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1. Introduction and Summary 

The purpose of the present paper 1S to illustrate the concept of an extreme 

family as defined in [3], to give an alternative formulation of the theory 

of exponential models for discrete observations using simple algebraic 

properties of these instead of more complicated analytic results, and to 

show how some problems in connection with non-existence of maximum like

lihood estimators in discrete exponential families can be solved. 

In the classical formulation a discrete exponential family is a family 

of probability measures (P8' 8 E e ), where the parameter set e is a sub

set of a k-dimensional Euclidean vector space, the probability function 

being given by 

P8(x) = a(8)b(x)e 

k 
I: 8. t. (x) 

i=l 1 1 

where x E X, a discrete set, ti are real-valued functions and 8 = (8 l , ... ,8k ). 

One of the essential properties of the exponential family aomes from the 

fact that if we repeat an experiment with the above probability function, 

the combined experiment will have the probability function given by 

k 
I: 8.(t.(x)+t.(y» 

2 i=l 1 1 1 
a (8)b(x)b(y)e p~2)(X'Y) 

and will again be a family of the first kind with the same parameter space. 

Now we shall try to focus the elementary properties of the different ele

ments in the exponential family. The function b(x) plays the role as a 

"reference measure" and a measure defining the support of the other measures 

in the family and a(8) is a normalizing constant. The functions (tl, .•. ,tk ) 

are the sufficient statistics, defining an equivalence relation on X by 

saying that xl and x2 are statistically equivalent if they give rize to 

the same value of the sufficient statistics. The equivalence relation as 

well as the statistics extend immediately to outcomes of n repetitions of 

the experiment by letting 
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(n) 
t. (xl, ... ,x) 
~ n 

t . (xl) + ..• + t. (x ). 
~ ~ n 

The essential reason for this is that the function 

k 
E 8. t. 

i=l ~ ~ 
(t l , ... , t k ) -+ e 

~s a homomorphism of the range space of (tl, .•. ,tk ) with addition as 

composition into the non-negative real numbers with multiplication as 

composition. 

The results in the present paper will be derived concentrating on the 

"support-defining measure", the statistical equivalence relation, the 

homomorphisms and the connection between an experiment and its repetitions. 

In section 7, part I of [1] , there is a detailed discussion of problems 

connected to maximum likelihood estimation in exponential families. The 

maximum likelihood estimator in regular canonical exponential families 

is shown to exist iff the observation happens to be so, that the value 

of the sufficient statistic falls within the interior of the convex 

hull of the support of the measures in the family, transformed by the 

sufficient statistics. This means that if the boundary of this convex 

hull has positive probability, one might very well get an observation from 

which it is impossible to estimate. To solve this problem it is proposed 

in [1] to make a suitable extension of the model, the extension being 

defined for families where the set of possible values of the set of 

sufficient statistics ~s assumed to be finite. The extension is in [1] 

called the completion of an exponential family. 

In the present paper the families defined are shown under weak assumptions 

to be "complete" in the sense that the maximum likelihood estimator of 

the parameters always exist. In the case with finite support treated in 

[1], it is shown that "the complete canonical exponential family" defined 

in the present paper is identical to the "completion of the canonical 

exponential family" as defined in [1]. 
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The approach and the mathematical framework might be unusual to many 

statisticians, but an example is used throughout the paper to illustrate 

the various concepts introduced. 

In section 2 some notation and simple algebraic concepts used in the 

paper is introduced as well as the notion of an extreme family of Markov 

chains as defined in [3] . 

In section 3 the basic set-up 1S formulated, the algebraic structure, the 

equivalence relations, and the complete canonical families are defined in 

a general framework. Section 4 is pure algebra, the notion of a face of 

a monoid is introduced, and the results here seem to be very useful to 

describe the models in detail when dealing with concrete problems. 

Section 5 is devoted to the estimation problem, existence and uniqueness 

of maximum likelihood estimators of the parameters in complete canonical 

models is established. In section 6 the results in the present paper are 

referred to those of [1] in a rather explicit manner. 

2. Various Notation 

The set of non-negative integers is denoted by N,and R+ 1S used to denote 

the non-negative real numbers. Certain commutative monoids will play an 

essential role throughout the paper. A commutative monoid is a set M 

equipped with a composition rule + which is associative, eommutative and 

has an identity. A detailed discussion of monoids is given in e.g. [2]. 

A commutative monoid (M,+) satisfying a + x = a + y ~ x = y for all 

x,y,a E M is in the present paper called a commutative semigroup. 

The concept of an extreme family was introduced in [3] . Let (E , n = 1,2, •.. ) 
n 

be a family of discrete, at most denumerable spaces and Q = (~n)~ 
a family of matrices with elements q (x,y), x E E ,y E E , satisfying mn m n 
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~n (x,y) ~ a, I: qmn(x,y) 
x E E 

m 

o for m ~ n ~ p. mp --

1 

M(Q) denotes the set of sequences of probability measures]l= (]l ,n = 1,2, ... ) 
n 

so that]l is a probability measure on E and]lm 0 ]l for m < n. M(Q) n n mnn 
~s convex, E(Q) denotes the extreme points of M(Q) and is called the extreme 

family generated by Q. 

3. Complete Canonical Exponential Families 

Let X be a set, at most denumerable. Let X; be the free, commutative monoid 

over X. X; consists of all maps from X to Nwith finite support, equipped 

with addition as composition. One can interpret an element f E X; as a 

result of a sample taken from X with replacement, the sample size being 

N(f) = ~ Xf(x) and f(x) the number of times x was observed. X; is also 
x E 

a commutative semigroup . 

. Let R be an equivalence relation on X;, compatible with the composition 

rule, ~.e. fRg ,A uRv ~ f + uRg + v. By X;!R we denote the quotient monoid 

of X; over R, i.e. the set of R-equivalence classes with the composition 

rule given by 

where 

A + A 
f g 

A f+g' 

The canonical mapp~ng tR: X; + X;!R given by tR(f) 

homomorphism. 

Af ~s a monoid-

Let Ra be the equivalence relation g~ven by fRag ~ x ~ X f(x) 

i.e .. that f and g correspond to samples of the same size. By 

n E N, we denote the Ra-equivalence classes so that f E Xn ~ x 

x 
X , 

n 

~ X 

I: g(x), 
E X ~ 

f(x)= n. 
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In the following we shall only consider equivalence relations R on 

~ satisfying fRg ~ fROg. We shall also assume that R satisfies 

fRg A f+cRg + d ~ cRd, which ensures that ~IR is a commutative semi-

group. 

Example I 

The following example will be used throughout the paper to illustrate the 

various concepts. 

Let A and B play chess. Let X {+,~,-} ,interpreted the following way: 

+. A wins 

"" draw 

_. A loses. 

1S here all triples f = (f ,f ,f ) with f ,f ,f 
+"'- +"'-

all being non-

negative integers, f being interpreted as the outcome of a match, A 

winning f+ games, losing f_, and f", games ending up as a draw. The 

composition rule is pointwise addition. 

The equivalence relation ot be considered 1S the following: 

fRg ~ 

f - f 
+ 

i.e. the outcome of two matches are considered to be equivalent if they 

contain the same number of games and if A in both matches won the same 

number of games more than B. The equivalence classes are 

Af {(f + s,f - 2s f +8): -min(f ,f) < s~!f_). + '" , - + - .-

It is immediate to verify that R satisfies the properties demanded in the 

text above. 

Let :;:;:R denote all monoid-homomorphisms of ~IR into (R+,.) . 
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For a being a probability measure on ~ with support Xl we define a*n 
*1 the n-fold convolution of a, in the obvious way, a = a and 

a*n(h) = ~ a(f)a*(n-l)(g). 
f+g=h 

*n It lS immediate that supp a X . 
n 

Define ~~ by 

For ~ E ~ define the sequence p~ 
on ~ by 

1 } . 

1,2, ... ) of probability measures 

for x E ~. 

Definition 1: With the above notation the family (p~, ~ E ~~) lS said to 

be the complete canonical exponential family generated by a, X and R. 

Remark: and p~ * p~ = p we can 
n· m n+m' 

interpret p~ as the distribution of a sample of size n of elements of X, 
n 

taken with replacement. We shall use the families above to define the 

following statistical models. We let X be the sample space corresponding 
n 

to an experiment of size n, n being arbitrary but fixed. Let the para-

meter space be ~~ and the distribution of the observation f E Xn be given 
~. *n by Pn(f) = a (f)~ 0 tR(f). The models so described shall be referred to 

as the canonical models associated with a, X and R. 

Example 1 (continued) 
r 

1 for f (0,1,0) = 2 

Let a(f) 1 for f (1,0.0) 4" = 

1 for f (0,0,1). 4" 
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Then we have 

It is technically complicated to derive 3R and 3~ without using the 

results about faces of monoids in section 5, so this will be done later 

in the paper. 

Now, define E 
n 

t (X ) and for a E E , bEE k r n n n+ 

q +k(a,b) 

*n *k 
a\R (a)a\R (c) 

n,n 
a\; (n+k) (b) 

where c is the uniqueaement 1n Ek so that b 

of ~'R) and 

*n 
a\R (a) = 

a + c (the semigroup-property 

Let Q - (Q) as defined above. We can then obtain a connection between - mn Q. 

the complete canonical exponential family generated by a\,X and R, and the 

extreme family defining the distributions of tR(f), whereas the complete 

canonical family defined the distribution of f. This is stated in the 

following result. 

Proposi tion 1: 

Proof: Suppose 11 E E (Q) for x E Ek , define 

T kll (a) x, n 

11 k(a+x) n+ 

11 (a) 
n 

*n *k 
a\R (a)a\R (x) 

*(n+k) 
a\R (a+x) 

otherwise 
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It 1S straightforward to show that V E M(Q) * T kV E M(Q). 
x, 

As we have 

V (a) 
n 

*k *n 
aB (b)aR (a) 
*n+k 

aR (a+b) 

o ~ vn+k(a+b) = 0, some rearrangement of the above equation 

V (a) 
n 

which expresses V as a convex combination of (Tb,kv,b E Ek ). Hence if 

V 1S extreme, we must have 

V (a) 
n 

If we let 

h (a) 
n 

V (a) 
n 

we then have hn(a)hk(b)= hn+k(a+b) whenever hk(b) > O. Because of symmetry 

the equation must hold also when hk(b) = o. As we supposed that fRg ~ fROg 

we have E n E = 0 whenever m * n, and we can therefore define sea) = h (a), 
m n n 

for a E En' and the equation becomes s(a)s(b) = s(a+b), i.e. that s E ~R' 

As Vn should be a probability measure we have 

L: 
a E E 

n 

i.e. that s E ~~ . 

*n aR (a)s(a) I<=) *n 
L: a (x)s 0 tR(x) = 1, 

x E X 
n 



-9-

The reverse implication follows from the fact that the Markov chains 

Zl,Z2"" as defined above can be thought of as Zn = tR(Yl+ ... +yn), where 

Yl, ... ,Y, are independent, and the random variable liro a.s. q (x,Z) 
n n+oo mn n 

is measurable with regard to the tail a-algebra of Yl""'Yn "'" which 

by the classical 0-1 law is degenerate. Proposition 2 of [3] together 

with the theorem of [3] gives that V E E(Q). 

4. Faces of Monoids 

We should like to get a more detailed description of the measures 

(p!,s E ~~). In this section we shall investigate the structure of 

positivity regions of homomorphisms of a monoid into (R+,.). 

Let (A,+) be a commutative monoid and A all homomorphisms of A into (R+,·) 

not identically zero. Let h e A be given. Consider A + (h) = {a E A I h(a) <0 }. 

From the equation h(a)h(b) = h(a+b) it easily follows that A+(h) is a 

submonoid of A. But A+(h) also satisfies c 6 A+(h) A c = a+b ~ a E A+(h) A 

b E A + Ch). 

Conversely, let AO c A be a submonoid so that c E AO A c 

Let 

A + 
Clearly h E A and A (h) 

h(a) 
if a EA o 

otherwise 

A so we define 

Definition 2: F c A is said to be a face of A if 

i) F ~s submonoid of A 

ii) c E F A C = a+b ~ a E F A b E F. 

a+b ~ a,b E AO' 

The faces of A are exactly the possible positivity regions for elements ~n 

A which shall be formulated as a proposition. 
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Proposition 2: Let F be a subset of A. F IS a face of A iff there is an 

h E A so that F = {a E Alh(a) * o}. 

The proof IS given In the arguments above. We have furthermore 

Proposition 3: A IS a face of A. 

Proposition 4: If (Fi)i E I 

a face of A. 

is a family of faces of A, then n 
iEI 

F. IS 
1 

The proofs of propositions 3 and 4 are immediate and left to the reader. 

It follows that to any a E A, there is a unique smallest face of A, F(a), 

so that a E F(a). 

Now, let A and B be monoids and u: A + B a homomorphism then 

-1 
Proposition 5: If F is a face of B, then u (F) is a face of A. 

The proof IS trivial. 

It will be of some use to have a characterization of all faces of ~ 
contained in the following result: 

Proposition 6: For f E ~ 

x~ 

F(f) = {g E Nlsupp g ~ supp f} . 

x~ 

Proof: L:t AO = {g E 

face of XN containing f, 

given by 

NI supp g ~ supp f} It is 

so AO ~ F(f). Now let 

(1 if x = xo 

1 0 otherwise , 

E 
xo 

clear 

be the 

that AO is 

element of 

a 

~ 
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We have f = I f(X)E and therefore E E F(f) for all x E supp f. 
x x x E supp f ~ 

As AO is the submonoid of XN generated by (Ex' x E supp f) we must have 

AO ~ F(f) and the proof is complete. 

Example 1 (continued) 

We shall find the faces of the monoid ~jR in the chess-example. The 

equivalence class corresponding to an element of the form (f+,O,O) 

contains only one element, and it is clear that ~+,O,O) = h+g implies 

that both hand g are of the form (h+,O,O) respectively (g+,O,O). 

Hence, the equivalence classes corresponding to elements of the form 

(f+,O,O) form a face of ~jR, which we shall denote as A+,Analogously, 

A_ consisting of all equivalence classes corresponding to elements of 

the form (O,O,f ) is a face of ~jR, All other equivalence classes contain 

elements with f being positive. Any submonoid of ~jR containing an 
'" 

equivalence class with an f positive, contains an equivalence class 
'" 

with an element f > 2, and hence also an element (f + l,f - 2,f_ + 1) 
+ '" 

with all coordinates positive. Propositions 5 and 6 together implies 

then that the smallest face containing an equivalence class neither 

being of the form (f+,O,O) nor (O,O,f_) is ~jR itself. Hence, the 

X... X' 
Hence, the faces ofcNjR are A+,A_, NjR and the neutral element (O,O,O}, 

the last being uninteresting ~n connection with the determination of :e:~, 

The homomorphisms positive on A+ are 

if f ~s not of the form (f+,O,O) 

otherwise 

those positive on A : 

if f ~s not of the form (O,O,f_) 

otherwise 
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81 ,8 
l; 2(A ) 

f 
= 81 

2f + f 
+ 

2f + f 
. 82 

8,8 1 , and 82 being arbitrary positive real numbers. 

A straightforward calculation shows that 

~8 ~8 E ~a ~ 8 4 s+,s_ ~R ' 

and 

This is put together ln the following statement: 

l; E ~~ ~ 3 8 E [0,1]: l;(f) 
f + f + f 

4 + 

The corresponding probability measures are 

2f + f 2f + f 
8 + ""(1-8) -

\ 2f+ f 2£ 
) 8 (28(1-8)) ""(1-8) 

So, the model consists of probability measures where A loses or wins with 

probability one, but if there is positive probability of a draw then there 

is positive probability both of A winning and losing. 

5. Maximum Likelihood Estimation 

We shall now estimate in the previously defined canonical models associated 

wi th a, X and R. 

Let n be arbitrary but fixed. The likelihood function becomes 
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*n ex (f)~ 0 t (f), 
R 

and a maXlmum likelihood estimator is a mapping gn Xn + ~~, satisfying 

for all f E X 
n 

sup L(f,O. 
~ E ~~ 

Proposition 7: Under the assumption that for all n,k = 1,2, ... 

*k 
exR (c) 

__ ~~ __ ~____ < + 00 

* (n+k) ex (a+b) 
R 

(*) 

and a E E 
tl 

there exists a mapping ~ satisfying (*), and if ~n satisfies (~) then 
-f Af n 
~ ~ for all f EX. 
n n n 

Proof: The existence follows from the regularity assumption and proposition 

3 of [3]. 

The uniqueness is proved in the following way: suppose that there is an 

f E X so that ~f * if . As L(f ~f) L(f if) we have ~f 0 t (f) inf 0 tR(f). 
n n n 'n 'n n R 

Define 

~(a) 

Clearly, ~ E ~~. As when 
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by the Cauchy-Schwarz inequality, ~ 0 tR(f) 
Af 

the fact that ~n should satisfy (*). Hence 

proved. 

o tR(f), contradicting 
-f 
~ , which was to be 
n 

Remark: I do not know of any example where the regularity assumption 

is not fulfilled. 

The following result giving some more detailed information about the 

max~mum likelihood estimator should be compared to some of the res.ults 

~n sec. 7, part I of [1] . 

Proposition 8: 
Af 

The positivity reg~on of ~n ~s exactly the face F(tR(f». 

Proof: Suppose 

.~ (a) for rAf 
I n 

~ I (a) 

-10 otherwise 
\ .. 

and 

~(a) 
~ I (a) 

* I: a ~(b)C (b) 
bEE 

n 

Af Af 
Clearly ~ E ~~ and ~ 0 tR(f) > ~n 0 tR(f), contradicting that ~n was 

a maximum likelihood estimator. 

Example 1 (continued) 

From proposition 8 we get that if f ~s of the form (f+,O,O), the max~mum 

likelihood estimator will tell that A wins all games with probability 1, 

and if f ~ (O,O,f_) that A loses with probability one. Otherwise the 

maximum likelihood estimator is 
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6. Additional Comments 

Let X now be finite, t: X 7ik a mapping into k-dimensional Euclidean 
~k 

space with t taking values in the integer lattice points of R . Let 

Po be a probability measure on X and consider ~ , the canonical exponential 
. ~k 

family generated by Po and t as defined in [lJ , l..e. P E ~ ~3e ER: 

It is not difficult for the reader to identify the "completion" of ~ 

(as defined in section 7, part I of [1] ) with the complete canonical 

model generated by PO' X, and the equivalence relation R given by 

fRg ~ l: f(x) 
x E X 

l: g (x) 
x E X 

A l: f(x)t(x) 
x E X 

l: g(x)t(x). 
x E X 

The only problem is to establish a connection between faces of the convex 

hull of t(X) in the convexity sense and faces of the quotient monoid XN/R. 

If we let 

T = t(X)+ ... +t(X), 
n 

{a} 
~----~v------~/ 

n terms 
and 

T {(n,t): n E N AtE T } 
n 

equipped with the composition 

(p,s) + (q,t) (p+q,s+t), 
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then (T,+) is isomorphic to XNIR, the isomorphism being given by 

~(Af) = (p,t) whenever 

2: f(x) 
x E X 

P A 2: f(x)t(x) 
x E X 

t. 

** Now, let F be a proper face of C, the convex hull of t(X). F lS given 

by a supporting hyperplane, i.e. a linear form ~ , satisfying 

Define 

and 

* Then F(F ) lS 

* ~(t) > a for all tEe' F 

* ~(t) a for all t E F . 

* * * * F = F + ... +F 
n ~.-J FO fO} 

n terms 

* ((n.t) E Tit E * F(F ) F 
n 

} 

a face of T as (n, t) (p,s)+(q,u) implies 

~(t) na A~(s)+Hu) > pa + qa na 

* * if sand u are not In F , respectively F 
p q 

* * Now, if to E t(X) and In the relative interior of F , where F is a 

* face of C, there is a probability measure on F nt(X) so that 

t = o 

* 

P 
2: 

i=l 
A. t. , 

l l 
A.> 0 Vi , 

l 

where F n t (X) {tl , ... , t p}' which follows from the results in [1] 

about existence of the maximum likelihood estimator in the relative 

interior of the convex support of an exponential family. As {tl, ... ,tp} 

are integer lattice points, the A. 's can be chosen to be rational. Hence 
l 
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and so that (A.N) are integers. 
L 
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P 
2: 

i=l 
(A.N)· t. 

L L 

It follows that any face of T containing (l,tO) must contain (N,NtO) 

* and also (1, t.) for all t. E F n t (X). Hence, the smalles t face of T 
L L * * 

containing to is exactly F(F ) as defined above, where F is the uniquely 

* determined face of C, so that to E F . 

At last we shall gLve an example of the "completion" when X LS not 

finite. 

Example 2 

Let X = {O,1,2, ... } a(x) 1 -1 , e 
x~ 

fRg # 2: f(x) 2: g(x) 
x E X x E X 

It LS easy to establish that 

R gLven by 

A 2: xf(x) 
x E X 

2: 
x E X 

xg(x) . 

(A)X -A 
--,- e • 

x. 

The only interesting thing to notice is that A = ° LS included. 
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