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SUMMARY 

Maximum likelihood estimation of the parameter A of a pure 

birth process is studied on the assumptions that the process 

is observed either completely in a time interval [O,t] or at 

equidistant time points O,T ••.•• kT. 

The exact distribution of the minimal sufficient statistic ~s 

given in the first case and for both cases the asymptotic 

theory as t ~ 00, respectively k ~~. is studied. The rela­

ted conditional Poisson process discussed recently by D.G. 

Kendall and W.A. OIN. Waugh is also studied and the results 

are shown to illustrate the modern theory of exponential fami­

lies and conditional inference. Some efficiency results com­

paring the two sampling schemes are also given. 

Key words: Pure birth process, Maximum likelihood estimation, 

estimation in Markov processes, exponential families, conditi­

onal inference, conditional Poisson process. 
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1. Introduction. 

Let Xt be the population S1ze at time t of the pure birth 

process, that is the Markov process in which 

{Dh + o(h), j = 1 + 1 

P{X h=j Ix =i} = I - iAh + o(h), J == i t+ t 
o(h) otherwise, 

i = 1,2,3, •.. , A > O. Assume throughout that P{XO=q} I 

where q is a fixed positive integer. 

We shall discuss maximum likelihood estimation of the pa­

rameter A from observations in a. finite time interval [O,t]. 

Specifically~ 

dered. 

thre~ dif£erent sampling schemes may beconsi-

A. Permanent observation in a fixed time interval [O,t]. 

B.Sampling at equidistan~ time points O,T, •.• jkT. 

C. Permanent observation until the time at which Xt jumps 
to n. 

The sampling scheme e, which is often called inverse sa.p­

ling was considered by Moran (1951). 

The "direct" sampling schemes A and B were considered 

briefly by D.G. Kendall (1949) and related re~ults (in effect, 

for the pure death process) were given by Sverdrup (1965) and 

Hoem (1971). 

All of these authors only considered asymptotic results 

In the present paper we apply results by P.S.Puri 

study the exact dlstriStlt:ioh of. tli\e.estim~tor 

and ~~ concentrat~ 1n~sym~tbtic r'esutls fo,!·!: '4- oo~ 't;b~t is, 

for one long realization of the process. The\lsu~lasytnptotic 

normal theory no longer holds and an asymptotic "Student" di­

stribution applies for both sampling schemes A (Section 3) and 

B (SectionS), The results for equidistant sampling 1n Sect i-

on 5 are closely connected to recent results by Dion (1972) on 

estimation in the Galton-Watson process. 
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,Kendall (1966) and Watigh (1970,1972) have recently disc~s­

sed the conditional distribution of the birth process given 

W = lim a.s, Xt/EX. They show that the conditional process 
t+oo t 

is an inhomogeneous Poisson process with intensity AWqexp (At). 

Section 4 is devoted to a discuision of maximum likelihood e­

stimation 1n this conditional process and in the process 

{Xu I u~t } given Xt ' Sever al in teres t ing asp e ct s are di SCll S sed 

in the light of the modern theory of exponential families and 

conditional inference (Barndorff-Nielsen 1970,1971), and it is 

pointed out that the "extra randomness" in the asymptotic Stu...,j 

dent-distribution is due to t~e gamma-distributed random vari-

able W. Section 2 states formally the result of Kendall for 

easy referenceo 

2. The birth process and the conditio~al Poissonprocess. 

It is well-known (Harris 1963) that if {X t ' t~O} is a 

birth process with Xo = q, th~n the expectation EX t = q exp(At) 

and there exists a random variable W s~ch that Xt/EX t + W a.s. 

as t + 00. The distribution of W is gamma (q,q-l), that is, 

with density 

q q-l -q,,' q w e /r(q), w > 0 

and EW = 1. 

The following result 1S due to D.G. Kendall (1966) 1n the 

case q = 1. See further discussion by Waugh (1970), A,threya 

and Ney (1972, Theorem 111.11.2) and Tjur (1973). 

lization to q > 1 is straightforward. 

The'genera-

Theorem 2.1 Conditioned on W, Xt is a time-inhomogeneous 

Poisson process with Xo = q and intensity qWA exp(At), that is 

E(xt-qIW) = qW(exp(At)-I). 

Theorem 2.2 Let {Zt,t~O} be a Poisson process with, in­

tensity wA exp(A~) and Zo = q and define 

t 

R = JZ duo 
t 0 u 
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Then as t -+ 00 

( a) Zt exp(-At) -+ w a. s. 

and 

Cb) R exp(-At) 
t 

-+ w/A a. s . 

Proof. ( a ) i san e 1 em e n tar y f act for the t i m e - h 0 m 0 g en e ouop 

Poisson process .. and the present case follows by invoking 

exp(At)-l as operational time (for a detailed proof see Tjur 

(1973». To prove Cb), let w ( N. the null set where (a) does 

not hold. To a g1ven E choose to such that 

w - £ < Zt e~p(-At) < w + £ 

For t > to 

and 
.. 

Sl.nce 

R 
t 

-At 
e 

t 
-At 0 

= e f Z du + 
o u 

t -At 
e f Z du < 

u 
to 

t -At f . AU 
e (w+£) e du 

to 

and similarly for the lower boundary~ (b) follows by letting 

This simple but quite general proof was pointed out by 

Martin Jacobsen (private communication). 

Remark. Theorem 2.1 may be used to derive results for the 

birth process from corresponding results for the inhomogeneous 

Poisson process by mixing over the gamma-distributed random va­

riable W (cL the discussion by Waugh (1970». This procedure 

will be used repeatedly in the following. 

In particular, from Theorem 2.2 we may conclude the a.s. 
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convergence of 

, t 
q-le~Atfx du + W/A 

° u 

1n the birth process, which was first given by Puri (1966). 

3. PermaneQt observation: Inference 1n the ,birth proce~s. 

Consider first sampling scheme A. The di~tributionof 

{X , 0 < u < t}, is fully determined by X' and the rando~~i-
u = = t 

mes T +1, .•. ,TX ' where T. = int{ulX = i} is the time wh~re 
q , t 1 u 

the processju~ps to state 1. The random variableY =(X ,T 1'-" 
t t q+ 

T%~) (which is under~tood aSX t if X~ =q) takes values i the 
't 

set 

00 

Y = {q} U U {n} x [O,OO)n- q 

, n=q+l 

with probability one. If V is Lehesgue measure on the Borel 
~ . . n . , 

a-algebra B on [O,oo)n, an invariant measure K on Y is given 
n 

by 

00 ,00 

K(B O U U {n}xB ) 
n=q+l n-q = t{BO~{q}} + n=!+IVn-qB n - q , ", 

="{q} 'or 0, B E B for n > q~ BO n-q n-q 

The .likelihood function is the density of the distributi-, 

on of Yt with respect to K. 

Theorem 3.1 The lik~lihood function is given by 

, (X -q) X -q -AS, 
L (A) = (X -1) tAt e t 

where St 

t 
t 
JX du and the factorial a (x) = a(a-1) .•. (a-x+l). 
o u 

(Xt,St) 1S minimal sufficient and the maximum likelihood esti­

mator is given by 

X -q 
t 
S 

t 
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Proof. If Xt=q, Yt=X t and p{Xt=q} = exp(-Aqt)=exp(-AS t ). 

Assume then Xt > q. Let Tq=O. For given x, the sojourn times 

Ti +1 -T i , i = q, ••• ,x-1, are independent, exponential1y distribu­

ted with expectations (iA)~l. Hence the density of (T 1'.'" q+ 
T ) with respect to V is 

x x-q seen to be 

x.:.r 
-A L iCt. l-t.) 

. 1+ 1 
1=q f( ) (x _l)(x-q)1x-qe 

t l' ...• t = fI. q+ X 

< t . = x 

t} 

the density of (X t ' T 1, .•• ,T X ) with respect tb K is 
q+ t 

00 

g(x,t l, ... ,t) 
q+ x 

x 
-'\(xt- L t.) 

= (x_l)(x-q),\x-~e i=q+1 1 

The likelihood function is, thus, 

L CA) = 

and it 1S immediately seen that 

t 

fx du = 
o u 

tX -
t 

Xt 

L T. 
. . 1 

·1=q+l 

which completes the derivation of the likelihood function. The 

rest of the proof is immediate. 

Theorem 3.2 (a) The distribution of St given that Xt = x 

has characteristic function 

. x-q . (1 (1V-'\)t ) 1Vqt - e 
e -'\t 

(l-(iv) !A) (l-e ) 

and density 
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qt ~ s < 00. 

Here gx,qCs) 15 the density of qt + Y1 + ••• + Yx - q where the 

y, are independent, uniformly distributed. on [0. t]. 
1 

(b) The distribution ofS t given Wand Xt = x is the sa­

me as under (a). 

(c) The distribution of the minimal sufficient statisti~ 

(Xt~St) has characteristic function given by 

iuX +ivS / 
(Ee t . t)l q = CI_Civ)/A)e iu+(iv- A)t 

1 C' )/1 iu iu+(iv-A)t 
- lV A-e +e 

and density with respect to counting m~asure on the integers 

and L~besgue measure on S 

(X-I) x-q -AS . 1 (At) e .g (it), . q- . x,q x = q,q + 1, •.. ~ qt < s.< 00 • 

Proof~ It follows from the representation of St given~by 

(3.1) that St is measurable with respect to the a-algebra At 

spanned by' {X !u<t}. That the distributions under Cb) and Ca) 
u 

are identical then follows from the Markov property, since W is 

measurable w.r.t. the tail a-algebra na{X !u>t}. (For further 
t U 

discussion see Tjur (1973». 

The derivatioti of the distributions has been cartied out 

by Puri (1968). In the present setting an approach based on 

the conditional Poisson process is more direct. We omit. the 

details. 

A 

Theorem 3.3 A + A a.s. as t + 00, 

Proof. This 1S a corollary of Theorems 2.1 and 2.2, cf. 

the Remark after Theorem 2;2. 

Lemma 3.1 Let {Zt,t > a} be a Poisson process with in­

tensitj WA exp(At) and Zo = q. Then the distribuiion of 
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t 
Jz du, converges weakly as t + 00 towards the di­
D u 
of (A,w) where A is normal (O,w). 

The characteristic function of (Z~,lt) is given 

as is seen from Theorem 3.2 and by using the Poisson distri­

bution of Zt- q with parameter w(exp(~t)-l). 

The characteristic function of (At,~e-AtRt) is then easi­

ly obtained and the result follows by letting t + 00. 

Theorem 3.4 (a) As t + 00, (ASt)I/2(~/~-I) 1S asymptotical­

ly normal (0,1). 

1/2 '" . 
(b) As t + 00, expr(~t)/2]q (~/A-l) converges weakly to-

wards a Student-distribution with 2q d~f. 

Proof. It is a· cons eque nce of Lemma 3. 1 and Theorem 2. 1 

that given W, 

A w 
t 

X -q-AS 
t t 

- (AS )1/2 
t 

norm a 1 ( 0, 1) • 

Since this limiting distribution is independ.ll\.J;l:t.&I;·lf~:·,.;?·it:he same 

r~sult is vaiid tn the marginal distribution, which proves (a). 

To prove (b), notice that 

As t + 00, the second factor tends almost surely to w- l / 2 by 

Theorems 2.1 and 2.2 and since the first factor, given W, is 

asymptotically normal (0,1), we infer that the limiting distri­

bution of the product is that of A/W l / 2 where A and Ware in-
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dependent,A is normal (0,1), and W is (cL Theorem 2.1) 

gamma (q,q-l) or X2/f, f = 2q. (b) then follows from a stan­

dard result in the theory of the normal distribution. 

Theorem 3.5 For fixed t and q +.00, 

(a)(~St)I/2(~/A-l) is asymptotically normal (0,1). 

Proof. The birth process Xt wit~ Xo q has the same di­

stribution as u! + ••• + u:. where U1 1S a birth process with 
1 1 t . 

. Uo = 1 and parameter ~ and Ut" u~ are 1ndepend~nt. 

The results are therefore easily obt~ined fro~ the cen­

tral limit theorem. 

R em ark. (b) was g i v e n by D. G. Ken d a 11 ( 1 9 4 9), see f u.r th e r 

Section 5 below. 

Remark. In theorem 3.4(b), the limiting Student distribu­

tion approaches a normal distribution (0,1) as q + 00. This li­

mit is also obtained by letting t + 00 in the limiting distribu­

tion in Theorem 3.5(b). 

4. Permanent observation: ~_Qn9itiQnaLinference. 
~~~~~~~~~--~~~~ 

For large t, the sample functions log Xt tend to be linear 

with "deterministic" slope A but with a random intercept log W 

on the ordinate axis (Waugh 1972). Wh e n con s i d er i.n gas in g 1 e 

lortg realization of the birth process the random variation 

iid~e to WU seems irrelevant so that it becomes warranted to 

consider estimation of ~ and w in the conditional process given 

that W w. 

A related argument due to S.L. Lauritzen (privatec~mmu"': 

nication) is as fo·llows. When the sampling situation is one 

realization, it is intrinsically impossible no matter for how 

long time this realization is observed, to decide whether the 



sample function is from a birth process or from the correspon-

ding conditional Poisson process. If both the Poisson processes 

and the birth process (being a mixture of the Poisson proces­

ses) are included in the model, the generalized maximum like­

lihood solution could never be a mixture and hence is the Pois­

son process. Lauritzen will publish his general study on "max­

imum likelihood prediction" elsewhere. 

Theorem 4.1 Let {Zt' t ~ O} be a Poisson process with 

intensity exp('\..l+At), (A,]..l)ER 2 • For the problem of estimating 

(A,]..l) , the likelihood function 1S given by 

At ]..l 
log L(A,]..l) = (Zt-q)]..l + (tZt-Rt)A - (e -l)e lA. 

(Zt,Rt ) is minimal sufficient. 

EXgept when Zt q (and hence tZt-Rt=O), the maximum 1i-

* * kelihood estimator is given as the unique solution (A,]..l ) to 

the likelihood equations 

Z - q = E(Z -q) 
t t 

tZ - R 
t t 

At ]..l 
(e -l)e lA 

Remark. This estimation problem obviously generates an ex­

ponential family with canonical statistics Zt- q and tZt - Rt , 

o ~ tZt - Rt ~ t(Zt- q ) < 00. Notice that tZt - Rt is the area 

between the sample function and the line Z = Zt" For a compre­

hensive account of the exact (that is, non-asymptotic) theory 

of exponential families, see Barndorff-Nie1sen (1970). 

Proof of Theorem 4.1 The likelihood function may be deri-

ved 1n a similar way as in Theorem 3.1 above. 

]..l from the likelihood equations, we obtain 

tZ - R t t 

t(Zt- q ) 
1 1 

-----::'"A-t - "It = 1 - feAt) 
1 - e 

By eliminating· 
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where f (_00) = 1, f (0) =~, f (00) = 0, Df (0) = 0 and Df (x) < 0 

* This proves that A otherwise. is unique and positive accor­

* ding to the stated conditions. ~ is then uniquely given from 

one of the likelihood equations. 

Remark. If Zt is the conditional Poisson process obtained 

from a birth process Xt with parameter A > 0 and Xo = q by 

conditioning on W = lim a.s. Xt/EX t = w, Zt has intensity 
t -+ 00 

qWA expo,. t) . The result of Theorem 4.1 then becomes relevant 

with ~ = 10g(qwA). Notice, however, that for any A > @iil.tl.d. 

* o < t < oo,A < 0 with positive probability. 
- * 

The condition 

2(R t -qt) < (Zt-q)t for a positive A states that apart from 

the unavoidable contribution of qt to the integral Rt = 
t 

JZ du, the integral has to be less than half of the rectangle 
o u 

with sides (O,q) - (O,Zt) and (O,q) - (t,q). This property 

is a sort of convexity of the sample function corresponding 

to the increasing intensity when A > o. 

We return below to a discussion of possible interpretati­

ons of processes with nonpositive Ao 

Asymptotic results for A > 0 and t-+oo are given in Theo-

rem 4.2. We need a lemma. 

Lemma 4.1 Let 

f(x) 1 1 
x - ~, 

e -1 x > o. 

If get) is a positive function h 
suc that there exists a 

c E (0,00) with 

tf(tg(t» ~ -1 
~ c as t -+ 00, 

then 

get) -+ c as t -+ 00. 

Proof. T o any E > 0 choose 
to so that for t > t 

o 
/ctf(tg(t» - 1/ < E: 

or 
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Fo raIl x > O. f (x) 
1 1 1 

< ~ so that for t > to 
x 

-1 t 
c (1-£) < tg (t) 

To any 6 > 0 choose Xo so that 

Choose tl such that 

1 
f(x) > x(l+6) 

1+£ 
-.~ < f (x ). 
et 1 0 

-1 
g (t) . 

Then for t > to V tl~ by the right inequality ~n (4.1) 

(4. 1) 

that is (since f is monotonically decreasing) tg(t) > Xo or 

1 
f ( t g t)) < t g ( t) (1 4- 6) 

cl b pI ' ~og \'-111'" r~gt,t- inenualit-y 10 (4.1) once more, a 0 yap. y .L ... 1 ~ -'-- ,~- '1 

1 

The results are summarlze ~n 

< get) 
c 

< --1-£ 

for t > t v t O· 1 
and the proof is complete. 

(4. 2) 

Th~6r~~ 4.2 Assume that A > 0 1n the estimation problem 

discussed ~n Theorem 4.1. As t + 00 

(a) 

(b) 

(c) 

* A + A a.s. 

* * p (A,ll ) + (A,ll) 

(AR )1/2(A*/A-l) 
t 

* and exp[(At)/2](A /A-l) are both asymptotically normal (0,1). 
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* Proof. A ~s defined as the solution of 

R - qt 
t 1 t 
Z - q 

t 
* tf(A t) = A * - -e'""'"A"'":':*O'""t-_--l 

By Theorem 2.2, Vt + A a.s. For fixed W ( the null set 

* we may thus use Lemma 4.1 with get) = A (w) and c = A to show 

* that A + A a.s. 

* p That ~ + ~ is proved applying (c) which is proved below. 

(c) implies that 

t(A*-A) ! ° 
. -At ~ . 

as t + ooand therefore s~nce Zte + e lA by Theorem 2.2, 

~* 
Z -q 

t 1 ! ~ e = * A -rt (A*-A)t -At 
e • 

e e -e 

Finally, to 
At 

prove (c), we use Lemma 3.1 to conclude that 

2 
e (Vt/A-l) -~ * is asymptotically normal (O,Ae ). A is the solu-

* -1 
tion of Vt = tf(A t), so that 

At 
2* e (A lA-I) 

.A t 

,.. e2CVt/A-l) 
>I< 

A 
+ -;\ 

At 
*2 A te (1 
A*t 

e -1 

'" -1 
;\ t ) 
;\*t 

e -1 

In the last term, the first and the last factor converge to-

wards one a.s. by results above. For the middle factor, we use 

(4.2) to show that for w ~ Nand t large 

At 

'" ? .A 'te -
;\*.t 

e -1 
< 

At 

Ate 2 

O-E) (eAt/[ (l+d 0+8) J -1) 
+ 0 

if (1+£) (1+0) < 2. It follows that the second term above con-

verges to zero almost surely and hence in probability and the 

result therefore follows from Lemma 3.1. The last result fol-

lows in the same way as above. 
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Remark. In the estimation problem in Theorem 4.b, the sta-

tistic t -q is sufficient for the parameter p . 
t 

Furthermore, 

to any given value of the other parameter' A and any given value 

x of Z -0 it 1S possible to find a ~ such that the distributi-
t· . 

on of Zt- q has its mode at p. This property of Zt- q which 

here (as will often be the case) sharpens the concept of suffi­

ciency with respect to p, is called M-ancillarity. with respect 

to A by Barndorff-Nielsen (1971). It is suggested to study in-

ference problems regarding A. in the conditional distribution g1-

ven a statistic which is M-ancillary for A. 

In the present case, this study 1S further motivated by 

the fact that if A > 0, the conditional distribution of 

{X , 0 < u < t} is identical for the conditional Poisson pro­
u 

cess and the original birth process (see Theorem 3.2(b». 

Theorem 4.3 Let {Zt' t ~ o} be a Poisson process with 

intensity exp(p+At), (P,A)ER 2 and Zo q. For the problem of 

estimating A in the conditional distribution of {Z , 0 < u < t} 
u 

given that Zt = z, z > q, the likelihood function is 

. -A(R -qt) 
L(A) = (z-q)![At/(I-e-At)]z-qe' : t -00 < A < 00 

The minimal sufficient statistic is Rt and the maximum 

likelihood estimator 1 is given as the unique solution of the 

equation 

I 
~ I 

t 
tf(At). 

1 > 0 # 2(R -qt) < (z-q)t. 
t 

Proof. The likelihood function is easily obtained using 

the Poisson distribution of Zt- q • 

similar to the proofs above. 

Processes with nonpositive A. 

The rest of the proof is 

It is seen from Theorems 4.1 and 4.3 that by conditioning 

1n the birth process Xt either on W or on Xt , a natural exten­

sion of the domain of the parameter A to nonpositive values co-

mes out. This extension cares for the cases where the sample 
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function does not show the expected "convex" appearance, l.n 

the sense specified in the remark above. 

We shall comment shortly on three possible interpretati­

ons of this extension when A < O. 

(1) Inverse death process. Let' {Ytlt ~ O} be a pure death 

process with intensity a = -A > 0 and YO n· The process 

Qt = n - Yt+q has transition intensities given by 

{

(n-i)ah+O(h)' j=i+l 

P{Qt+h=jIQt=i} = l-(n-i)ah+o(h), j=i 

o(h) otherwise. 

Qo = q and Qt + n + q a.s. as t + 00 The conditional distribu­

tion of {Qu1o < u < t} given that Qt = z is identical to that 

of {Zu1o < u ~ t} given that Zt = z where Zt is a ~oisson pro-

cess with intensity exp(~-at) and Zo = q. 

The inverse death process may be interpreted as describing 

birth under limited resources, given by the saturation level 

n • 

(2) Poisson process with exponentially decreasing intensi!z.. 

The Poisson process {Zt' t > O} with intensity exp(~-at), 

a = -A > 0 and Zo = q has as t+oo the limiting form 

-e~/a 
e 

of a translated Poisson distribution with parameter e~/a. 
The inverse death process is obtained from the Poisson process 

by conditioning on Z = n + q, and conversely: the Poisson pro-
m 

cess is obtained from the inverse death process by assuming 

that n is a Poisson random variable with parameter e~/a. 

(3) Birth process with exponentially decreasing intensity. 

In a similar way as above, it may be seen that if in the inver­

se death process n is assumed to follow a negative binomial 
-1 

distribution with parameters (q, (y+l) ), (that is, with ex-

pectation qy) the marginal process Xt is an inhomogeneous 

birth process with intensity 
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ay 
at 

(y+1)e -1 

The inverse death process is again obtained by conditio­

ning on Xoo = n + q. 

The birth process may also be obtained from the Poisson 

process by assuming e~ to be gamma-distributed (q,ay). 

For the estimation problem in Theorem 4.3, we have the 

following asymptotic resu1S valid for A > o. The proof con-

sists of passing to the limit in the characteristic function 

in Theorem 3.2(a). 
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+ 0, 

Theorem 4.4 If t ~ 00 and x - q + 00, such that t(x_q)-1/2 
1/2 -

(x-q) [(A/A-I] will be asymptotically normal (0,1). 

In Sections3 and 4 we assumed that the complete history .of the 

process was known frDm time 0 to time to Assume now that the 

process is observed at the points 0, T. 2 T • • kT = t, tha.t 

is, in the Sampling scheme B in th~ 1ntroduction. The obser-. 

vations then form a Galton-Watson process Z = X with geome-
n nT 

tric offspring distribution 

P{Z 'I Z I} = e- AT (I-e- AT ) i-I, 1=1. 0= 

1. = 1,2, ••.• and P{ZI=O/ZO=I} = 0 as .is well-known (Harris 1963). 

The moments of the offspring distribution are 

E(Z /2 =1) = eAT 
I 0 

The following result is due to Kendall (1963). 

Theorem 5.1 The likelihood function 1.S 

L(A) 

and the maXimum likelihood estimator 1.S 

log (
X + •.. + X ) 

T . kT 

XO+,,·+X(k-l)T . 
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Theorem 5.2 As k + 00, 

(a) A + A 

(b) 

'-A T 
is asymptotically normal ,(0, 1-e ). 

a. s. 

con~erges weakly towards a Student-distribution with 2q d~f. 

Proof. (a) follows from general results by Heyde (1970) 

on estimation in the Ga1ton~Watson process. 

To prove Cb), we recall a result by Dion (1972, Th~or~me 

3.2.1) for general Galton-Watson'processes implying that if 

Xo = q, = l(and the generalization to, general, q is immediate) 

AT AT e -e, 

is asymptotically normal (0,1). By Taylor expansiorr 

Since XO+ •• ,+XkT + 00 a.s., the last term tends to zero in pro­

bability by the above result of Dion and the limiting:di~tri­

bution is obtained by another application of Dion'sresult. 

(c) is proved ina ~imilar way, applying Dion (1972, Th~­

oreme 3.2.2) and remarking that 

. -1 -AkT W =11m a.s. Xk q e 
k ' T +00 

is gamma-distributed (q,q -1) (cL Theorem 2.1) so that the a-
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symptotic distribution of 

AT AT. 
( l A T + A k T) 1/2 _---i-e __ --:;e~_~~ 

+e + ••• e 1 1 1/2 
[eI\T(eI\T-l») 

becomes the Student-distribution with 2q d.f. 

Remark. If T + 0 9 k + 00, kT + t,one should expect to ob­

tain the results for permanent observation in [0,t1. In fact, 

Kendal1 (1949) used this idea to derive X. An examination of 

the Theorems of Section 3 and the present Section shows that 

this does hold true. We collect some of these results below. 

(a) As T + 0, k + 00, kT + t, 

A = 
1 X + ••• +x 

log T kT + 
T XO+."+X Ck- 1 )T 

A 

Cb) As T + 0, k + 00, t + 00, kT/t + c > 0, the scale para-

meter 

- _ [ ( A(k+l)T 1) AT]1/2( AT 1)-1 s - T q e - e e-A . . 

of the asymptotic Student distribution of A (cf. Theorem 5.2 

(c») and the scale parameter 

At 
2 1/2 A-I 

s~ = e q 

of the asymptotic Student-distribution. of A (cf. Theorem 3.4 

(a»are asymptotically equal: 

It is to be expected that this approKimation scheme will 

work quite generally so that known results for distrete-time 

processes can be used to derive results for processes with 

continuous time. 

A particularly simple case of equidistant sampling 1S 

that of k == 1, that is. only Xt 18 observed, 
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Theorem 5.3 The maximum likelihood estimator X based on 

observation of Xt only is given by 

As t -+ 00, 

v 

v 1 Xt 
A = t log q 

t(A-A) -+ log W a.s., 

-1 
where the distribution of W is gamma (q,q ) so that E(log W}= 

1J!(q) ~ log q andV(log W)= 1J!' (q). 

Dlogr(x). 

1J! is the digamma function W(x)= 

Proof. The form of the estimator is concluded from Theo-

rem S.l(a). The rest of the theorem is based on the a.s. con-

vergence 

Notice that 1J!(q) - log q < 0 but that 1J!(q) - log q + 0 as 

q + 00. In particular, 1J!(1) = -y 0.577 • . Furthermo~e ~~'(q) 

+ 1 as q + co, 1fJ'(l) = jT2/ 6 = 1.645. 

Remark. As. q -+ 00, 

v 
ql/2(A_A) 

1S asymptotically normal fof sinh(AT/2»)2 A2) and q1/2(r_A) 
\ '\ AT/2 eAT_l ' 

1S asymptotically nor~al with asymptotic variance given by the 

same expression, taking t = t. 

This was derived by Kenqal1 (1949) from standard asympto­

tic maximum likelihood theory, using the fact the each of the 

q ancestors at time 0 starts its own process. 

The efficiency of equidistant sampling in comparison to 

permanent observation may be studied by comparing the rate of 

convergence of the estimator of A to the true parameter under 

the various asymptotic approximations considered. The results 

are easily obtained from the Theorems. We give some examples: 
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A V 
A A and A are the maximum likelihood estimators from the 
t' t kT 

birth process with Xo = q, based on complete observation in 

[O~tJ, observation of Xt alone, and sampling at O,T, ••• ,kT, 

respectively. 

A. The efficiency of Ak with respect to.A , t =:~ T when 
T t 

q ~ 00 was given by Kendall (1949) for the birth process and 

by Sverdrup (1965) for the death process in the particular ca­
v 

se k = 1, T = t, that is, for .A- t . From Theorem 3.5 (b) and 

the Remark above the asymptotic efficiency 1S 

- A AT.· (A~ 2 
eq(A;A) = [Z/ s1nh 

which is tabulated as a function of AT by Kendall and Sverdrup. 

Obviously the efficiency tends to 1 as AT ~ 0 and to 0 as 

AT + co. 

B. As t ~ co~ the convergence rate of At to A is expres­

sed by the scale par~meter in the asymptotic Student-distribu­

t i on as 

'\ -(At)/2 -1/2 
Ae q, 

cf. Theorem 3.4(a). In contrast, Theorem 5.3 tells that a~ 
V 

t ->- co", tOt-A) converges, but not towards zero. It is seen 

that At is biased to the order of t- 1 and has asymptotic effi-
A 

ciency 0 as t ~ co compared to At. 

A 

C. The efficiency of AkT with respect to At for t = k·T 

and k 7 co is obtained from the asymptotic Student-distributions 

in Theorems 3.4(b) and 5.2(c) as 

- A 

= [(1- e -A T ) lA T] 2 

Some numerical values of e and et are g1ven in Table 5.1. It 
. - A q 

is obvious that et (A ,A) ~ 1 as AT ~ 0 and ~ 0 as AT ~ co. 
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Table 5.1 

Asymptotic Efficiency of Equidistant Sampling. 

e (A.,A) 
q 

o .02 . 1 

1 1.000 .999 

1 .980 .906 
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