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1. Introduction

It is proved that any 3 x 3 stochastic matrix P with Det?P

1 . . . ..
2> 0] which is imbeddable in a non-homogeneous Markov chain 1is
the product of 6 Poisson matrices, each of which has at most

one positive off-diagonal element.

It follows from this that any imbeddable 3 X 3 stochastic

matrix is the product of a finite number of Poisson matrices.

We consider the imbedding problem for stochastic matrices,
see [2] and [3]. The stochastic matrix P is called imbeddable
if there exists a bounded measurable intensity matrix valued
function Q(t), 0 £ t < 1, such that the solution P(t), to the

backward Kolmogorov equation

d ' L ,
gER(E,1) = -Q(t) P(t,1)
with initial condition
P(1,1) =1
satisfies 5
. P(0,1) = », |

Here N denotes a null set for Lebesgue measure.

If the initial value is P(0,1) = P;ithen we say that P is
imbeddable from Po' Obviously, if P is imbeddable from P

o
then there exists an imbeddable matrix Pl’ such that P = PlPo'

The set of intensity matrices is a convex cone and the
extremal elements are characterized by having at most one posi-
tive off-diagonal element. If Q is an extremal intensity ma-
trix then exp Q is called a Poisson matrix and is a stochastic

matrix with at most one positive off-diagonal element.

It was proved in [2] that finite products of Poisson ma-
trices are dense in the set of imbeddable matrices and in [3]

1t was proved that any matrix in the interior of the imbeddable

matrlces.' For 3 X' 3 matrlces we prove that even the boundary

.matrlces ‘have this representation and that in a neighbourhood



of I we need only use 6 Poisson matrices. The proof rests on

an explicit construction of the set of imbeddable matrices

which at least in principle allows one to determine whether a

given matrix near I is imbeddable.

The result can be considered a strengthening of the re-

sult in [4] (Theorem 3) concerning the configuration of zeroes

in an imbeddable stochastic matrix. For 3 X 3 matrices we

prove that the transitive, reflexive relations can be taken as

the zero configurations of Poisson matrices.

If Qij is the extremal intensity matrix with (i,j)'th e-

lement 1 then we define the Poisson matrix

tQ., . _ _
Ry () = e 3 2 oTh oy (1-e t)(I+Qij) (1.1)

where

u=1-¢e %€ [0,1].
Clearly Kij(u) is imbeddable for 0 < m < 1. For u =1
we get Det Kij(u) = 0 and Kij(l) is imbeddable if we use an
infinite time interval. It is convenient to call Kij(u)

reachable for u € [0,1].

Let the stochastic matrix P have rows PisP, and Pys We
write P (Pl’pZ’pB)’ and let <P> denote the triangle spanned

by Pys Py and Pye A simple calculation easily yields the fol-

lowing results:

1.1 Lemma. Let P = (pl,pz,p3) then

Kl_‘] (u)p = (ql,q23q3)

where



Thus <Ki.(u)P> can be reached from <P> by moving vertex

i towards vertex j a fraction u of the way. If K. ,...,K are
1 m

Poisson matrices we can think of <K1. oo .Km> as the triangle

we get after moving the vertices of <I> towards each other,

one at a time, a total of m moves, starting with Km.

Notice that the reachable matrix Kl. Sl .Km is imbeddab-

le if and only if Det Kl' g .Km > 0.

The following lemma shows how much an imbeddable matrix

can move the vertices of a given matrix.

1.2 Lemma. Let P1 be an imbeddable matrix and let P =

P.P where Det P > O. Then
1 o o

o .
P € (DetPl)pi + (1—DetP1)<PO>, i=1,2,3. (1.2)

Proof. If P1 is a Poisson matrix this follows from Lem-

ma 1.1, and if (1.2) is satisfied for P1 and P2 then it is sa-

tisfied for P2 1° since first of all the product is imbeddable

and next if P = P,P_.P then
2°1 o

10
P € (Deth)pi + (1—DetP2)<P1Po>

and
10 o
P, € (DetPl)pi + (1 DetP1)<Po>.
If we insert the second relation in the first and use the
fact that

<P.P > < <P >
1 o o

we get that

o
P; € (DetPZPl)Pi + (1—DetP2P1)<P0>.

Thus the set of matrices that satisfy (1.2) is a semigroup

that contains the Poisson matrices. Since it is closed it



contains the imbeddable matrices.

The idea behind the constructions in the next sections is
now to consider the imbedding problem as the control problem

of steering the vertices of <I> into the vertices of <P> fol-

lowing the simple rules set out above.

In this way the representation given in Theorem 2.1 and
Corollary 2.2 are solutions to the Bang-Bang problem in con-

trol theory, i.e. one can reach any imbeddable matrix P by

switching between the extremal generators Q a finite number of

times.

2. Main Results

We want to prove the following

2.1 Theorem. let P be a 3 X 3 stochastic matrix with

Det P > 2. Then P is imbeddable if and only if

where Kl""’K6 are Poisson matrices.

2.2 Corollary. Let P be a 3 X 3 stochastic matrix, then

P is imbeddable if and only if

where Kl""’Kn are Poisson matrices.

The c¢orollary follows easily since an imbeddable matrix P

where Pl""’Pk are imbed-
dable stochastic matrices and Det Pi i~5, i=1,...,k. Notice

can be expressed as P = Pl' .o 'Pk’
that we can obtain an upper bound on the number of matrices
needed in the form

. / -1nDetP)
ni6\1+"“——‘_‘1n2 /.



The proof of the Theorem rests on a rather complicated
construction and on Proposition 3.9 which will be given in

Section 3.

By means of these results the proof of Theorem 2.1 runs

as follows:

What we have to prove is that if P is the pfoduct of 7 Pois-
son matrices and of Det P > %,
product of 6 Poisson matrices. An induction proof will then

then P can be expressed as a

give that any finite product of Poisson matrices with Det P >
% can be expressed as a product of 6. Since the set of matri-
ces, which is a product of 6 Poisson matrices, is closed we

get that any limit of a finite product of Poisson matrices and
therefore any imbeddable matrix with Det P > 1 is a product of

2
6 Poisson matrices, see [2].

Let therefore

K

[Ny =

Det P ;

1¢ o o o ] 7,

We denote by a and b the vertices of K2' .o .K7 left invari-

ant by Kl and define ¢ and c¢' by

<K2. cee K> = <a,b,c'>

and

<K,+ «.. K> = <a,b,c>.

Thus P can be reached in 7 moves. The last move 1is to

take c¢' towards either a or b into c.

Clearly <a,b,c'> is imbeddable in 6 moves and since

e =

L] e e e L] L] e o e L] >
Det K2 K7 > Det Kl K7 >
it follows from Lemma 3.9 that c¢' is contained in the set R(I)
defined by (3.4). By Proposition 3.10 this set is starshaped

around a and b and therefore contains [a,c'] and [b,c'] and



hence c¢c. Thus ¢ 1is contained in R(I) but the construction of
R(I) énsurés‘that any ¢ € R(I) can be reached in 6 moves-Thus

(a,b,c) is the product of 6 Poisson matrices, which completes

the proof.

Notice that the crucial step in the proof is the construc-
tion of R(I). This set iscénstructed for a fixed a and b as
a suitable set of points ¢ € <I> such that <a,b,c> is reachab-
le in 6 moves. It is the starshapedness of this set around a

and b that allows the induction proof to work.

3. The construction of R(P).

Let P = <A,B,C> and let x and y be points in <P>. We de-

note by [x,y] the closed interval between x and y and by MX
b

the halfline from x through y with the natural order. Let

Xy = sup{zleMX yn<P>}.

b

Thus xy denotes the projection of x through y onto the

boundary of <P>.

All the proofs in the following will be geometric in na-
ture, using the above projection and it helps the understanding

of the comstructions to study Fig. 1.

Throughout this section a and b will denote two distinct
and fixed points in <I>. All constructions will be relative
to these two points and they will not in general be included

in the notation.

Since the set R(I) is defined recursively we can as well
define R(P), but this set clearly depends on the relation be-

tween the two points a and b and the triangle <P>.

We shall therefore define 3 sets of matrices as follows:

Let a € <P>, b € <P> and let Det P > O, we then define

P e P if ab € [C,B] and ba € [A,C],

P € P+ if ab € [A,B] and ba € [A,C],



P€ P if ab € [C,B] and ba € [A,B].

It is easy to see that PO U P+ U P_ is the set of matri-

ces P = (A,B,C) such that Det P > 0O, <P> contains a and b, and

Det (a,b,C) > O.

One can of course define the similar configurations when

Det (a,b,C) < O but these will not be needed in the construc=:i

tions.

Notice that the area of <P> is proportional to |Det P|

and the orientation of the vertices is determined by the sign

of Det P.

3.1 Lemma. If for some c, (a,b,c) is imbeddable from

P(Det P > 0), and if Det (a,b,c) > % Det P, then
PeP UP UP.

Proof. 1If (a,b,c) is imbeddable from P = (A,B,C) then
1

(a,b,c) = PlP for some imbeddable Pl’ such that Det P1 > 5.

It follows from Lemma 1.2 that
a € (Det Pl)A + (1-Det P1)<P>

1 1
c EA + 7<P>

co{A, —21—(A+B), -;-('A+C)}

and eimilarly

b € co{B, %(A+B), %(B+C)}.

It is easily seen that this implies that Det (a,b,C) > 0

and hence that

3.2 Lemma. 1f P € Po and ¢ € <P> then (a,b,c) is reach-

able in 6 moves from P if and only if Det (a,b,c) > O.



Proof. TIf P € Po then Det P > O and anything reachable

from P will also have a nonnegative determinant. If Det (a,b,c)

> 0 then

c € <ab,ba,C>

and we can reach (a,b,c) as follows: First move A towards C

into ba, then B towards C into ab. Then move C into c¢ in

two moves and finally take A from ba to a aid B from ab to b.

3.3 Corollary. TIf I € P0 then any imbeddable matrix

(a,b,c) can be reached in 6 moves.

Thus Theorem 1.1 is proved provided a and b have the con-

figuration in relation to I as prescribed by the condition
I P ..
o
The difficulties come up if I € P_or P_, where a and b

have been tilted such that the line through a and b intersects

I in a different way.

Clearly we can treat P_ and P_ in a similar fashion and

we shall therefore concentrate on P+ in the following.

Let us therefore assume that P € P+ and let us define the
set S(P) < <P> as the union of co{ab,ba,C,Aa}, co{b,ba,C,Bbal
and the smallest region which is starshaped around C and con-
tains the curve Uy defined as follows: Take B* € [ab,B] and

consider the point
* * *
¢c =[B ,C] nI[B b,B ba]. (3.1)

* . . . .
As B varies from B to ab, ¢ will describe a continuous

curve 1 from Bba to ab.

The equation from Y can be found to be

c c c.b
- ag * (1 az>c -bz(z +c.,) (3.2)
2772 2 1 2

if we choose P = I and denote the coordinates of a point x by



xl,xz, and x3.

The curve lies inside co{ab,ba,C,B} and we shall now de-

scribe some properties of Y and S(P), see Fig. 1.

Notice first that by the geometric construction 6f S (P)

one immidiately gets the following transformation property

of S(P):

For any stochastic matrix P we have

Sa,b(I) P = SaP,bP(P)’ (3.3)

where the points a and b have been introduced as indices.

3.3 Lemma. The curve { intersects any line at most

twice. TIf the line separates the end points of Y, i.e. Bba

and ab, then itintéf§é2f5§w exactly once.

Proof. This follows easily by observing that the equati-

on for P is quadratic in (cz,c3).

3.4 Corollary. The set S(P) is starshaped around a,b

and C.

Proof. Let c be on the boundary of S(P). We want to
prove that [b,c]  S(P). If c is on the boundary of co{ab,
ba,C,Aa} or co{b,ba,C,Bba} then this follows by convexity.

The only other possibility is that c is on | but outside

the two convex sets.

Now take c¢' € [b,c]. If Cc' € [Cb,ab] then c¢' € ab,ba,cCc>

té S(P) and if Cc' € [ab,B] we consider the point c'' on ¥

. *
generated by B = Cc', see (3.1).

Clearly the point c'' can not be en the same side of
[b,c] as C, since then the curve ¥ would intersect [b,c] at
least twice which is impossible since the line through b and ¢
separates the end points of . Hence c¢' € [C,c''] = S(P),
which completes the proof that S(P) is starshaped around b.
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We also get from this argument that for the point ¢ de-
scribed above we get co{c,b,ba,C} = S(P) but this set contains

a and ¢ and therefore [a,c]. Hence S(P) is also starshaped

around a.

3.5 Lemma. Let c be a point on the boundary of S(P)

such that Det (a,b,c) > O or such that ¢ = ab or ba, then

(a,b,c) can be reached in 5 moves from P.

Proof. If ¢ is on the curve | then ¢ is generated by some
*
B € [ab,B]. Now we can reach c as follows: First move B

* * *
to B , then A to B b and C to c. Then take B from B to b and

%
A from B b to a.

If ¢ € [Bba,b] then we first take A into Bb, then C to

Bba and B to b. Then take A to a and C to c.

If ¢ € [Aa,ab] then we start by taking C into Aa, then B
to ab and A into a. Then we take C from Aa to ¢ and finally

B to b.

If ¢ € [C,Bbal] U [C,bal] we first move A into Bb, then C

to ¢ and B to b. Then we have two moves to get A into a.

3.6 Corollary. I1If ¢ € S(P) then (a,b,c) can be reached

in 6 moves.
Proof. Consider the point:
| - .
c sup{zleMb’c n s(ep)}

on the boundary of S(P). Then c¢' can be reached in 5 moves by

Lemma 3.5 and the last move can then take @' into c.

3.7 Lemma. If (a,b,c) can be reached in five moves from

P then ¢ € S(P).

Proof. If Ri(P) denotes the set of points ¢ such that

(a,b,c) can be reached from P in i steps, then clearly

R,,1(P) = U R, (KP), i = 0,1,... ,
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where the union is taken over all Poisson matrices K.
From the initial wvalue

RO(P) = {Cc} if, a = A and b = B

and § otherwise we can in principle construct Ri(P) for any

value of 1.

We have in fact used this relation to construct S(P) as
the starshaped (around C) region that contains RS(P) and

[ab,ba].

A complete numeration of all possible cases is rather te-
dious but we shall give some intermediate results which will
allow the reader to get the idea of construction used. The

details can then easily be completed.

We find
(1) ) 7 o if a +#+ ba, b * ab,
R (P) = {C,Aa,[C,b] n,IA’A?]}’ if a # ba, b = ab,
3 {c} | ' if a = ba, b # ab,
[C,al n [C,b] 7" if a = ba, b = ab

and

({C,Aa,Bba,[Bb,Bba] n [c,b],
[A,Aa] n [C,b], [A,Aa]l n [C,abl} if a # ba,

, | , b # ab
R, (p) = {[C:Pal n [C,al U [C,b] U [C,4a] U [Aa,a] U [4a,b]
if a # ba, b = ab
(cal u Tc,ol U 18, b1 16 v wep RS et
(<C,a,b> e if a = ba, b = ba.

Using these and similar results for other configurations

of P in relation to a and b it is easily seen that Rs(P) < S(P).

Combining the results in Corollary 3.4, Lemma 3.5, and
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Lemma 3.7 we get

3.8 Proposition. The set S(P) is the smallest region

containing R5(P) which 1s starshaped around a and b.

It was proved in Corollary 3.6 that S(P) is contained in

R6(P). The converse is not in gemneral true, nor is it true

that R6(P) is starshaped in general. We shall now describe

a region R(P) which is starshaped and which contains enough

points to be of use in the proof of the main theorem.

If P € PO we define
R(P) = Ré(P) = <ab,bayC>.

If P € P+ we define

R(P) = UUR5(KP) (3.4)

where the union is taken over all Poisson matrices K except

those that take C into [Ba,bal. Thus KP € POIU Pl for all K

considered. Only by taking C towards A beyond ba can we

change this situation. A similar definition is used for P €

P L

It is easily seen that R(P) satisfies a relation similar

to (3.3), and that every point in R(P) can be reached in 6 mo-

ves from P. The following lemma shows to what extend the oppo-

site is true.

3.9 Lemma. Let (a,b,c) = Kl' .o .K6P, where Det

1
Kl. .o .K6 235 then ¢ € R(P).

Proof. If P € PO then this is obvious since R(P)

<ab,ba,C>. If P € P+ we clearly have

c € R5(K6P).

It fdllows from Lemma 1.2 that since

[\ =

Det K6 > Det Kl' ce e 'K6 >
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then the image of C under K6 is contained in the triangle
: 1 1
cofcC, §(A+c), 5(B+c)}

whereas since

Det K.,. ... .K

|v
N

we have

ba € cb{A,%(A+c),%(A+B)}.

Hence K6 can not move C beyond ba and hence K6 is one

of the Poisson matrices used to define R(P), see (3.4), and

hence ¢ € R(P).
The proof for P € P_ is similar.

3.10 Proposition. The set R(P) is starshaped around a

and b.

Proof. Since the statement is obvious for P € Po’ we
shall assume that P € P+. Let now K(u) = Kij(u) for some fi-
xed 1 and j, see (l.1). The set R5(K(u)P), 0 £ucx< 1 is emp-
ty for u > u o, where u is determined by either a or b being
on the boundary of <K(uo)P>. Notice also that K(u)PrE‘P+
except when K(u) takes B into [Cb,ab] in which case K(u)P € P0

and then
RS(K(u)P) = <K(u)P> N <ab,ba,C>.

In all other cases under consideration in the definition of
R(P) we get that RS(K(u)P) has the same shape as R5(P). In
any case let ¢u denote the boundary of S(K(u)P), see Proposi-

tion 3.8.

Thus ¢o is the boundary of S(P) since K(o) = I and ¢u’
O <u < u_ 1is a continuous family of closed continuous curves

each of which determine a region which is starshaped around

a and b.
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It is easily seen that

S(P) U 18] o = (8] R5(K(u)P) U S(P) ‘ (3.5)
O<u<u0 Ofufuo

is again starshaped around a and b.

Thus K(u) may squeeze the boundary of S(P) out of S(P),
but in a continuous fashion and always in such a way that the

inside is starshaped around a and b.

Clearly R(P) is the union of the 6 regions of the form
(3.5) which we get for the various choices of i and j. Thus
R(P) is itself starshaped around a and b, which completes

the proof of Proposition 3,10.

It should be noticed that if P € P+ and if K takes C be-
yond ba then we are in an entirely different situation and
the corresponding sets need not be starshaped, which is the

reason for avoiding them.

Notice also that if K takes C into [C,bal, A into [A,Ca]
or moves B then RS(KP) < S(P), but if K takes C towards B or

A towards C then points outside S will be in R5(KP).

One can carry through a more detailed analysis of the set
R(P) and obtain an expression for the boundary as an upper en-

velope of some lines and quadratic curves.

It should finally be pointed out that 1t is not true that

any 1mbeddab1e matrix is a product of 6 P01sson matrlces. .
An example of such a matrix can be found if we consider the |
following‘situétibn: " Let P - (A,B,C) and assﬁme that ab€ElA,e[,
ba € ]B,C[. Thus a and b are rotated in relation to P and c
therefore has to lie in the set co{A,ab,ba,B} in order that
(a,b,c) be imbeddable from P. In this case one can again con-
struct RS(P) by carefully constructing Rl(P),...,R4(P). The
boundary can be described as consisting of the lines [Aab,al

.and [Bba,b] together with the curves wl and wz defined as fol-

lows:
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*
Take A € [ A,Cb] and consider the point
* * *
c € [Cc,A]l nI[A a,A ab].

* .
As A varies from A to Cb, ¢ describes a continuous curve
%k
from Aab to b. The curve wz is constructed by choosing B €

[Ca,B] in a similar fashion.

Let us again consider the smallest region containing this
boundary which is starshaped around C and intersect with the
set co{A,ab,ba,B}. This region S(P) is not starshaped around

b or a in general and we let ¢0 denote its boundéry.

Again RS(P) is constructed by squeezing ¢O out of S(P)
by first moving one of the vertices A,B, og C by means of K
and then find RS(KP).VAﬂga&eful construction will show that
if a and b are sufficiently close then R6(P) is not starshaped.
Thus there exists a c' € R6(P) and ¢ € [b,c'] say such that
c ¢ R6(P). Hence we can reach (a,b,c') in 6 moves and (a,b,c)

in 7 but obviously not in 6.
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Fig. 1 The construction of ¢ and S(P).
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