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SUMMARY 

Maximum likelihood estimation of the parameter A of a pure 

birth process is studied on the assumptions that the process 

is observed either completely in a time interval [O,t] or at 

equidistant time points 0,'[,. ~.,k'[. 

The exact distribution of the minimal sufficient statistic 1S 

g~ven in the first case and for both cases the asymptotic 

theory as t + 00, respectively k +~, is studied. The rela­

ted conditional Poisson process discussed recently by DTG. 

Kendall and W.A. OlN. Waugh is also studied and the results 

are shown to illustrate the modern theory of exponential fami­

lies and conditional inference. Some efficiency results com­

paring the two sampling schemes are also given. 

Key words: Pure birth process, Maximum likelihood estimation, 

estimation in Markov processes, exponential families, conditi­

onal inference, conditional Poisson process. 
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1. Introduction. 

Let Xt be the population SLze at time t of the pure birth 

process, that is the Markov process in which 

{

iAh + cr(h), 

1 - iAh + cr(h), J = L 

cr(h) 

J L + 1 

otherwise, 

i = 1,2,3, ••. , A > O. Assume throughout that P{XO=q} = 1 

where q is a fixed positive integer. 

We shall discuss maximum likelihood estimation of the pa­

rameter A from observations in a finite time interval [O,t]. 

Specifieally, 

dered. 

three different sampling schemes may be consi-

A. Permanent observation in a fixed time interval [O,t]. 

B. Sampling at equidistan~ time points O,T, ••. ,kT. 

C. Permanent observation until the time at which Xt jumps 
to n. 

The sampling scheme C, which is often called Lnverse samp­

ling was considered by Moran (1951). 

The "direct" sampling schemes A and B were considered 

briefly by D.G. Kenda11 (1949) and related results (in effect, 

for the pure death process) were given by Sverdrup (1965) and 

Hoem (1971). 

All of these authors only considered asymptotic results 

as q + 00. In the present paper we apply results by P.S. Puri 

(1966,1968) to study the exact distribution of the estimator 

and we concentrate Dn asymptotic results for t + 00, that is, 

for one long realization of the process. The usual asymptotic 

normal theory no longer holds and an asymptotic "Student" di­

stribution applies for both sampling schemes A (Section 3) and 

B (Section 5). The results for equidistan~ sampling Ln Secti-

on 5 are closely connected to recent results by Dion (1972) on 

estimation in the Ga1ton-Watson process. 



-2-

Kendall (1966) and Waugh (1970,1972) have recently discus­

sed the conditional distribution of the birth process given 

W = lim a.s. Xt/EX. They show that the conditional process 
t+oo t 

is an inhomogeneous Poisson process with intensity AW exp (At). 

Section 4 1S devoted to a discussion of maximum likelihood e­

stimation 1n this conditional process and in the process 

{xulu~t} given Xt " Several interesting aspects are discussed 

in the light of the modern theory of exponential families and 

conditional inference (Barndorff-Nielsen 1970,1971), and it is 

pointed out that the "extra randomness" in the asymptotic S tu'":" \ 

dent-distribution is due to the gamma-distributed random vari-

able W. Section 2 states formally the result of Kendal1 for 

easy reference. 

2. The birth process and the conditional Poisson process. 

It is well-known (Harris 1963) that if {X t ' t~O} is a 

birth process with Xo = q, then the expectation EX t = q exp(At) 

and there exists a random variable W such that X /EX t + W a.s. 
_It 

as t + 00. The distribution of W is gamma (q,q ), that is, 

with density 

w > 0 

and EW = 1. 

The following result is due to D.G. Kenda11 (1966) 1n the 

case q = 1. See further discussion by Waugh (1970), Athreya 

and Ney (1972, Theorem 111.11.2) and Tjui (1973). The genera­

lization to q > 1 is straightforward. 

Theorem 2.1 Conditioned on W, Xt - q is a time-inhomoge­

neous Poisson process with intensity WA exp (At), that is 

E(xt-qlw) = W(exp(At)-l). 

Theorem~~ Let {Zt,t~O} be a Poisson process with 1n­

tensity wAe~p(At) and Zo = q and define 

t 
Tt = JZ duo o u 
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Then as t + 00 

(a) Zt exp(-At) + w a.s. 

and 

(b) Tt exp(-At) + W/A a.s. 

Proof. (Zt-q)/[exp(At)-l] is a Markov process with EUt=w, 

and is thus a nonnegative martingale. It follows that there 

is a random variable U such that Ut + U a.s. On the other 

hand it is easily seen that Ut ! wand it follows that U = 
w a.s. which proves (a). To prove (b), let w ~ N, the null 

set where (a) does not hold. To a g1ven € choose to such that 

for t > to' 

For t > to 

Tt 

and S1nce 

e 

w - € < Zt exp(-At) < w + € 

-At 
t 

-At 0 
e J Z du + 

o u 

t 
-AtJ AU e (w+€)e du 

to 

and similarly for the lower boundary, Cb) follows by letting 

t + 00. This simple but quite general proof was pointed out by 

Martin Jacobsen (private communication). 

Remark. Theorem 2.1 may be used to derive results for the 

birth process from corresponding results for the inhomogeneous 

Poisson process by mixing over the gamma-distributed random va­

riable W (cf. the discussion by Waugh (1970)). This procedure 

will be used repeatedly in the following. 

In particular, from Theorem 2.2 we may conclude the a.s. 
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t 
q-le-AtIx du + W/A 

a u 

~n the birth process, which was first given by Puri (1966). 

3. Permanent observation: Inference ~n the birth;_process. 

Consider first sampling scheme A. The distribution of 

{x , a < u < t}, 
u = = 

is fully determined by Xt and the random ti­

where T. = inf{ulX = i} is the time where me s T + 1 ' ••• ,'rX ' 
q t ~ u 

the process jumps to state ~. The random variable (X,T 1' .• ' 
t q+ 

TX ) 
t 

set 

(which is understood as Xt if Xt = q) takes values in the 

00 

Y {q} U U 
n=q+l 

with probability one. If V is Lebesgue measure on the Borel 
~ n ~ 

a-algebra B on [a,oo)n, an invariant measure k on Y is given 
n 

by 

00 

K(B a U U· {n}xB ) 
n-q 

n=q+l 

00 

Ba ='{q} or 0, B E B for n > q. 
n-q n-q 

The likelihood function is the density of the distributi­

on of Yt with respect to ~. 

Theorem 3.1 The likelihood function is given by 

(X -q) X -q -AS 
LO) = (Xt-l) tAt e t 

where St 
t 

= Ix du and the factorial a (x) = a(a-l) ... (a-x+l). 
a u 

~s minimal sufficient and the max~mum likelihood esti-

mator is given by 

A 

A = 
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Proof. Let Tq = O. For given x, the SOjourn times T. I-T., 
~+ ~ 

i q, •.• ,x-l, are independent, exponentially distributed with 

expectations (iA)-I. Hence the density of (T 1, ..• ,T) with q+ x 
respect to V is seen to be x-q 

x-I 
-A 

f(t ) (x-I) (x-q),x-qe 
L i(t. l-t.) . ~+ ~ 

l , ... ,t = fl q+ X 

o < t < == q+l = 
< t • 

n 

~=q 

= P{T I < t 1.···,T < t, T 1> t}, q+ = q+ X x+ 

the density of (X t ' T 1, ... ,TX ) with respect to K is 
q+ t 

co 

g(x,t l, ••. ,t) q+ x ! f (t q + l ,·· . , tx+l).~t.x+l 
x 

-A(Xt- Lt.) 
(x-q) X-d ~ (x-I) A "le i=q+l 

The likelihood function is, thus, 

L (A) = 

and it ~s immediately seen that 

t 

fX du 
o u 

tX -
t 

Xt 

L T. 
. I ~ 
~=q+ 

which completes the derivation of the likelihood function. The 

rest of the proof is immediate. 

Theorem 3.2 (a) The distribution of St given that Xt = x 

has characteristic function 

ivS ! 
tl 

E (e. 'I X =x) .- t 

and density 

ivqt( 1 _ e(iv-A)t ) 
= e -At 

(1- (iv) lA) (l-e ) 

x-q 
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(A t) x- q e - A ( s - q t) (1- e - At) - x + q g ( s) , 
x,q qt < s < 00. 

Here g (s) is the density of qt + Y1 + + Y where the 
x,q x-q 

Y. are independent, uniformly distributed on [O,t]. 
~ 

(b) The distribution of St given Wand Xt = x is the sa-, 

me as under (a), 

(c) The distribution of the minimal sufficient statistic 

(Xt,St) has characteristic function given by 

• ( 0 A) t 
(l-(iv)/A)e~u+ ~v-

1 ( 0 )/' iu iu+(iv-A)t - ~v /I.-e +e 

and density with respect to counting measure on the integers ... 
and Lebesgue measure on E 

x = q,q + 1, ~ qt ~ s < 00. 

Proof. It follows from the representation of St given by 

(3.1) that St is measurable with respect to the a-algebra At 

spanned by' {X lu<t}. That the distributions under (b) and (a) 
u 

are identical then follows from the Markov property, since W is 

measurable w.r.t. the tail a-algebra na{X lu>t}. (For further 
t u 

discussion see Tjur (1973)). 

The derivation of the distributions has been carried out 

by Puri (1968). In the present setting an approach based on 

the conditional Poisson process is more direct. 

details. 

A 

Theorem 3.3 A + A a.s. as t + 00. 

We omit the 

Proof. This is a corollary of Theorems 2.1 and 2.2, cf. 

the Remark after Theorem 2.2: 

Lemma 3.1 Let {Zt,t > O} be a Poisson process with in­

tensity WA exp(At) and Zo q. Then the distribution of 

(At,Ae-AtT t ) = (e-(At)/2(Zt~q-ATt),Ae-AtTt) 
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t 

where T = 
.. t 
stribution 

JZ du, converges weakly as 
° u of (A,w) where A is normal 

t -+ 00 towards the di-

(O,w) • 

Proof. The characteristic function of (Zt,T t ) 1S given 

by 

r -At AweAt+iu(l_e(iv-A)t) 1 
= eXPl-w(e -1)+ . ! , A-1V J 

as 1S seen from Theorem 3.2 and by uS1ng the Poisson distri­

bution of Zt- q with parameter w(exp(At)-l). 

The characteristic function of (At,Ae-AtT t ) is then eaS1-

ly obtained and the result follows by letting t -+ 00. 

Theorem 3.4 (a) As t -+ 00, 

ly normal (0,1). 

(AS )1/2(~JA-l) 1S asymptotical­
t 

1/2 A 
(b) As t -+ 00, exp[(At)/2]q (A/A-I) converges weakly to-

wards a Student-distribution with 2q d.f. 

Proof. It is a consequence of Lemma 4.1 and Theorem 2.1 

that given W, 

X -q-AS 
t t 

(AS )1/2 
t 

normal (0,1). 

Since this limiting distribution is independent of W, the same 

result is valid in the marginal distribution, which proves (a). 

To prove (b), notice that 

-1/2 As t -+ 00, the second factor tends almost surely to W by 

Theorems 2.1 and 2.2 and since the first factor, given W, is 

asymptotically normal (0,1), we infer that the limiting distri­

bution of the product is that of A/W1 / 2 where A and Ware in-
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dependent,A is normal (0,1), and W is (cf. Theorem 2.1) 

gamma (q,q-1) or X2/f, f = 2q. (b) then follows from a stan­

dard result in the theory of the normal distribution. 

(a) 

Theorem 3.5 For fixed t and q -+- 00, 

(AS )1/2(~/A_1) is asymptotically normal (0,1). 
t 

(b-)e (Xt) /2q1/2 (~/A-l) is asymptotically normal (0, (l_e-At ) -1). 

Proof. The birth process Xt wit~ Xo q has the same di­

s~ributiQ~ as ut
1 + ••• + Uq , where U1 1S a birth process with 

t 1 t 
U~ 1 and parameter A and Ut' , U~ are independent. 

The results are therefore easily obtained from the cen­

tral limit theorem. 

Remark. (b) was given by D.G. Kenda11 (1949), see further 

Section 5 below. 

Remark. In theorem 3.4(b), the limiting Student distribu-

tion approaches a normal distribution (0,1) as q -+- 00. This 1i-

mit is also obtained by letting t -+- 00 in the limiting distribu­

tion in Theorem 3.5(b). 

4. Permanent observation: Inference in the conditional Poisson 

For large t, the sample functions log Xt tend to be linear 

with "deterministic" slope A but with a random intercept log W 

on the ordinate axis (Waugh 1972). When considering a single 

long realization of the birth process the random variation 

"due to W" seems irrelevant so that it becomes warranted to 

consider estimation of A and w in the conditional process given 

that W = w. 

A related argument due to S.L. Lauritzen (private commu-

nication) is as follows. When the sampling situation is one 

realization, it is intrinsically impossible no matter for how 

long time this realization is observed, to decide whether the 
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sample function is from a birth process or from the correspon-

ding conditional Poisson process. If both the Poisson processes 

and the birth process (being a mixture of the Poisson proces­

ses) are included in the model, the generalized maximum like­

lihood solution could never be a mixture and hence is the Pois­

son process. Lauritzen will publish his general study on "max-

1mum likelihood prediction" elsewhere. 

Theorem 4.1 Let {Xt' t~O} be a Poisson process with inten­

sity wA exp(At) and Xo = q. For the problem of estimation 

(A,w),the likelihood function is 

X -q -A(S -tX )-w(e At -1) 
L(A,w) = (Aw) t'e t t 

(Xt,St) is minimal sufficient and the likelihood equations are 

X t-q 
At 

E(X t ) = wee -1) -q 

At At 
I Ate +l-e 

W A 

If 2(St- q f) < t(Xt-q), these equations have a unique solution 

(A,w) E (0,00)2 and this solution is the maximum likelihood e­

stimator. If 2(St-qt) ~ t(Xt-q), the likelihood function has 

no maximum within (0,00)2 

Remark. The canonical exponential family generated by 

the present estimation problem has canonical statistics Y = 

xt-q and Z = tX t - St' 

~ = log(Aw) and K = A. 

o < Z < tY < 00 and canonical parameters 
,==; -===t 

. 1 d' . R2 The canon1ca parameter oma1n 1S . 

The likelihood equations are obtained as Y = EY and Z = EZ, 

and they have a unique solution f.or all (Y,Z). However, K > 0 

only when ~Z > tY, (~hich is equivalent to 2(St- qt ) < t(Xt-q).) 

Otherwise K < 0 and there seems to be no natural way to extend 

the definition of the maximum likelihood estimator for the i-

nitia1 parameters. For a comprehensive account of the exact 

(that is, non-asymptotic) theory of exponential families, see 

Bar~dorff-Nie1sen (1970). 

Proof of Theorem 4.1 The proof is framed in the exponen-

tia1 family approach given above. The likelihood equations are 
I ~ 
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Y = ell. 

I Kt Kt 
Z = e 11) Kt e + 1-e 

2 
K 

so that by eliminating 11 

Z 
tY = 1 

-Kt 1-e 

1 
Kt 

1 - f(Kt) 

where the function f is decreasing, 
1 

f(-oo) = 1, f(O) = 2' 
f(oo) = 0, Df(O) = 0 and Df(x) < 0 otherwise. 

2Z > tY follow immediately. 

The results for 

Lemma 4.1 Let 

f(x) 
1 1 
x - -x-' 

e -1 
x > o. 

If get) 1S a positive function such that there exists a 

c E (0,00) with 

then 

or 

tf(tg(t» ~ 
-1 

c as t ~ 00, 

get) ~ C as t ~ 00, 

Proof. To any s > 0 choose to so that for t > to 

Ictf(tOg(t» - 11 < s 

c- 1 (l-s) < tf(tg(t» < c- 1 (l+s). 

Fa r a 11 x > 0, f (x) = 1 
x 

- ~ < 1 so that for t > to 
e -1 x 

-1 t 
c (l-s) < tg (t) 

-1 
g (t) • 

To any 0 > 0 choose xo so that 

(4.1) 

1 
f(x) > x(1+8) fer x > xO' 
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Choose t1 such that 

Then for t > to V t 1 , by the right inequality 1n (4.1) 

f(tg(t)) < f(x O) 

that is (since f is monotonica11y decreasing) tg(t) > xo or 

1 
f (tg (t)) < tg (t) (1+0) 

and by applying the right inequality 1n (4.1) once more, 

-1 t 
c (1+£) > ~t-g~(-t7)~(~1-+~0~) = 

The results are summarized 1n 

c 
(1+£) (1+0) < get) 

1 
g(t)(1+0) 

c 
< --1-£ 

for t > to V t1 and the proof 1S complete. 

(4. 2) 

Theorem 4.2 For the estimation problem discussed 1n The­

orem4.1, ast-+- co 

(a) 

uniformly in x = q+1, q+2, 

and P{X t = q} -+- O. 

It follows that 

as t -+- co which by Theorem 4.1 may by expressed by stating that 

* * the maximum likelihood estimator (A,W) exists almost surely as 

t -+- co. 

(b) As t -+- co, 

Cc) As t -+- co, 

P 
* * CA,w ) -+- CA, w) • 



-12-

* is asymptotically normal (0,1), and exp[(lt)/2](X /X-l) ~s a-

symptotically normal (0,1). 

Proof. To prove (a) we have by Theorem 3.2(a) and (b) that 

.(. Xt \x- q t(x-q) -r 
= J e h (r)dr 

l_e-Xt ) t(x-q)/2 x-q 
(4.3) 

where h x-q is density of a sum of x-q independent uniformly di-

stributed random variables on [O,t]. Hence (4.3) is less than 

1(1 -At)-X+ q "2 -e e 

t 
-(x-q) (--log(At» 

2 

which tends to ° as t + 00 uniformly ~n x = q+l, q+2, ••• 

That F{Xt=q} + ° ~s well-known. 

To prove (b), we first prove that A* + X a.s. A* 1S defi­

ned as the solution of 

-1 S -qt 
* 1 t ., 

tf CA t) t V = , = -~i' -
t A*t X -q 

i X e -1 -t 

By Theorem 2.2, Vt + X a.s. For fixed w ~ the null set 

may thus use Lemma 4.1 with get) = X~ and c = X to show that 

+ X a.s. 

we 

* X 

* P 
That w ~ w is proved applying Cc) which ~s proved below. 

Cc) implies that 

-A t 
as t + 00 and therefore, since Xte + w a.s. by Theorem 2.2, 

* w 

Finally, to 
Xt 

2 
e (Vt/X-l) 

-1 
tion of Vt 

Xt:::~ 

eA*t_l 

X -q t "-

e Xt 
1 

P 

CA*-A)t -At e -e 
+ w. 

prove (c), we use Lemma 3.1 to conclude that 

-1 * is asymptotically normal (O,w ). X is the solu-

* = tfCX t), so that 
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At 

* "2 A te (1 
A*t 

e -1 

* -1 
A t \ 
A* t ) e -1 

In the last term, the first and the last factor converge to-

wards one a.s. by results above. For the middle factor, we use 

(4.2) to show that for W ~ Nand t large 

At At 

If -Z lte 2 
I\. /' t e I\. 

-+ 0 

if (l+s)(l+6) < 2. It follows that the second term above con-

verges to zero almost surely and hence in probability and the 

result therefore follows from Lemma 3.1. 

lows in the same way as above. 

The last result fol-

Remar~ In the estimation problem in Theorem 4.3, the sta­

tistic X -q is sufficient for the parameter w. Furthermore, t_ 
to any given value of the otherparameter'A and any given value 

x of Xt~q it 1S possible to find a w such that the distributi~ 

on of xt-q has its mode at x. This property of xt-q which 

he¥e (as will often be the case) sharpens the concept of suffi­

ciency with respect to w, is called M-ancillarity with respect 

to A by Barndorff-Nielsen (1971). It is suggested to study in-

ference problems regarding A in the conditional distribution gi­

ven a statistic which is M-ancillary for A. 

This conditional distribution is identical for the condi~ 

tional Poisson process and the original birth process by Theo­

rem 3.2(b). 

Theorem 4.3 For the problem of estimating A in the condi­

tional distribution of {Xu ' O<u~t} given that Xt = x, the li­

kelihood function is 

-A(S -qt) 
LeA) = (X t )![At/(l-e-At)]x- q e t 

-q o < A < 00. 

The likelihood equation D log L(A) = 0 is equivalent to 
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tfCAt). 

This equation has one positive root A for 2(St-qt) < (x-q)t, 

and one non-positive root for 2(St-qt) ~ (x-q)t. The maximum 

likelihood estimator is given as l.in the first case. In the 
.I 

second case the likelihood function does not attain its supre-

mum within (0,00). A straightforward extension of the parame-

ter set to [0,00) results in an estimator of ° in the second 

case. 

Proof. The likelihood function is obtained as in Theorem 

3.1, using the negative binomial distribution of xt-q and the 

likelihood equation is easily derived. 

It is seen that 1 is formally identical to the estimator 

* A studied above, replacing xt-q by the conditioned value x-q. 

rhe rest of the proof is then immediate. 

Remark. The present results may also be discussed in the 

exponential family framework as given above. It may be shown 

that Y is M-ancillary with respect to k so that it is reasonab­

le to draw inference concerning K(=A) in the conditional di­

stribution given Y(=Xt-q). 

Remark. It is instructive to notice the intuitive signi­

ficance of the condition 2(St-qt) < (x-q)t for a positive e­

stimate of A. Apart from the unavoidable co~tribution of qt 
t 

to the integral S =! X du, the integral has to be less than 
t ° u 

half of the rectangle with edges (O,q) - (O,X) and (O,q) -

(t,q). That is, the sample function must be "convex" in the 

sense just defined. 

Theorem 4.4 For the estimation problem discussed ln The-

orem 4~3, as t + 00 

(a) 

uniformly in x = q+l, q+2, 

It follows that for x > q, the maximum likelihood estima~ 
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tor 1 will be positive a.s. as t + 00. 

Cb) If t + 00 and x-q + oo,such that t(x_q)-1/2 + 0, 

. 1/2-
(x-q) [(A/A)-l] will be asymptotically normal (0,1). 

Proof. (a) is proved as Theorem 4.2(a) above. Cb) is ob­

tained by passing to the limit in the characteristic function 

given in Theorem 3.2(a). 

5. Equidistant sampling 

In Sections3 and 4 we assumed that the complete history of the 

process was known from time 0 to time t. Assume now that the 

process 1S observed at the points 0, T, 2 T , , kT = t, that 

is, in the Sampling scheme B in the ~ntroduction. The obser-

vations then form a Galton-Watson process Z 
n 

~tric dffspring ~istribution 

x with geome­
nT· 

1 1,2, ••. , and P{Zl=OlZo=l} = 0 as is well-known (Harris 1963). 

The moments of the offspring distribution are 

E(Z IZ =1) = eAT 
1 0 

By applying results for estimation of the offspring expectation 

1n the Galton-Watson process (Harris 1948) or directly (Kendall 

1949) we obtain 

Theorem 5.1 The likelihood function 1S 

[ k (x -1.. ···\1 _AT = . n nT 'e 
I X -X. 
[n=l nT (n-1lt1;/j 

and the maX1mum likelihood estimator is 

1 T kT (
X + ••• + X ) 

og . 
XO+, .. +X(k-l)T . 
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Th~6t~~5.2 As k + 00, 

(a) A + A: a. s. 

(b) 

-AT 
is asymptotically normal (0, l-e ). 

converges weakly towards a Student-distribution with 2q d.f. 

Proof. (a) follows from general results by Heyde (1970) 

on estimation in the Galton-Watson process. 

To prove (b), we recall a result by Dion (1972, Theoreme 

3.2.1) for general Galton-Watson processes implying that if 

Xo = q = l(and the generalization tb general q is immediate) 

is asymptotically normal (0,1). By Taylor expansion 

Since XO+., .+XkT + 00 a.s., the last term tends to zero ~n pro­

bability by the above result of Dion and the limiting distri­

bution is obtained by another application of Dion's result. 

(c) is proved ~n a similar way, applying Dion (1972, The~ 

oreme 3.2.2) and remarking that 

. -1 -AkT 
W = l~m a.s. XkTq e 

k+oo 

is gamma-distributed (q,q-l) (cL Theorem 2.1) so that the a-
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symptotic distribution of 

AT AT 
(1 AT AkT)1/2 e -e 

+e + ••. +e --~\~--~\------~1~/~2 
[eAT(eAT_l)] 

becomes the Student-distribution with 2q d.f. 

Remark. If T + 0, k + 00, kT + t, one should expect to ob­

tain the results for permanent observation in [O,t]. In fact, 
A 

Kendal1 (1949) used this idea to derive A. An examination of 

the Theorems of Section 3 and the present Section shows that 

this does hold true. We collect some of these results below. 

meter 

(a) As T + 0, k + 00, kT + t, 

A = 
I x + ••• +X 

T kT log + 
T XO+ .•• +X(k-l)T 

X -X 
t ° 

St 
A • 

Cb) As T + 0, k + 00, t + 00, kT/t + c > 0, the scale para-

- [( A(k+l)T 1) AT]1/2( AT 1)-1 s = T q e - e e-A 

of the asymptotic Student distribution of A (cf. Theorem 5.2 

Cc» and the scale parameter 

At 
SA = e-Z q1/2 A-I 

A 

of the asymptotic Student-distribution of A (cf. Theorem 3.4 

(a» are asymptotically equal: 

It is to be expected that this approKimation scheme will 

work quite generally so that known results for discrete-time 

processes can be used to derive results for processes with 

continuous time. 

A particularly simple case of equidistant sampling ~s 

that of k = 1, that is, only Xt ~s observed. 
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Theore~5~3 The maximum likelihood estimator X based on 

observation of Xt only is given by 

As t ~OO, 

v 

v 1 X t 
A = t log q 

teA-A) ~ log W a.s., 

-1 
where the distribution of W is gamma (q,q ) so that E(log W}= 

lfi (q) ~1 og qancfV(l 0 g W) = lfi I (q) • 

D log r(x). 

lfi is the digamma function lfi(~)= 

Proof. The form of the estimator is concluded from Theo-

rem 5.l(a). The rest of the theorem is based on the a.s. con-

vergence 

Notice that lfi(q) - log q < 0 but that lfi(q) - log q + 0 as 

q + 00. In particular, lfi(l) = -y 0.577. Furthermore qlfi' (q) 

+ 1 as q + 00, lfi' (1) = rr2/6 = 1.645. 

Remark. As q ~ 00, 

ql/2(~_A) 

1S asymptotically normal (.0,( sinh(AT/2»)2 A2\ and ql/2(~_A) 
.. ~ __ ~ \ \ AT/2 eAT_1}' 

1S asymptotically normal )with asymptotic variance given by the 

same expression, taking T = t. 

This was derived by Kenda11 (1949) from standard asympto­

tic maximum likelihood theory~ using the fact the each of the 

q ancestors at time 0 starts its own process. 

The efficiency of equidistant sampling in comparison to 

permanent observation may be studied by comparing the rate of 

convergence of the estimator of A to the true parameter under 

the various asymptotic approximations considered. The results 

are easily obtained from the Theorems. We give some examples: 
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A V 
A A and A are the maximum likelihood estimators from the 
t' t kT 

birth process with Xo = q, based on complete observation in 

[O,t], observation of Xt alone, and sampling at O,T, ••• ,kT. 

respectively. 

A. The efficiency of Ak with respect to A , t = dv Twhen 
T t 

q ~ 00 was given by Kendall (1949) for the birth process and 

by Sverdrup (1965) for the death process in the particular ca-v . 
se k = 1, T = t, that is, for At" From Theorem 3.5 (b) and 

the Remark above the asymptotic efficiency is 

... A AT... (ATl 2 
e q (A , A) = [2 / s ~ n hi -2)J 

which is tabulated as a function of AT by Kendall and Sverdrup. 

Obviously the efficiency tends to 1 as AT + 0 and to 0 as 

AT + 00. 

B. As t + 00, the convergence rate of At to A ~s expres­

sed by the scale parameter in the asymptotic Student-distribu­

t i on as 

1 - (A t:) /2 -1/2 
Ae q, 

cf. Theorem 3.4(a). In contrast, 
V 

t + 00, t (A -A) con v erg e s, but not 
V t 

Theorem 5.3 tells that as 

that At is biased to the order of 

towards zero. It is seen 
-1 

t and has asymptotic effi-
A 

ciency 0 as t + 00 compared to At. 

A 

C. The efficiency of AkT with respect to At for t = koT 

and k + 00 is obtained from the asymptotic Student-distributions 

in Theorems 3.4(b) and 5.2(c) as 

Some numerical valu:s
A 

of e q and et are given ~n Table 5.1. 

~s obvious that et(A,A) + 1 as AT + 0 and + 0 as AT + 00. 

It 
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Table 5.1 

Asymptotic Efficiency of Equidistant Sampling. 

e (A,A.) 
q 

o .02 • 1 

11.000.999 

1 .980 .906 
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Some corrections. 

For Read 

:>CW 

W:>C 

= W 

Proof. 

variable 

t 
n 

estimation 

x = E(X ) 
t-q t-q 

Theorem 4.3 

X 
t-q 

should be deleted. 

qAW 

qW:>C 

= qW 

Proof. U 
t 

variable Y 
t 

t 
x 

estimation of 

x -q = E(X -q) 
t t 

Theorem 4.1 

x-q 
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