

-3.79 

-3.07 

-2.74 

-2.27 

-1. 89 

';'1. 47 

-0.98 

-0.06 

0.84 

1. 31 

1. 71 

2.06 

2.48 

2.78 

3.42 

C-F 

-3.79 

-3.08 

-2.75 

-2.28 

-1.,90 

~1. 47 

-0.97 

-0.06 

0.83 

1. 31 

1. 71 

2.06 

2.49 

2.79 

3.43 

Moment 

:....3.47 

-2.90 

-2.63 

-2.23 

-1. 88 

-1. 48 

-1. 00 

-0.07 

0.85 

1. 33 

1. 73 

2.08 

2.48 

2.76 

3.32 

Fractile 

-3.43 

-2.87 

-2.60 

-2.21 

-1. 86 

-1. 47 

-0.99 

-0.08 

0.84 

1. 31 

1. 71 

2.05 

2.45 

2.72 

3.28 

Slope 

-3.38 

-2.83 

-2.56 

-2.17 

-1. 83 

-1. 44 

-0.97 

-0.06 

0.84 

1. 31 

1. 70 

2.04 

2.43 

2.70 

. 3.25 

0.599. 

The Cornish-Fisher approximation is based on E{v} = -0.073, 

V{v} = 1.207, Yl = -0.069 and Y2 = 0.242. The moment equi

valent single sampling test glves v ~ -0.073 + 1.099 u. The 

fractile approximation is based on v095 = 1.708 and vo lO 
-1.469 which give) v ~ -0.078 + 1.086 u. The (median) slope 

approximation uses v05 = -0.062 and D~ (v'S) = 0.372 which 

lead ·to v ~ -0.062 + 1~073 u. As could be expected the mo

ment approximation gives the best over-all fit among the three 

normal approximations. However, for 0.025 < P < 0.975 the 

three approximations do not differ much. 

Consider now 

and the inverse efficiency, lE = n(8)/no' of double sampling 

relative to the equivalent singl~ sampling test. We find 

n (8) 
IE(8)=-

nO 
E-Lrp+(l-p){W(VIP+y )-w(v/p-y )}]. 
nO r a 

(8) 
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By means of this expression and the approximations given :a

bove it is easy to in~estigatethe effi~iency ofdoublesamp

ling. As a simple example suppose we want .t6 inv~stigate sym-

metric double sampling tests. 

vp !::!.up/n/no such that 

We then have y = y = y and . a r 

Setting P = 0.95, say, n(8095)/nO is easily tabulated as func

tion of (y,p) and a good double sampling plan may then be se

lected. 

Another example (involving no approximation) is the case of 

moment equivalent tests with 

s~p "il(8)/no = "ilC 8 '5)/nO = ~o[p+(l-P){Z~(y)-i}J 

-1 as measure of efficiency, where n/nO = 1+ 2(1-p)p m2 (Z), 

see (7). Table 2 gives some values of this function. It 

will be seen that the test minimizing sup "il(8)/no is found for 

p !::!. 0.6 and Z !::!. 1.0, the exact values being p = 0.586 and Z = 
0.967 as will be shown in the following section. The minimum 

of sup n(8)/no equals 0.87. 

Table 2. Values of sup "il(a)/no for moment equivalent, symme

tric double sampling tests. -

z y /Il-p 

. ~ 

1.0 1..5 2.0 2.5 _P-t0 ' O 0.5 
. 

1/4 1. 00 1. 13 1. 03 0.97 0.97 0.98 

1/3 1. 00 1. 00 0.94 0.93 0.95 0.98 

2/5 1. 00 0.95 0.90 0.91 0.94 0.97 

1/2 1. 00 0.91 0.87 0.89 0.93 0.96 

2/3 1. 00 0.90 0.87 0.89 0.92 0.95 

4/5 1. 00 0.92 0.90 0.91 0.93 0.95 

10/11 1. 00 0.96 0.94 0.95 0.95 0.96 
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5. Double 'sampling tests minimizing max ;-(8). 

From 

-;:;: I C 8 ) 

it follows that max ;-(8) = ;-CiCha+h r ». Further, n(8) 1S 1n

creasing for 8 < (h +h )/2, decreasing for 8 > (h +h )/2, a r a r 
;-(8) + n l for 181 + 00 and 

m;x ~(8) = n[p+CI-P){2~(icYa+Yr»-1}]. 

We shall write; for max -;:;:(8) 1n the present section, and 

tests minimizing max ;(8) will be called minimax ;(8) tests. 

We shall.determine such tests for the three equivalence defi

nitions. 

The~m 3. Let there be glven a single sampling test (hO,nO)' 

The moment equivalent, minimax ;-(8),double sampling test is 

given by h = hO' Ya = Yr = 0.622, P = 0.586 and n = 1.114 nO· 

For this test max -;:;:(8) = 0.868 nO. 

Proof. Moment equivalence means that the double sampling 

tests considered satisfy the two equations 

o (9) 

and 

see (5) and (6), Hence, the problem consists in minimizing 

max ~(8) under the two restrictions. Defining G = ~ + ~lgl+ 

~2g2 the solution may be found by setting the derivatives of 

G equal to zero and solving for the five parameters (h,yay r , 

p, n) . We s hall use t hat mk + 1 (Z) = - (k + 1 ) mk (Z). k = 0, 1 , •.• , 

and mO(Z) ~(-Z). 

From aG/ah = aG/aY a aG/ay = 0 we get 
r 

0, (11) 



where y = (y +y )/2. a r 
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1/2 -
np (l-p) <jJ (y) /T, (12 ) 

1/2 -
np (l-p)<jJ(Y)/T, (13) 

Subtracting (13) from (12), us~ng (9) 

to introduce hO - hand (11) to eliminate A2 (h O-h) we obtain 

Al(l-mO(Za)-mo(Zr» = O. As h < h we have Z + Z > 0 which a r a r 
means that 1 - mO(Za) - mO(Zr) * 0 and hence Al o. From 

(12) and (13) we then get A2 * 0 and ml (Za) = ml (Zr)' which 

gives Za = Zr Z, say, and from (11) h = hO' We have thus 

proved that the solution is to be found among the ~mmetric 

tests which ~s also intuitively clear since the specification 

is symmetric. 

Rewriting (10) and (12) we have 

and 

2 
- T o 

2 1 1/2 
(A 2 T /n)ml (Z) = Zp(l-p) <jJ(y). 

From aG/ap = aG/an = 0 we get 

and 

o (14) 

(15 ) 

Solving (15) for A2 T 2 /n, inserting into the two equations a

bove and using the relationship m2 (Z) + Zml(Z) = mO(Z) we 

find after some reduction 

and 

mo(Z) 
ml (Z) - (l-p)Z 

l-2mo (Z) 

2m l (Z) = 
1-2mo (y) 

p/l-p<jJ(y) 

Solving the two equations by iterative methods we find Z 



-18-

0.9672 and p = 0.5864. From (14) we get nlnO 

m2 (Z) = 1.114. 

-1 
1 + 2(1-p) p 

Corollary 1. For given (p,n) the optimum test is determined 

by h = hO and y = z/f=P, where Z is found from the equation 

Corollary 2. For given p the optimum test is determined by 

h = hO' y Z/l-p, where Z is found from the equation 

-1 
1+2(l-p)p m2 (Z) 

2m l (Z) 

and n is found from 

= 
1-2 (l-p)mO (y) 

p/f=P<I> (y) 

-1 
1 + 2(1-p)p m2 (Z), 

see Table 3. 

Table 3. Moment equivalent, minimax ;(S) double sampling , 
tests for given p. 

n2/nl p y nlnO n/nO 

0.25 0.8000 0.469 1. 034 0.902 

0.50 0.6667 0.562 1. 080 0.873 

0.71 0.5864 0.622 1. 114 0.868 

1. 00 0.5000 0.709 1. 150 0.875 

1. 50 0.4000 0.890 1.162 0.901 

2.00 0.3333 1.103 1. 133 0.929 

3.00 0.2500 1. 511 1. 072 0.966 

4.00 0.2000 1. 851 1. 038 0.984 

Remark on the equivalent SPRT. To illustrate the application 

of the above method to a sequential test we consider a normal 

process x , saY,n being continuous, with unknown mean en and 
~ 2 " known varlance cr n. The contlnuatl0n region for the symmetric 

SPRT may be written as -kcr + nS < x < kcr + nS O and the cor-o n 
responding OC is 

w -1 
peS) = (l+e ) F(w) for w 
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Hence, the OC distribution is logistic with mean ~O and vari-
222 

ance cr IT /(12k). The expected sample size is nee) 

2k 2 (1-2F(w»/w and max ~(e) = ~(eo) = k 2 , 

Since the symmetric SPRT depends on two parameters only, VLZ. 

eo and k, 

that E{e} 
2 

nOIT /12 = 

it is fully determined by the first two moments such 
,2222 2 = eO = hO and v{e} = cr IT /(12k ) = cr /no or k = 

0.8225 nO' The inverse efficiency then becomes 

0.8225 (as compared to 0.863 for double sampling) and the 

continuation region LS 

-0.907cr~ + nhO < xn < 0.907cr~ + nhO' 

Theorem 4. Let there be given a single sampling test (hO,n O}' 

The slope equivalent, minimax ~(e) ,d6uble sampling test is gi-

ven by h = hO' Ya = Yr 

For this test max ~(e) 

= 0.560, p = 0.465 and n = 1.216 nO' 

0.842 nO' 

Proof. It is clear that the optimum test must be symmetric 

because the specification is so. Slope equivalence means that 

p(e O) = i and _pi (eo) = sO' which immediately give h = ho 

eO and 

where 

Df(O)/T 
v 

D I (0) = 21P ~ (y) <I> (- z IP) + ~ (0) { 2 <I> (Z ) - I} . v 

(16) 

Introducing the auxiliary function G = n - AD' (O)/T the un-
v 

known parameters (y,p,n) may be found by solving the three e-

quations 3G/3y = 3G/3p=3G/3n = 0 together with the restricti

on (16). Noting that ~(y)~(zlP) = ~(O)~(Z) and eliminating A 

from the three equations we get 

and 

py + (1-p) p (y) 
2 <I> (-y) 

.Pill l-2<I>(-y) 
~(O) 2 <I> (-y) 

~(Zre) 
I p (1- p ) <I> ( - Z 11 p) 

10 l-2<I>(-Z) 
p 2 <I> (-Z1lp), 



The solution 1S y 

(16) we find nlnO 

0.842. 
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0.5596 and p = 0.4652. Inserting into 

. {~(0)/D~(0)}2 = 1.216 and finally n/no = 

Theorem 5. Let there be given a single sampling test (hO,nO). 

For a = B the I-a fractile equivalent, minimax n(8), SImme

tric double sampling test is given by h = h2' (y,p) are deter

mined by (17) and (18), and n = (vI /u l ) nO' see Table 4. -a -a 

Proof. Considering symmetric tests only the fractile speci-

fieation P(8 l ) = l-P(8 2 ) = I-a gives h = hO = (8 1 +8 2 )/2. The 

problem is to minimize n = n[p+(1-p){2~(y)-1}] under the re

striction D(vl,y,y,p) = 1 - a, where vI = (h-8 l )/To Introdu

cing G = n - ADCvl,y,y,p) and eliminating A from the three 

equations aG/ay = aG/ap = aG/an = 0 we get 

and 

(1-P)CPCI) 
~C-y) 

l-2Cl-p)~(-y) 
~(-y) 

D' 
J' 
D' 

P 

vD' 
v 

J5T' p 

(17) 

(18) 

where D', D' and D' have been defined in Section 3. The two 
y p v 

equations together with the restriction have been solved by 

iteration starting from suitably chosen values of (y,p), the 

only difficulty in the procedure being the solution of the e

quation D(v,y,y,p) = 1 - a with respect to v. A special al

gorithm has been developed for this purpose. 

Remarks on Table 4. A summary of numerical results from The

orems 3,4 and 5 has been given 1n Table 4. Besides the para

meters characterizing the optimum tests the table contains 

the most important OC fractiles and corresponding values of 

n(8)/no such that the OC and ASN functions may be easily 

found. 

It will be seen that the moment equivalent test and the 0 .. 96 

fractile equivalent test are nearly equal. For the commonly 

used values of a, 0.01 < a < 0.05 say, we have n ~ 1. lOn O' - -

p ~ 0.6, that 1S n 2 /n l ~ 2/3, y ~ 0.63, max ; (8) ~ O.87nO 



Table 4. Table of symmetric double sampling tests minimizing max nee). 
Mom.equiv. OC-Fractile equivalence Slope 

_}~quiv. 

100(1-0.) 99.9 99.5 99.0 97.5 95.0 90.0 80,0 
2 9.550 6.635 5.412 3.841 2.706 1. 642 0.7083 _u 1- Cl 

n/nO 1. 114 1. 064 1. 079 1.088 1. 104 1. 121 1.144 1. 175 1. 216 

P .5864 .6764 .6441 .6266 .5988 .5730 .5417 .5046 .4652 

y .6220 .6725 .6580 .6498 .6362 .6230 .6060 .5845 .5596 

~/no .8682 .8914 .8830 .8785 .8716 .8654 .8582 .8499 .8417 

lOOP Table of v for D(v,y,y,p) P. 

99.9 3,.340 3.188 3.229 3.256 3.308 3.365 3.449 3.572 3.733 i 

99.5 2.752 2.647 2.676 2.694 2.730 2.769 2.826 2.912 3.027 
N 
t-' 

99.0 2.474 2.387 2.411 2.427 2.456 2.488 2.53'5 2,.605 2.700 ! 

97.5 2.073 2.008 2.026 2.038 2.059 2.083 2.118 2. 169 2.238 
95.0 1. 734 1.683 1. 697 1.706 1. 723 1. 741 1. 768 1.806 1. 858 
90.0 1.346 L 310 L 320 1. 327 1.339 1.352 1. 370 1. 397 1. 433 
80.0 0.882 0.859 0.866 0.870 0.877 0,.885 0.896 0.912 0.934 
50.0 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0.000 0,000 

lOOP Table of n(e)/no for D(v,y,y,p) = P . 

99.9 • 665 .728 .705 .693 .673 .655 .633 .607 .580 
99.5 .684 .742 .720 .709 .691 .674 .654 .631 .606 
99.0 .697 . 752 .732 .721 .7D4 .689 .670 .649 .625 
97,5 .724 .773 • 755 .745 .730 . 717 .701 .682 • 662 
95.0 .752 .795 .779 .771 .758 .746 .732 .716 .700 
90.0 .788 .824 .811 .804 .793 .783 .772 . 759 .745 
80.0 .829 .858 .848 .842 .833 .826 .816 .806 .795 
50.0 .868 .891 .883 .879 .872 .865 .858 .850 . 842 

1"Ii.1 /n O .653 .720 .695 .682 .661 .642 .620 .593 .566 
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Example 1. Suppose that we want to test the hypothesis 8 ~ 0 

against 8 > 0 for a = 10 and that we require PC8 ) = l-PC8 ) = 
1 2 

0.95 for 81 = 0 and 8 2 = 3, say, for the single sampling te~i. 

Herice ha =1.5and no ~ 100 • 2.706 ~ C2/3)2 = 120.3. 

By means of Table 4 we obtain the following equivalent double 

sampling tests. 
Equivalence. 

Moment Slope 0.95 Fractile 

n 134 146 135 
n l 79 68 77 
y 0.622 0.560 0.623 
h 0.80 0.82 0.79 a 
h 2.20 2.18 2.21 r 
max n (8) [h04 Ht01 (H~4 

nC8p =n (8 2 ) 90 85 90 

It will be seen that the three specifications of strength 

lead to slightly different double sampling tests. 

Non-Symmetric double sampling tests. We shall consider tests 

of strength (8l,a,82~S)' a * S, minimizing max n(8). The e

quations for determining the parameters will be given in Sec

tion 6. Some results for S = 2a are presented in Table 5. 

Comparing with Table 4 it will be seen that p, nlnO and max 

n(8)/no can be found with great accuracy as the average of 

the values in Table 4 for 1 - a and 1 - S. 

Table 5. Table of double sampling tests of strength C8 l ,a, 

8 2 ,S) minimizing max n (8) • 

I-a S Yr p nlno 
maxn(8) 

IT -v Ya . nO ' I-a S 

0.999 0.002 0.6500 0.6894 0.6702 1. 067 0.8897 ·3.185 2.980 
0.995 0.01 0.6278 0~6801 0.6355 1.083 0.8£108- 2.671 2.431-
0.990 0.02 0.6145 0.6754 0.6166 1. 094 0.8760 2.421 2.160 
0.975 0.05 0.5910 0.6684 0.5861 1. 112 0.8686 2.050 1. 751 
0.950 0.10 0.5660 0.6632 0.5575 1,132 0.8618 1. 727 1.386 



-23-

6. Optimum douhlesampling tests of 'strength (8 l ,ex,8 2 ,13). 

Consider the class of all double sampling tests satisfying 

P(8 l ) = 1 - ex and P(8 2 ) = 13, 81 < 8 2 and 0 < 13 < I - ex < 1, 

and the corresponding point set'{~(8l),n(82)}. Introducing 

randomized tests the point set of ASN's will obviously be 

convex and bounded below, and the admissible tests correspond 

to the part of the lower boundary lying between the horizon

tal and the verti~al tangent to the convex set. The admissib

le tests may therefore be found as the Bayes ASN tests by mi

nlmlzlng nw = w n(8 l ) + (1-w)n(8 2 ), since for each 0 < w < 1 

we get a supporting tangent and thus a point on the lower 

boundary of the convex set. The procedure has been illustra

t e d in Fig. 1 for ( ex, 13) = ( 0 • 05 , 0 . 10) by plo t tin g (n ( 8 1) / nO' 

n(8 2 )/nO) for the admissible tests and showing the supporting 

tangent for w = 2/3. 

Setting v. = (h-8.)/T, ai' = v./p - y and r ll. 1 1 1 1 a v./p+ Y 
1 r 

for i = 1,2 we get n ~ n{p+(l-p)c}, where 
w 

The problem is to minimize n under the two constraints 
w 

1 - ex and D(v 2 ,y ,y ,p) = 13. a r 
(19) 

Since there exists a one-to-one relation between (h,n) and 

(v l ,v2 ) we shall treat (v l ,v 2 'Ya'Yr'p) as the unknown parame

ters and determine (h,n) from h = (82vl-8Iv2)/(vl-v2) and 

III = 0(v l -v 2 )/(8 2-8 l ). 

Writing D(v) for D(v'Ya'Yr'p) and G,= nw - AlD(v l ) - A2 D(v 2 ) 

we get five equations of the form uw = AlD'(v l ) + A2D' (v 2 ). 

The derivatives of D have been given in Section 3 and it is 

straightforward to find n~ noting that an/dv l 

Denoting the five derivatives of 

subscripts 1,2,a,r and p, respectively.w~ get 

and 

-an/av 2 =: 

n with the 
w 

(20) 
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Fig. 1. Inverse efficiency, i( 81)/nO and n( 8 2)/nO' for the 

admissible double sampling tests of strength e81 , 0.05, 8 2 , 

0.10). B2j3 corresponds to the Bayes ASH test for w = 2/3 

and M corresponds to the minimaxfn(8 1) 'in(82)} test. 
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AlD~(vl) + A2D~(V2) U' wa' (21) 

AlD~(vl) + A2D~(v2) = ri' wr' (22) 

AlD~(vl) + A2D~(v2) = n' (23) wp 

The seven equations may be solved by iteration. Starting 

from a suitably chosen value of (Ya'Yr'p) we find (v l ,v 2 ) 

from (19) and CA l ,A 2 ) from (20). Inserting into (21) - (23) 

we may find an improvement of the starting value and then 

start a new cycle. 

Table 6 shows the results for (a,S) = (0.05, 0.10) and vari-

ous values of 
2 

(u l - a -uS) • 

2 
w, see also Fig. 1, nlnO being found as (v l -v 2 ) I 

It will be seen that the minimax ASN test corre-

sponds to w ~ 0.05. 

We remark that the problem of determining the double sampling 

test of strength (8 l ,a,8 2 ,S) minimizing max n(8) may be sol

ved by the same method since we only have to replace n by 
w 

max n(8). Numerical results for this case have already been 

presented in Table 5. 

In the symmetric case, that is, for y = y = y and a = S, we a r 
have n(8 l ) = n(8 2 ), which means that the equations become much 

simpler. As h = hO we only have to determine (y,p,n) by mi

nimizing n(8 l ) under the restriction D(Vl,y,y,p) = 1 - a. 

We shall now present some numerical results and also compare 

the efficiency of the optimum double sampling test with the 

efficiency of the SPRT which has been given by Ghosh (197D, 

p.138). 

For the symmetric case results are given 1n Table 7 which is 

analogous to Table 4 for the minimax n(8) tests. For the com-

monly used values of a we have n ~ 1.lBnO' p ~ 0.43, that is 

n 2 /n l ~ 4/3. 

A comparison with the SPRT 1S given 1n Table B. 
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Table 6. Bayes ASN daub le sampling tests for a 0.05 

and S = 0.10. 
. n(81) n(8 2) 

w Ya Yr p nlnO nO nO v 
I-a 

-v 
S 

0.000 1. 155 0.606 0.463 1. 138 0.786 0.759 1. 869 1.253 

0.050 1.001 0.618 0.464 1.149 0.758 0.760 1. 855 1.281 

0.125 0.886 0.638 0.462 1. 159 0.740 0.761 1. 839 1.313 

0.200 0.813 0.662 0.459 1. 168 0.730 0.763 1. 823 1.339 

0.250 0.776 0.678 0.456 1. 172 0.725 0.765 1. 813 1.355 

0.333 0.726 0.710 0.451 1. 179 0.718 0.768 1. 796 1.381 

0.400 0.693 0.737 0.447 1.183 0.713 0.770 1. 783 1. 400 

0.500 0.652 0.786 0.439 1. 188 0.707 0.776 1. 760 1. 430 

0.600 0.616 0.845 0.431 1. 191 0.701 0.783 1. 735 1.459 

0.667 0.595 0.893 0.425 1. 192 0.697 0.789 1. 716 1.480 

0.750 0.570 0.968 0.417 1. 192 0.693 0.801 1.689 1.506 

0.800 0.556 1. 026 0.412 1. 191 0.690 0.810 1. 671 1. 523 

0.875 0.536 1.146 0.403 1. 187 0.686 0.833 1.638 1. 550 

0.950 0.516 1.366 0.393 1.179 0.682 0.879 1. 596 1.581 

1.000 0.501 1. 900 0.384 1. 170 0.680 0.990 1. 557 1.609 



Table 7. Table of symmetric double sampling tests of strength (e1 ,a,e2 ,a) minimizing n(e1)' 

OC-Fracti1e equivalence Slope equiv. 

100 (1- a) 99.9 99.5 99 .. 0 97.5 95.0 90.0 80.0 
2 

9.550 6.635 5.412 3.841 2.706 1.642 0.7083 u 1- a 
nlnO 1.159 1. 170 1.174 1.180 1.186 1. 193 1. 203 1. 216 

P .3948 .4075 .4147 .4260 .4359 .4466 .4569 .4652 

y 1.133 .9750 .9066 .8165 .7488 .6814 .6162 .5596 

lOOP Table of v for D(v,y,y,p) = P. 

99.9 3.327 3.434 3.484 3.549 3.597 3.643 3.689 3,733 
I 

99.5 2. 717 2.786 2.821 2.870 2.908 2.947 2.988 3.027 N 

99.0 2.437 2.493 2.521 2.562 2.594 2.628 2.665 2.700 "'-J 
I 

97.5 2.038 2.078 2.009 2.129 2.154 2.181 2.210 2.238 
95.0 1. 703 1.733 1.748 1. 772 1.791 1.812 1.835 1. 858 
90.0 1.322 1. 343 1. 354 1.370 1.384 1.400 1. 416 1.433 
80.0 0.866 0.878 0.885 0.895 0.903 0.913 0.923 0.934 
50.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

lOOP Table of n(e)/no for D(v,y,y,p) = P. 

99.9 .576 .554 .549 .547 .551 .558 .569 .580 
99.5 .655 .621 .610 .600 .595 .595 .599 .606 
99.0 .697 .660 .646 .631 .624 .621 .622 .625 
97.5 .762 .721 .704 .,685 .674 .666 .662 .662 
95.0 .817 .774 .757 .735 .721 .710 .703 .700 
90.0 .874 .833 .814 .791 .775 .762 .751 .745 
80.0 .932 • 892 .873 .849 .832 .816 .804 .795 
50.0 .979 .942 .924 .900 .882 .866 .852 .842 

n1 1nO .458 .477 .487 .503 .517 .533 .550 .566 
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Table ~. Inverse efficiency, n(8 l _a )/no ' for fractile equi

valent, symmetric double sampling tests and SPRT's. 

100a 

Double 

SPRT 

0.5 

0.62 

0.40 

1 

0.65 

0.42 

5 

0.72 

0.49 

10 

0.76 

0.53 

Results for the non-symmetric case are given ~n Table 6 and 

9, see also Fig. 1 and 2. For w 1/2 a good approximation 

to the solution may be read from Table 7. 

Since errors of "the first kind" are considered more serious 

than errors of "the second kind" we choose a ~ S. According-

ly it is desirable to have n(8 l ) < n(8 2 ), which means that 

the minimax{n C8 l ),n(8 2 )} test is a limiting case. Among the 

admissible tests it seems reasonable to choose the Bayes ASN 

test with w = SI (a+S), see Fig. 2. For S 2a there is no 

essential difference between tests with w = 2/3 and w = 1/2. 

Table 9 contains sufficient information for finding the Bayes 

ASN tests for other values of wand a by interpolation. 

_ EXJ'!mRJe .. 2. For the problem considered in Example 1 we may 

find the 0.95 fractile equivalent double sampling test m~n~

mizing n(8 l ) = n(82) by means of Table 7. From nO = 120.3 

we get immediately n = 143, n l = 62, n(8 l ) = n(8 2 ) = 87 (as 

compared to 90 in Example 1) and max n(8) = 106 (as comp~r~~~ 

t.o 104). 

Example 3. Considering the problem in Example 1 for P(8 l ) = 

0.95 and P(8 2 ) = 0.10 we get hO = 1.69 and nO = 95.2. The 

fractile equivalent minimax n(8) test and the fractile equi-

valent Bayes ASN test for w 2/3 may be found from Table 5 

and Tab le 9, respectively, by straightforward computations. 

The results are 

n n l h h h n (8 1 ) n (8 2 ) n max n a r w Mini~ 108 60 0.93 2.52 1. 66 70 74 71 82 

Bayes 113 48 0.75 2.90 1. 61 66 75 69 84 
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F i ~ • I n v e r see f f i c i en c y, n ( 8 1 ) / n 0 and n (82) In 0 ' for the 

admissible double sampling tests of strength (81,a,82'~) for 

B = 2a. B2 / 3 and B1/2 correspond to the Bayes ASN tests for 

w 2/3 and w = 1/2, respectively. 
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Even if there are considerable differences between the para

meters of the two tests the differences expressed in terms 

of the ASN's are rather small. Of course, more pronounced 

differences will be found for smaller values of a. 
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7. Moment equivalent, Bayes ASN, double sampling tests with 

normal weight function. 

Consider the class of moment equivalent, double sampling tests, 

that is, tests satisfying equations (9) and (10), and suppose 

that we average ;(e) with respect to a weight function which 

is chosen as a normal distribution function with parameters I 

2 
(~,w). This gives 

n 
w 

00 

= J ;(e)W-l~{(e-~)/W}de 

To characterize the weight function in relation to the 
2 

given OC distribution with parameters (hO,T O) we introduce 

~O = (hO-~)/TO and Wo = W/TO' 

Further, we introduce 

c = 1 + = 1 + W~ P 

and 

n -;;-, 
o 

( k ,~n -1/2 r= y + ;=c 
r 1 nO 

such that 

n = n[p+ (l-pj{~(r) - ~(.)}]. 
w 

The Bayes ASN test may then be found by minimizing n with 
w 

respect to k, n/no' y • y and p under the constraints (9) and a r 
(10) using the usual procedure. 
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To tabulate the solution we have to choose ~ and w in a 

reasonable way. Suppose that we want to put the greatest 

weight at a 

~ = 8 1 or -a 

certain value of 8, 81_0', say. This means that 

~O = u 1- a " Consider next a larger value of 8, 

8 S say. 0 < S < 1 - a < I, and suppose that we want the weight 

at that point to be a certain fraction A, 0 < A < 1, of the 

maximum weight. This leads to the equation 8 S = hO + ul-STO 

and 

with the solution 

___ 1 __ (8 -8 )2 = In A 
2(i SI-a 

Some examples of Bayes ASN tests have been given in Table 

10. The interpretation of the results is rather obvious. 

Note that hO-h = (~O-k)TO. Similar computations for S = a 

show that the parameters of the double sampling tests are near

ly the same as for B = 20',. 

Table 10. Moment equivalent, Bayes ASN r &oub1e sampling tests. 

100 (1-0',) 

99.9 

99.5 

99.0 

97.5 

95.0 

90.0 

S 20',. 

3.090 

2.576 

2.326 

1. 960 

1. 645 

1. 282 

1/2 
1/10 

1/2 
1/10 

1/2 
1/10 

1/2 
1/10 

1/2 
1/10 

5.069 
2.781 

4.164 
2.284 

3.720 
2.041 

3.062 
1. 680 

2.486 
1. 364 

1/2 1.803 
1/10 0.989 

~ -k o Ya Yr 

.028 1. 108 1. 297 

.071 0.930 1.426 

.032 1.036 1.241 

.076 0.864 1.376 

.0330.9971.210 

.077 0.828 1.346 

.0370.930 1.159 

.080 0.7721.292 

.0410.864 1.108 

.0810.720 1.232 

.0470.774 1.038 

.080 0.6591.136 

.2611.172 

.2931.170 

.289 1. 169 

.323 1. 166 

.3051.168 

.340 1. 163 

.3341.164 

.3691.158 

.3651.160 

.400 1.151 

.4111.151 

.443 1.142 

.535 

.577 

.573 

.615 

.595 

.637 

.632 

.672 

.669 

.706 

.719 

.751 

Comparing the results in Table 10 and Table 9 it will be 

seen that p does not vary much with A and w, respectively, 
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whereas p depends strongly on a ~n Table 10 but not in Table 9. 

For a = 0.05, small values of A and large values of w we have 

in both cases values of p about 0.4. 

Investigation of the symmetric case ~ = hO(~O=O) shows 

that the parameters vary rather much with WO' For example we 

get p = 0.586,0.436,0.200 for Wo = 0,1, 2.0, 10.0 respecti-

vely. 

rem 3. 

For Wo + 0 we get the minimax test described in Theo-

Example 4. As in Example 3 we start from a single samp-

ling test with hO = 1.69 and nO = 95.2 such that 8 1 ~ 0 and 

8 2 = 3 have acceptance probabilities equal to 0.95 and 0.10, 

respectively. From Table 10 we may determine the moment equi-

valent, Bayes ASN test with a normal weight function. Suppose 

the largest weight is put on 8 = 0 and that 1/10 of that weight 

is put on 8 = 3. The parameters may then be found in Table 10 

for 1 - a = 0.95 and A = 1/10. For comparison with Example 3 

the results are tabulated below: 

n n l h h h n (8 1 ) n (8 2) n max n a r w 

110 44 0.52 3.46 1. 60 67 81 67 88 

It will be seen that ;( 8 2 ) and max ;;-(8) here are larger than 

~n Example 3 because more weight has been put on the sm~ller 

values of 8. This has also resulted in a smaller value of n . 
w 
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8. Discussion 

The purpose of double sampling as compared to single samp

ling is to obtain a test having the same QC and on the average 

fewer observations. This formulation immediately raises two 

questions: (1) What does it mean that the QC's are the same? 

(2) For what values of e should ~(e) be small? 

The first question has been answered by defining equiva

lent tests as tests having two properties of the QC in common, 

disregarding all other features of the QC distribution. Qne 

of the reasons for choosing two properties only is that the 

single sampling test and the SPRT both are fully determined by 

means of two parameters. It should be noted, however, that as 

a consequence of this equivalence definition we are led to con

sider the normal and the logistic distributions as QC equiva

lent. This is common usage in controlling the risks of error 

in testing hypotheses but a similar point of view would not be 

considered good statistical practice in analysing data. 

Usually two fractiles are employed for specifying the QC. 

As another possibility we have considered the first two moments. 

If one wants precise control of the risks of error at two .pe

cified values of the parameter fractile equivalence should be 

used, but if one wants good over-all agreement of the two QC's 

then moment equivalence is preferable. Furthermore, moment 

equivalence has the advantage of being much easier to work with 

in mathematical and computational respects. 

The second question above has no unambiguous answer in the 

case of double sampling. For fractile equivalence we have the 

surprising result that the SPRT minimizes the ASN at both the 

specified values of the parameter but if we limit ourselves to 

double sampling tests a similar result does not exist. In ac-

cordance with general decision-theoretic concepts we have the

refore introduced minimax and Bayes ASN double sampling tests 

and tabulated a reasonable selection of such tests. The choice 

of a good test among the admissible ones is then as usual left 

to the "client" who has to provide the necessary background 
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knowledge for the choice. However, looking at the tables it 

is gratifying (and somewhat surprising) to find that for the 

values of a and S usually employed there is not much differen

ce between the ASN functions for the minimax and the Bayes 

tests for values of the parameter between the .975 and .025 

fractiles, see Fig. 3 for an example. Naturally, for smaller 

values of a and S the difference becomes consid~rably larger 

and in such cases the choice of optimality criterion becomes 

crucial. 

The effect of using different optimality criteria may be 

studied in detail by comparison of the results in Tables 4 and 

7. Some of the main results have been exhibited in Fig. 4. 

In the one case we minimize n(e'5)' in the other ~(ea)' For 

a = 0.5 the two optimality criteria are identical. For larger 

values of I-a the differences between the parameters become 

more pronounced, but differences between the corresponding ASN's 

are still rather small for 1 - a < 0.95. Looking at the re-

suIts for the commonly used values of a, 0.01 < a < 0.05 say, 

it will be seen that n 2 /n l ~ 2/3 if min n(e. 5 ) is used as op

timality criterion, whereas n 2 /n l ~ 4/3 if min ~(ea) is used. 

The old rule with n 2 = 2n l cannot be recommended in these ca

ses, whereas one is tempted to say that n 2 = n l which has been 

used in Mil-Std 105 D is a happy compromise between the two 

results above. Also in the non-symmetric case discussed in 

Table 9 a value of n 2 /n l of about 4/3 will give nearly optimum 

tests. For the Bayes ASN tests considered in Table la, howe-

ver, a somewhat larger value between 1.5 and 2, say, should be 

used. 

In acceptance sampling one is often interested in keeping 

the amount of sampling inspection down for lots of process 

average quality and it is therefore reasonable to use a Bayes 

ASN test with a large weight on the process average quality. 

In other fields of application a less extreme distribution of 

weights may be more reasonable. 

In Section 6 it was recommended as a rule of thumb to 
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Fig. 3. Inverse efficiency for 0.95 fractile equivalent, sym-

metric double sampling tests minimizing max ~(8) and minimizing 

;(8. 95 ), respectively. 
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Graph of main results for fractile ~quivalent, symme-

tric double_sampling tests minimizing ;(8.5 ), see Table 4 and 

minimizing ;(8 ), see Table 7. a . 
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choose the Bayes ASN test with w = S/(a+S) among the admissib

le tests of strength (8 l ,a, 82 ,S) because this leads to a test 

with small values of the ASN for both 81 and 82 and with ~(8l) 

~ ~(82)' It may be of some interest to compare the ASN's for 

the corresponding SPRT. It is well-known that for a normal 

process the ratio of the two ASN's for the SPRT equals 

(l-S) In l-S + S In _S_ 
a I-a = I-a a 

(I-a) In --S- + a In l-S 

This ratio and the corresponding ratio for the Bayes ASN doub

le sampling test has been tabulated in Table 11 for S = 2a. 

It will be seen that to obtain the same ratio of the ASN's as 

for the SPRT the weight for 81 has to be chosen to approxima

tely 0.8. 

T ab 1 e 11. V a 1 u e s 0 f ~ ( 8 2 ) /~ ( 8 1) for S 2 a . 

Bayes ASN double sampling test 

100a w=1/2 w=2/3 w=4/5 SPRT 

0.1 1. 06 1. 09 1. 12 1. 11 

0.5 1. 07 1. 11 1.15 1. 14 

1.0 1. 08 1. 12 1. 16 1. 16 

2.5 1. 09 1. 13 1. 17 i 1. 18 

5.0 1. 10 1. 13 1. 17 1. 19 

From the tables (and graphs) of ;(8)/no it follows that a 

considerable saving in the number of observations may be obtai

ned by using (optimum) double sampling instead of single samp-

ling. Table 8 also shows that the step from single to double 

sampling gives more than half of the saving obtainable from 

single to sequential sampling. 

Besides being of direct value in constructing optimum doub

le sampling tests for a normally distributed random variable 

with known standard deviation the results obtained are also va

luable considered as large sample results for non-normal random 
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variables. The importance of this point of view LS enhanced 

by the fact that the minimum considered is very flat such that 

there is room for considerable variation in the parameters 

without changing the inverse efficiency very much. However, 

the values of the parameters must be properly balanced. 

It is of course desirable to find the optimum double 

sampling tests for many other cases than the one considered 

here, for example for a normal distribution with unknown stan

dard deviation, for Poisson and binomial distributions etc. 

However, so long as the exact solution is lacking it is impor

tant to notice that a good approximation may be obtained from 

the results given here. One obvious procedure would be to 

start from the optimum value of p for the normal case and then 

determine the other parameters by minimization. Besides pother 

parameters could be taken from the large sample solution. The 

procedure has been illustrated in Corollary 1 and 2 in Section 

5. It will also be used for the Poisson distribution in the 

following sections. 

A theory of double sampling based on prior distributions 

and linear costs has recently been developed. For a continu

ous prior n 2 /n l tends slowly to infinity for n 1 + 00, see for 

example Hald and Keiding (1969, 1972), in contradiseiriction 
~ 

to the results found here where n 2 /n l is constant. It is a 

well-known fact that Bayesian decision rules have quite diffe~ 

rent (asymptotic) properties than rules corresponding to a 

specified strength. For discrete priors, however, we have 

that n 2 /n l tends slowly to 4 (from below), see Hald (1973). 

For simplicity and for practical reasons we have used the 

ASN for a double sampling test divided by the sample size for 

the equivalent single sampling test as (inverse) efficiency 

measure. In accordance with general statistical theory it would 

have been more natural to measure efficiency by the ratio of the 

ASN for the optimum test Ca sequential test) within the equiva

lence class and the ASN for the double sampling test in question. 

see Moriguti (1956). 

thought. 

We have not, however, pursued this line of 
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Part 2. DoubleJ::tmplingfrom a Poisson t~opulation. 

9_ '. The 0 C cfu n c t ion and it smo men t s . ------_._---------_._---
Consider a Poisson process with intensity A per observational 

-mA x 
unit. For a sample of size m we define g(x,mA) = e (mA) Ix! 

and 

G(c,mA) 
c 
L g(x,mA) = 

x=o 

00 

J e-ttCdt/f(c+l) 
mil 

for A ~ 0, m ~ 0 and c = Q,l,... However, the last expres-

sion for G(c,mA) makes it possible to extend the definition 

to non-integer values of c. 

Let a single sampling test be given by (aO,mO)' The OC then 

becomes peA) = G(ao,mo A) with density _pi (A) = mog(aO,mOA) and 
'{ k} (k) (k) moments E (mOA) = (aO+k) ,where a = a(a-l) ••• (a-k+l). 

It follows that E{m A} = V{m A} = a +1. 
000 

For double sampling the two sample sizes will be denoted by 

ml and m2 , m = ml + m2 and P = ml/m. The outcome of the samp

ling is denoted by xl and x 2 ' respectively, and x = xl + x 2 ° 

The decision rule ~s as follows: Accept if xl ~ a l and reject 

If a l < xl < r l take a second sample, accept if 

x ~ a and reject otherwise. The probability of acceptance 

may be found as 

such that the OC becomes 

a a-x 
I 00 a 1 

G(a,mA)+ L g(x l ,m1 A) L g(x 2 ,m 2 A)- L g(xl,mIA) L g(x 2 ,m 2 A). 
xl=O x 2=a+l-x l xl=r l x 2 =0 

Using the fact that 

g(x l ,m I A)g(x 2 ,m 2A) = g(xl+x2,mA)b(xl,xl+x2'P), 

where b(x,n,p) = (~)Px(l_p)n-x,and setting v = mlA we get 



_ _ _ _ _ a l 00 

H(al,T'l'a,p',v)=G(a,v/ p)+ I:. I: b(xl,x,p)g(x,v/p) 
xl =0: x=a+l 

a a 
I: I: b(xl,x,p)g(x,v/P). 

xl=r l x=x l 

The OC density is now easily found sinee dP/dA = ml dH/dv, 

(25) 

G' (x,m) = -gCe.m) and gV (c,m) = g(c-l,m) - g(c,m) for c = 0,1,. 
m m 

setting gC-I,m) o. 

To evaluate the moments of v we need the repeated sums of the 
c 

binomial distribution Bk + l (c,n, p)"'" I: Bk (x,n, p) for k = 0,1, .•.• 
x=Q 

where BO(x,n, p) = b(x,n, p). (B k + l 1S analogous to the repea-

ted integral of the normal distribution which in turn is pro

portional to the k'~ incomplete normal moment). 

Theorem~. The OC moment of order k+l for the Poisson double 

sampling test equals E {/+l} E {v k + l }/m~+l, where 

E {vk + 1 }= (r +k) (k+1), 
1 

~ P k - ].1 (k + 1) (~+ 1) Ca +k ~1) (k -~) lr B .. - 2. ( x, a +].1 + 1 , p) ] r ~ -1 
].1=0 ].1+ x-a l " 

Proof. To evaluate E {vk + l } = - f vk+ldH(v) we first note that 

<X> k+l k+l (k) 
- fv . {g' (x, v / p)} d v = (k + n 'p ( x + k ) 

o v 

such that 
_. a l 

E{(v/p)k+l}=(a+k+l) (k+l)+(k+l) I: 

xl=O 
~ (x+k)(k)b(Xl,x,p) 

x=a+l 

The two 

a l 

I: 
0 

a a 
- Ck+l) I: 

xl=r l 

(k) 
I: (x+k) b(xl,x,p). 

x=x 
1 

sums may be changed to 

<X> 
a (<X> 

a~l) 
a <X> a <X> 

L - I: I: - = I: I: - I: I: 
a+l r l Xl 0 a+l Tl Xl 

r -1 
1 <X> 

I: I: 
al+l a+l 
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Hence 

E' { k + 1 } k + 1 ( k 1) (k + 1 ) S v = p a+ + +, 

where S denotes the three sums above with summand (k+l)pk+1 
(k) (x+k) b(x 1 ,x,p). By means of Lemma 2 in the Appendix we 

get for the first sum 

k 
2: pk- 11 (k+1) (11+1) (a+k+1) (k- 11 )B 11 +2 (a,a+ 11 +1,p) 

11=0 

k 
2: pk - 11 (k+1) (11+ 1 )(a+k+1)(k+1)(1_P)11+ 1 /(11+1)! = 

11=0 

= (a+k+1) (k+1) (l_pk+1), 

where we have used the general formula for repeated sums 

Bk + 1 (c) 

to prove that 

( 1) = (a:i- 11 +1)\ (1- ) 11+1. B11+2 a,a+11+ ,P 11+1' P 

The second sum becomes 

a 
2: (k+1) (xl +k) (k) 
r 1 

(a+k+1) (k+1) - (r 1 +k) (k+1) • 

( k+ 1) The terms evaluated so far are easily reduced to (r 1+k) • 

Lemma 2 gives directly the third sum which is the last term 

of E{vk +1 } in the theorem. This concludes the proof. 
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Remark. The first two moments are 

(27) 

and 

(2) r jrl-l 
= (r I + I ) - 2 P ( a + 2) liB 2 (x , a + I • p). a 

~ I 

(28) 

The moments may easily be found by means of a table of the bi

nomial distribution since B2 and B3 are just repeated sums of 

B. Usually (a1,rl,a) are small numbers. For large values of 

~ the approximation by means of mk(z) given in Lemma 2 in the 

Appendix may be used. 

The moments of the QC for double sampling in the binomi

al case may be found by the same technique using the fact that 

the last two terms of the QC may be written as sums of the pro

duct of a hypergeometric and a binomial probability, compare 

(25). The summations necessary to find the moments are not 

simple, however, unless the hypergeometric probability is ap

proximated by a binomial. 
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10. Equivalent single sampling tests and efficiency, 

Let AS denote the solution of the e_qUiation P (A) = 13, 0 < 

S < 1. Introducing the abbreviations b = (al,rl,a,p) and_ 

H(a l '!l,a,p,v) = H(b,v) we define Vs = vS(b) as the solution 

of the equation H(b,v) = 13 ' 

For the single sampling test (aO,mO) the OC is PI(A) = 

G(ao,mOA) and for the double sampling test (b,m l ) the OC is 

P 2 (A) = H(b,mlA). 

Since PI (A) = pr{x 2 (2ao +2) > 2mOA} the single sampling 

test of strength (A l ,a,A 2 ,S) may be found by solving the equa

tions 2mOAl = X~(2ao+2) and 2mOA2 = xi_S(2ao +2). Allowing non

integral values of a O we find (ao,mo ) from 

Hamaker (1950) has shown that the test of strength (AO'SO) 

may be found with good approximation from 

a '. = o 

Finally we have 

The corresponding formulas for a double sampling test=of 

strength (Ai,a,A 2 ,S) are vS(b)/vl_a(b) = A2 /A l and ml 

Vl_a(b)/A l • 

For a given double sampling test we therefore find the 

fractile equivalent single sampling test by solving the equa

tion 
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Note that a O and m1 /mO are functions of b only. 

Hamaker and van Strik (1955) have shown how to find (AO'SO) 

for a given double sampling test. 

For the moment equivalent test we have that E{m 1 A} = 
(aO+1)m 1 /mO and ~{m1A} = (aO+l) (m1/mo)2such that 

Since (E{m l A},v{m1A}) according to Theorem ~ are functions of 

b only we have that the moment equivalent a O and m1/mO are 

fully determined by b. 

We have thus shown how to fit a gamma distribution to the 

g1ven double sampling OC distribution using three different me-

thods of fitting. Computationally, fitting by moments is much 

simpler than the other methods. 

Expressed in terms of fractiles we have 

Naturally, better approximations may be obtained by using 

more fracti1es or more moments for the fitting. 

For small values of ~ fitting by moments tends to give 

smaller values of a O and larger values of ml/mO than fitting 

by fracti1es. However, the product ml~ (aO+1)m l /mO 1S near-

ly the same. This has been illustrated in Table 12. 

From the average sample S1ze 

ASN (29) 

we get the inverse efficiency of double sampling relative to 

th e e qui v a lent . si ng 1 e~~sa:nipJirig_~t e_~1: 
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Table 12, Comparison of fractile and moment equivalent single 

s amp 1 ing tests for double s amp ling tests with p = 0.419. 

Fracti1e equiv. Moment equiv. 

a 1 r 1 a i a O m1 /m O mIX a O m1 /m O mIX 
-------
021 0.80 .689 1. 24 0.52 . 776 1. 18 

o 2 2 1. 30 .609 1. 40 11.11 . 655 1. 38 

0 3 2 1. 75 .545 1. 50 1.40 .606 1. 45 

0 3 3 2.60 .495 1. 78 2.35 .525 1. 76 

0 3 4 3.01 .505 2.03 3.05 .505 2.05 

0 4 4 3.77 .453 2. 16 3.58 .469 2.15 

1 4 5 3.97 .553 2.75 
1

3 . 58 .590 2. 70 

1 5 5 4.37 .525 2.82 3.85 .567 2.75 

1 5 6 5.34 .489 3.10 4.96 .514 3.06 

1 5 7 6.02 .481 3.38 5.88 .491 3.38 

2 6 8 6.76 .523 4.05 16 . 22 .553 3.99 

2 6 9 7.46 .508 4.30 I 7. 18 .523 4.28 

2 7 9 8. 14 .480 4.39 7.66 .502 4.35 

3 7 11 8.81 .534 5.24 8.39 .553 5. 19 

3 7 12 9. 19 .534 5.44 f 9. 13 .539 5.45 

I 
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lE (A) = mlil + I-P[GeX,m A)]r.l-l}. 
mo( P l,a I 

(30) 

From 

it follows that max meA) - * mo. ), where 

( 31) 

Hence, there is one and only one maximum and meA) 1S increasing 

* * for 0 < A < A and decreasing for A > A. A rather good ap-

* proximation to mlA is (a l +r l )/2. For A + 0 and A + 00 we have 

mo.)+ ml " 
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11. A method for tabulatirig optimum tests. 

As an example consider moment equivalent tests minimizing 

max ;(A). As shown in Section la the problem is to minimize 

- * meA )/mo = F(al,rl,p,ml/mO) under the two constraints ml/mO = 
f(b) and a O = g(b), say, where b = (al,rl,a,p). Eliminating 

- * * ml/mO we get meA )/mo = F (b), say, which has to be minimized 

for a O = g(b), that is, the minimum and the optimum value of 

b become functions of a O' The solution is therefore somewhat 

more complicated than for the normal distribution where we 

* had to minimize a function F (y ,y ,p) without any constraints 
a r 

on the variables because the equation corresponding to a O = g(b) 

* contained the parameter h, which did not enter into F • 

To find the mlnlmum we could ln principle use the same 

technique as in Part 1. The derivatives of F are, however, so 

complicated that we have not succeeded in obtaining a workable 

solution. Furthermore, we are ~nly interested in integer valu-

It seems therefore natural to work with diffe-

rences with respect to al,r l and ~ and derivatives with re

spect to p and ml/mO' but even if the differences are rather 

simple the constraints complicate the problem so much that 

neither by this method have we been able to find a solution. 

We have, however, worked out a method for tabulating the opti-

mum tests. 

Consider first the problem for a given value of p. All 

double sampling tests may then be ordered according to increa

sing values of ~ and for each ~ ordered according to increasing 

values of a l and r l " For each b we then find the equivalent 
- * (aO,ml/mO) and the lE = meA )j~b. Consider now the point set 

(aO,IE). Extending this point set by randomization it will be 

seen that the optimum tests correspond to the lower boundary 

of the convex set. To find the non-randomized optimum tests 

we rearrange the tests in the table according to increasing va-

* lues of a O for all a O ~ aa, say. Starting from the test with 

the smallest a O we compute the slope of the lE with respect to 

a O for all the following tests and select the test with the 

smallest slope. The procedure is then repeated starting from 
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the test selected. In this manner we get the tests on the 

convex lower boundary of the tabulated values of (aO,IE). Dis

regarding the end effect from using a finite a~ it turns out 

that the lE for the optimum tests is a decreasing function of 

a O which was to be expected s~nce the lE for a O+ 00 must tend 

to the value for the normal distribution. 

Repeating tbe whole procedure for various values of p and 

comparing the boundaries we may determine the set of optimum 

tests, at least approximately. 

Investigating several cases for acr < 20, as well for mo

ment and fractile equivalence as for minimax and Bayes tests, 

it turns out that this procedure leads to rather few non-rando-

mized optimum tests, typically 5-10. From a practical point 

of view it is, however, desirable to have a collection of op

timum and nearly optimum double sampling tests such that the 

difference between successive values of a O is at most 1 and at 

least 0.2, say. Such a collection has been obtained from the 

optimum tests in the following way: If the difference between 

two successive values of a O ~s greater than 1 we consider all 

tests having values of a O between the lower endpoint of the 

interval plus 0.2 and the upper endpoint minus 0.2. Among 

these tests we select the one with the lowest lE. The procedu-

re is then applied to the two sub-intervals an~ so on until it 

terminates. (For practical reasons the rule employed is slight

ly different and it may occasionally lead to tests with a diffe-
--

rence between successive aO's less than 0.2.) An example has 

been shown in Fig. 5. Obviously, the numbers 1 and 0.2 are 

arbitrary and they may be changed such that the number of tests 

selected is increased or decreased. The rule used here leads 

usually to a number of double sampling tests about 30 for a O < 

20. In the following we shall call such a collection of tests 

optimum (Bayes or minimax) even if it contains some tests 

which are only. linearly optimum". 

ven in Section 14. 

Further comments will be gi-
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12. Double sampling tests minimizing max meA). 

'Moment equivalent test. 

The method of tabulation described above depends on p 

being fixed. For moment equivalent tests we are, however, able 

to find the optimum value of p as function of (al,rl,a) which 

leads to a more direct method of solution. 

Consider the lE as function of p for given (al,rl,a), that 

is, 

ml{ I} [ *lrl-l lE = mO 1 + ~G for G = G(x,mlA )Ja l • 

From D lE 
P 

o we get G/{p2 + p(l-p)G} 

Hence, the value of p minimizing lE may be found as a 

root of this equation. 

Setting E =E{mIA} and V 

(28) that 

~{ml~} we find from (27) and 

D In(ml/mO) = D In V - D In E 
p P P 

[ lrl-l 1 
= (a+l) B(x,a,p) a

l 
{2V- (p(a+2)-E) 

where we have used the fact that 

For each (al,rl,a) we may thus find the optimum value of 

p. We then order these "suboptimum" tests according to a O and 

determine the lower boundary as described 1n Section 11. Fig. 

5 shows the lE's and the boundary for aO~ 5. 

Table 13 gives the tests on the boundary for a O < 20. It 

will be seen that apart from the first test in the table (a = o 
0.944) the values of p and m/mo do not deviate much from the 

asymptotic values, see Theorem 3. Also the lE converges rapid-

ly to 0.868. 
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Fig. 5. Moment equivalent, minimax ASN, double sampling tests. 

Each point represent the equivalent a O and the minimumBmax~ 

~(~)/mO = lE corresponding to a value of (al,rl,a). 
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Table 13. Moment equivalent, minimax ASN, double sampling 

tests. 

a 1 r 1 a p a O ill 1 /mo m/m .... 0 lE 

0 2 1 • 723 .944 .783 1. 08 .894 
0 2 2 .575 1. 29 . 703 1. 22 .894 
0 3 2 .653 1. 94 .680 1. 04 .892 
0 3 3 .539 2.58 .591 1. la • 888 ; 
1 4 4 .618 3.54 .678 1. la .875 

2 5 5 .671 4.52 • 733 1. 09 .878 
2 5 6 .595 4.99 • 687 1. 15 • 876 
3 6 7 .639 5.97 .729 1. 14 .878 
2 6 7 .577 6.36 .625 1. 08 .876 
3 7 8 .619 7.33 .669 1. 08 · 874 

3 7 9 .566 7.89 • 632 1. 12 .873 
4 8 10 .602 8.87 .669 1. 11 .871 
5 9 11 .632 9.85 .698 1. la .872 
.5 9 12 .589 10.3 .671 1. 14 .872 
6 la 13 • 616 11.3 .697 1. 13 .873 

5 la 13 .580 11. 9 .629 1. 09 .873 
6 11 14 .606 12.9 . 655 1. 08 .872 
6 11 15 .571 13. 4 .631 1. la .871 
7 12 16 .595 14.4 .655 1. la .870 
8 13 17 .616 15.4 .676 1. la .871 

8 13 18 .587 15. 9 .656 1. 12 .870 
9 14 19 .606 16. 9 J675 1. 11 .870 
9 14 20 .579 17.4 .658 1. 14 . 870 

10 15 21 .598 18.4 • 676 1. 13 • 870 
11 16 22 .614 19.4 .691 1. 13 .871 

Asymptot~ .586 • 65.s 1. 11 .868 
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Computations with fixed values of p, p = 0.5, 0.586, 0.6, 

0.7, show that p = 0.586 and p = 0.6 lead to tests with prac

tically the same lE as in Table 13 whereas p = 0,5 and p = 0.7 

lead to considerably poorer tests, that is, tests with conS1-

derably higher lE's, 

Fracti1e equivalent tests. 

For fracti1e equivalence the two constraints are so com

plicated that a workable expression for Dp ln(m1 /mO) does not 

exist. We have therefore used the method with fixed values of 

p described in Section 11. For a = 0.05 and S = 0.10 the 

boundaries corresponding to three values of p have been shown 

in Fig. 6. It is obvious that for a O > 5 the best solution is 

obtained for p = 0.5575, the asymptotic value of p, see Table 

5. Also for a O ~ 5 rather good results are obtained for this 

value of P. Table 14 contains the corresponding tests for a O< 

20. (R 2 is defined as v. 10 /v. 95 ). It is of course possible for 

small values of a O to replace some of the tests tabulated by 

slightly better tests by finding the optimum value of p by tri

al and error but we have not attempted this. 
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Fig. 6. Comparison of boundaries for fractile equivalent 

Ca = 0.05 and S = 0.10), minimax ASN, double sampling tests 

for fixed values of p. 



a 1 r 1 ' a v. 95 v. 10 R2 a O m1 /mO m/mo lE 

I~ 
0 2 1 .222 2.59 11. 7 .918 .687 1. 23 ' • 888 0"' 

I-' 

0 2 2 .328 2.97 9.06 1. 29 .689 1. 24 .890 ro 

0 :3 2 .471 3.14 6.67 1. 94 .600 1.08 .880 I-' 

1 13 3 .715 4.18 5.84 2.32 .725 1. 30 .881 
.j::'-

0 3 3 .681 3.70 5.43 2.57 .606 1. 09 .888 

2 4 5 1. 29 5.62 4.37 3.55 .759 1. 36 .894 
rt >:rj 
(I) t-! 

1 4 4 1. 08 4.68 4.34 3.59 .627 1. 12 .861 tIl III 
rt (") 

2 5 5 1. 51 5.74 3.81 4.43 .671 1. 20 .887 tIl rt 

1 5 5 1. 45 5.27 3.65 4.77 .587 1.05 • 875 
1-'-
I-' 

2 5 6 1. 73 6.10 3.52 5.06 .652 1. 17 .862 I-' ro 

.689 
ro 

3 6 7 2.22 7.14 3.21 5.97 1. 22 . 875 ..a 
2 6 7 2.16 6 '.67 3.09 6.42 .603 1. 08 .866 R t:: 

1-'-

3 7 8 2.63 7.58 2.89 7.34 .622 1. 12 .868 11 <: 
III 

3 7 9 2.89 8. (J 2 2.77 7.96 .620 1. 11 .864 0 I-' 

4 8 10 34,40 8.93 2.63 8.94 .632 1.13 .862 
(I) I 

\0 J:j VI 
VI rt 0\ 

4 8 11 3.64 9.34 2.57 9.40 .636 1. 14 .867 I 

4 9 11 3.84 9.45 2.46 10.3 .599 1. 07 .869 U) s 
5 9 12 4.18 10.2 2.4,5 10.5 .642 1.15 .861 1-" 

'11' J:j 

6 10 13 4.73 11. 2 2.37 11. 3 .661 1. 19 .872 1-'-
0 s 

6 10 14 4.97 11.5 2.32 11. 9 .653 1. 17 .862 III 
I-' ~ 

7 11 15 5.54 12.5 2.25 12.8 .666 1. 20 .868 0 
~ 

7 11 16 5.77 12.8 2.22 13.3 .664' 1. 19 .865 (/) 

6 11 15 5.47 12.1 2.20 13.6 .615 1.10 .862 
"D z 

7 12 16 6.01 12.9 2.15 14.5 .625 1.12 .864 Il 
p,. 

7 12 17 6.30 13.3 2.12 15.1 . 623 1. 12 .863 0 0 
t:: 

:)8 13 18 6.86 14.2 2.07 16.1 .630 1.13 .862 VI 0"' 
VI I-' 

8 13 19 7.12 14.6 2.05 16.5 .632 1. 13 .865 " ro ' 
VI 

7 13 18 6.80 13.9 2.04 16.7 .598 1. 07 .870 tIl 

9 14 20 7.71 15.5 2.01 17.6 .636 1.14 .861 III 
s 

9 14 21 7.95 15.8 1. 99 17.9 .641 1.15 .867 '"d 
I-' 
1-'-

10 15 21 8.28 16.4 1. 97 18.4 .648 1.16 .868 J:j 
OQ 

10 15 22 8.56 16.} 1. 95 19.1 .643 1.15 .861 
9 15 21 8.21 - -i~6 oCr 1.94 19.3 .608 1. 09 .864 

Asymptot~,:" .631 1. 13 .862 
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13. Optimum double sampling tests of strength (Al,a,A2.1..~ 

where 

The Bayes ASN test is defined by minimizing 

l-p 
--j 

p 

[ ]
r -1 [ r -1 

c = w G(x,v l _ a ) a~ + (l-w) G(X,V S)] a~ , 

o < w i 1, under the constraints H(b,m1A l ) = 1 - a and 

H(b,mlA Z) = S. An example is shown in Table 15. The lE for 

A = Al and A = AZ is denoted by lEl and lE Z • 



a 1 r 1 a v. 95 v. 10 R2 a O m1/mO m/mo lE1 lE 2 lE 1r-3 
w l~ 

t-' 
ro 

0 2 1 .187 2.39 12.8 .808 .664 1. 56 .804 .861 .823 b 0 2 2 .297 2.60 8.76 1. 34 .592 1. 39 .769 .746 .761 
0 3 2 .376 2.66 7.08 1. 78 .530 1. 25 .750 .841 .780 
0 3 3 .567 3.03 5.35 2.63 .489 1. 15 .762 .733 .753 

rt i':!:j 
1 4 4 .895 4. 11 4.60 3.29 .582 1. 37 .749 .840 .780 ro t-j 

CJl III 

1 4 5 1. 08 4.36 4.02 4.06 .540 1. 27 .737 .757 .744 rt () 

CJl rt 
1 4 6 1. 23 4.65 3. 79 4.47 .541 1. 27 .768 .733 .757 1-'-

6 1. 40 4.74 3.39 5.42 .483 1. 14 .741 .770 .750 
t-' 1 .5 t-' ro 

2 5 8 1. 80 5.88 3.26 5.80 .572 1. 35 .753 .753 .753 ro 
3 6 9 2.28 6.93 3.04 6.63 .613 1. 44 .751 .798 .767 ..c 

Q ~ 

2 6 8 2.00 5 _ 96 2.98 6.90 -,,512 1. 20 .724 .780 .743 1-'-
11 <l 

2 6 9 2.21 6.28 2.84 7.59 .502 1. 18 .744 .741 .74;3 III 
0 t-' 

3 7 10 2.64 7. 18 2.72 8.30 .538 1.-27 .723 • I91_ .748 ro I 
--- --- -- --- - \D ::l \.Jl 3 7 11 2.85 7.45 2.62 9.Gil .524 1. 23 .731 .753 .738 \.Jl rt 00 

3 8 11 2.98 7.50 2.52 9.80 .495 1. le .719: .806 .748 I 

2.46 .766 .740 
u:> b:J 

4 8 13 3.50 8.62 10.4 .544 1. 28 .727 III 

3 8 12 3.23 7. 83 2.43 10.7 .482 1. 14 .735 .763 .744 11 '<l 
ro 

5 9 15 4.18 9.79 2.34 11. 7 .563 1. 33 .728 .778 .745 0 CJl 

4 9 14 3.90 8 .. 96 2.30 12.2 .498 1. 17 .722 .771 .738 t-' > 
4 9 15 4. 12 9.28 2.25 12.8 .495 1. 17 .743 .745 .744 0 Cl) 

z 
5 10 16 4.58 10. 1 2.20 13.6 .514 1. 21 .716 .780 .738 ~ 

10 4.81 10.4 2.16 14.3 ~.50 7 1. 19 .730 .753 .738 
p. 

5 17 11 0 

6 11 18 5.28 11. 2 2.12 14.9 .529 1. 24 .715 .789 .740 ~ 
N if 

6 11 19 5.50 11.5 2.09 15. 7 .520 1. 22 .723 .761 .736 
_ t-' 

U,) ro 6 11 20 5.70 11.8 2.07 16.1 .521 1. 23 .742 .746 .744 
CJl 

6 12 19 5.66 11.5 2.04 16.7 t495 1. 16 .713 .800 .742 D III 
S 

7 12 21 6.21 12. 6 2.03 17.1 .532 1. 25 . 720 .769 .736 11 'Cl 

6 12 20 5.92 11.9 2.00 17. 7 .486 1. 14 .725 .769 . 739 t-' 
0 1-'-

8 13 23 6.94 13. 7 1. 98 18.4 .545 1. 28 .719 .778 .739 ::l 
~ O'Q 

7 13 22 6.63 12.9 1. 95 19.1 .497 1. 17 .717 . 775 .736 N 
\.Jl 

7 13 23 6.87 13.2 1. 93 19.8 .494 1. 16 .733 .753 .740 

Asymptote .507 L 19 .697 .789 .728 
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14. Applications of the tables. 

Consider first a single sampling test of strength 

( AI' et, A2 , B) • In pr act ice a 0 ha s t 0 be ani n t e g era n d wet he -

refore have to reformulate the problem ln the following way: 

Find (aO,mO),aO being an integer as small as possible, such 

t hat PI ( \) ~ 1 - et and P 1 ( A2 ) :£, s. 

It is well-known, see for example Hald (1967b), that a O 

lS determined from the inequality 

where 

and that 

For mO equal to the lower limit we get PI (A2) = Band 

PI (AI) > 1 - et unless A2 /A l = RI (aO) in which case mO is uni

quely determined and we have equality in both places. 

If the strength lS specified by (E{A},V{A}) we find a O = 
[E 2 /V]. Keeping the location fixed we get mO = (ao+l)/E{A} 

2 
which means that (aO+l) /mO :£, V{A} so that the OC is "on the 

average" steeper than specified. 

For double sampling we require that aI' r l and a are In

~gers and that the test lS optimum ASN. This leads to 

Introducing the decreasing function 

where b l ,b 2 ,.o. represent the values of b for the optimum tests 

in'question, the optimum value of b, b = b. say, is determined 
1 

from the inequality 
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and 

One of the reasons for including some non-optimum tests 

1n the tables is the feeling that we should be able to meet the 

strength specifications as least as well by double as by sing-

1 e s am p 1 in g . This requires, however, that the successive dif-

ferences of R2 are smaller than for RI (or that the differen

ces between the successive values of the equivalent a~ s are 

smaller than 1). One may say that our solution is a compromi-

se between strength and optimality requirements. 

Denoting the moment equivalent a O by aO(b) we determine 

the optimum value of b from the inequality ao(b i _ l ) < (E 2 /V)-1< 

aO(b i ). Corresponding to b i we find ml/m O in the table and 

mO = (ao(bi)+l)/E{A}. 

Example 5. Testing Al = 1 against A2 = 6 with a = 0.05 and 

S = 0.10 leads to a O = 2.24, mO = 0.942 and E{A} = 3.44, V{A}= 

3.65. In practice we use a O 3 and 1.11 < mO ~ 1.37. 

The moment equivalent, 

is found from Table 13. As 

minimax ASN, double sampling test 

(E 2 /V) - 1 2.24 we get aO(b i ) = 

2.58, such that b i = (0,3,3,0.539), mO = 1.04, ml = 0.615, 

m = 1.14 and max meA) = 0.924. 

The fractile equivalent. minimax ASN test is found from 

Table 14. As A2/Al = 6 we get R2 (b i ) 5.84, such that b i = 
(1,3,3,0.5575) and 0.697 < ml ~ 0.715. Choosing ml = 0.697, 

say, we get m = 1.25 and max meA) = 0.847. 

The fractile equivalent, Bayes ASN test with w = 2/3 is 

found from Table 15. As A2 /A l = 6 we get R2 (b i ) = 5.35, such 

that b i = (0,3,3,0.425) and 0.505 ~ ml ~ 0.567. Choosing ml = 
0.505 we get m = 1.19. 

--

A more detailed comparison of the OC and ASN functions 

has been given in Table 16. It will be seen that the single 
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sampling test with a O = 3 is somewhat stronger than required 

and that the same is true for the double sampling tests, al-

though to a lesser extent in the present case. Comparison of 

the ASN's is hampered because of the differences between the 

OC's but it is clear that a considerable saving may be obtai

ned as compared to single sampling. 



1--3 
Pl 
0"' 
I-' 
(D 

I-' 
0'\ 

>-' C":I 
I-' 0 

S 
11 '0 a O or b 2.24 3 0,3,3,0.539 1,3,3,0.5575 0,3,3,0.425 Pl 
I-' ti 

1-'-mO or m1 0.942 1.11 0.615 0.697 0.505 Pl en 
()Q 0 A PI (A) PICA) P 2 (A) ;:nCA) P 2 (A) ;:n(A) P 2 (A) ;:ne A) Pl ::l 
1-'-
::l 0 
en I-h 

0 1.000 1.000 1.000 .615 1.000 .697 1.000 .505 rI' 
0 1/2 .993 .997 .995 .752 .993 .721 .996 .656 >-' C":I 

N I 
Pl 0'\ 

1 .950 .973 .960 .844 .953 .764 .964 .766 ::l N 
Po. I 3/2 .868 .912 .885 .897 .872 .803 .892 .840 0'\ 

~ •• 759 Cl) 
2 .815 .778 .920 .762 .830 .786 .883 z 3 .• 521 .574 .531 .910 .519 .846 .540 .905 . I-h 

~ 
::l 4 .322 .352 .320 .862 .317 .829 .328 .873 n 
rI' 6 • 100 .101 .091 .753 .100 . .771 .100 .757 1-'-
0 
::! 8 .026 .023 .022 .680 .029 .730 .028 .652 en 

I-h 
0 
ti 

fT· 

CD 
en 
rI' 
1-'-
::l 

()Q 
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15. Approximations 

By means of the results 1n Part 1 we may construct large 

sample optimum tests in the usual manner. The pro b 1 em is, 

however, to find suitable "continuity corrections" which will 

make the large sample results useful also for smaller samples. 

For any double sampling test we define 

which is a function of b for any equivalence definition conS1-

dered. Consider now the following formulas from which aI' r l 

and a are found by rounding to the neii~st integer: 

(33 ) 

Tests found from these formulas by using the values of aa, 

ml/mO and p for optimum tests, as for example in Tables 13, 14 

and 15, are either optimum or very nearly so. It is a remark-

able fact that this statement holds not only asymptotically but 

for all values of a O and not only in the middle part of the OC 

distribution but for all values of a (and S) ~ 0.001. It seems 

therefore natural to use (33) as starting point for the con

struction of approximations. 

In practice we have to take not only (y , y ,p) but also 
a r 

ml/m O from the theory in Part 1. For minimax ASN tests it turns 

out that (33) leads to optimum tests or very nearly so also 

when the asymptotic value of ml/m O is used. For Bayes ASN 

tests, however, (33) 1S not quite satisfactory. We have the

refore investigated the effect of using other continuity cor

rections and have found that the corrections depend on a and 

S. For a = 0.05, S = 0.10 and w = 2/3 it turns out that a l + 1 

should be replaced by a l + 0.75. It is easy to check by means 

of Table 15 that (33) with this modification gives excellent 

results. In a forthcoming paper more detailed information on 
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continuity corrections will be glven. 

In practice (33), or (33) suitably modified. is used in 

the following way: From the strength requirements we find the 

exact single sampling test (aO,m O)' that is, a O should be de-

termined to one or two decimal places. From the tables in Part 

1 we find (Ya'Yr,p,ml/m O). By means of (32) and (33) we get 

(al,rl,a). We then have to check that the test found satis

fies the strength requirements and that the lE is reasonably 

near the asymptotic lE. 

From b = (al,rl,a,p) we compute aOCb) and if aO(b) ~ a O 

the test is at~east as Strong as required and we may then 

determine the corresponding ml , If aO(b) < a O we have to in

crease the strength by changing (al,rl,a). For a O < 20 it 1S 

normally sufficient to change one of the components by 1. 

where 

In the binomial case we have analogously 

a l + 1 = nIP - Ya ln l Pq 

nIP + Yrlnl Pq 

a + 1 

Examp 1 e 6. Consider the problem in Example 5. From Tab le 4 

we get for moment equivalence y y = 0.622. P = 0.586 and a r 

red. 

0.653 such that (33) gives (al,rl,a) = (0,3,3). Hence, 

2.57 which shows that the test is stronger than requ1-

From the corresponding ml/m O = 0.632 and mO = 3.57/E{A}= 

1.04 we get ml = 0.656. 

which is nearly optimum. 

The approximation thus leads to a test 

For fractile equivalence we get from Table 5 y = 0.566, a 
Yr = 0.663, p = 0.5575 and ml/m O = 0.631 such that (33) gives 

(al,rl,a) = (0,3,3). Table 14 shows that ao(b) = 2.57 and 

0.617 ~ ml ~ 0.681. The approximation has led us to a test 

which is slightly stronger than necessary since aOCb) = 2.32 
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Appendix. 

Lemma 1. Let cr = (l+S2)-1/2. Then 

and 

Proof. 

cp (u)cp (a+Su) 
(J() 

fcp(u)cp(a+Su)du 
v 

(J() 

-1 
cp(acr)cp(aScr+ucr ), 

-1 
crcp(acr)~(-aScr-vcr ), 

fcp(u)cp(a+Su) (a+Su)du 
v 

The proof of the first two propositions is straight-

forward. The last formula may be found by differentiating the 

last but one with respect to a. 

Lemma 2. For 0 < p < 1 and a > xl we have 

(J() 

k+l 
P L 

x=a 

and 

k+l 
P 

(J() 

L (x+k) (k)b(Xl,x,P) 
X:;:: X 1 

(xl +k) (k) • 

Proof. To prove the last proposition we write 

(J() 

k+l (k) 
P L (x+k) b(xl,x,p) 

x=xl 

xl+k+l 
== P 

(xl +k) x-xl 
~",~ (x+k) (l-p) /x l ! 

x=xi 

(xl +k) (k) • 
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Setting cr = /xp(l-p) it ~s easy to see that Bk + l (xl'x,P)~ 
t:{ 1 -1 k , 

mkb px-x l - Z(k+l)}cr Jcr /k •. / 
/ 

_z2 -k-l 
Since mk(z) = O(e z ) for z + 00 it ~allows that 

lim{XVB~(Xl'X'~)}= 0 for x + 00, Xl and p fixed, and V = 0,1, ••. , 

~ = 1,2, .••• Using this result and the fact that b(xl,x,p) = 
-1 

-p ~xBl (xl'x,p) we shall prove the first proposition by induc-

tion. 

00 00 

pk+l l: (X+k)(k)b(XI,x,P) = _pk l: (X+k)(k)~xBI(Xl'X'P) 
x=a x=a 

00 

= _pk[ (x+k) (k)B l (xl'x,p) ]x=a + kpkx~a (x+k) (k-l)Bl(x1,x+I,P)' 

The first term corresponds to the term for ~ = 0 in the lemma. 

The second term may be written as 

Xl 00 

k (k-l) 
k L p L (x+k) b(y,x+l,p) 

y=O x=a 

Xl 00 

k (k-l) 
k L p L (x+k-l) b(y,x,p). 

y=O x=a+l 

Using the lemma for k-l we get 

k 
Xl k-l 

k-~-l (~) (k-~-l) 
L L p (k-l) (a+k) BlI+I(y,a+~+l,p) 

y=O ~=O I"' 

which equals the last k terms in the formula ~n question. 
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