

Uffe Mq,ller

On Two Algorithms Finding the

Maximal Flow in a Network.

Preprint 1973 No. 3

INSTITUTE OF MATHEMATICAL STATISTICS

UNIVERSITY OF COPENHAGEN

February 1973

- 1 -

Abstract:

The present paper first states the linear programming problem

of finding the maximal flow in a network. Secondly, it presents

a new algorithm for the solution of the problem, and thirdly

it makes a remark on an existing erroneous algorithm.

Key-words: network, linear programming, maximum flow.

Description:

'A ;11 ~ tJ\tJ'>Xk 0 n s i s t s 0 f a set 0 f nod e s (N i) i E {I, ••. , n} and a set

I)f.~:rS$ JNij ;\,j e: {I, .•• ,n} c:onnecting the Iloqesc'}lTijwHl here .denote: the

directed arc from node N. to node N ..
~ J

For every arc N .. we have a nonnegative real number b .. which
~J ~J

we call the capacity of the arc. This means that we allow a

flow x ..
~J

~n the arc satisfying the condition 0 ~ x .. ~
~J -

b ..•
q

the connection between the f~ows ~n the different arcs will

be:

1) We allow one node (NI) to be a source, at which there

will be an inlet of flow, and one node (N) to be a n c

terminal which will be the outlet of flow. Some authors

use the word sink for the terminal.

2) For any other node we must demand that the sum of flows

to it is equal to the sum of flows from it.

This means that the inlet and the outlet of flow mentioned in

1) will be equal, and it is this flow we want to maximize.

The new algorithm presented ~n this paper follows the labeling

method described by Hu [1) with the one exception that we allow

- 2 -

noninteger capacities. In order to assure convergence to the

true maximum we will consider all flows less than a glven

(small) number, say 10- 6 , being zero.

Denoting the number of nodes by n we have In the new algorithm

the capacities stored in an n x n array such that b .. = ~
lJ

At the return from the procedure the resulting actual flow

of the solution (or of one of the solutions) will be giyen as

x .. =~, where~ is an n x n array.
lJ

It lS assumed that the nodes are numbered from 1 to n and that

the source is numbered 1 and the terminal n. This is not a

serious restriction, and the procedure could easily be re-

arranged to include two call parameters for the numbers of the

source and the terminal. The reason for not doing it here is

that transfer of parameters is often much time-consuming.

Operation:

For each increase of the flow the nodes are divided in-

to two complementary subsets in the array ~ separated

by the index~. The first subset (in [2] denoted by X)

contains the nodes to which the flow can be increased from the

source. The second subset (in [2] denoted by X and in the al-

gorithm by eX) contains the rest of the nodes. Within X the

nodes are stored in the same order as they were transferred to

it from X beginning with the source, and as X is scanned se~

quentially for arcs to nodes inX, it means that we use the

- 3 -

so-called first-labeled first-scanned method mentioned in (2).

This means further that any flow augmenting path we obtain is

the one which contains the minimum number of arcs.

When a node, N., is transferred from X to X by means of a
J

possible augment of flow from the node N., from [jJ is set to
~~

~and ~ is set to the maximal possible augment of flow.

Tests:

The algorithm has been tested with numerous examples, ensuring

test of all parts of the algorithm. Results have been compared

with the results from algorithm 324 [3] showing that all devia-

tions were due to the error in algorithm 324, which will be

mentioned ~n the next section.

Remark on Algorithm 324:

The algorithm is not able to find a flow-increasing path from

the source to the terminal such that the orientation of one or

more of the arcs is directing to the source, ~.e. such that the

flow in this branch (these branches) has to be decreased. See

[1] pp. 336-337. Thus the algorithm will in some cases produce

erroneous results.

Example:

A network with 6 node shave the following capacities:

b 12 21, b 13 31, b 14 71 , b lS 4 , b 23 31,

b 43 24, b 4S 63, b 36 71 , b 46 23, b S6 44,

- 4 -

b .. indicating the capacity of the arc from node ~ to node j.
~J

All other ~pacities are zero.

Algorithm 324 will give a solution with the following flows:

16, 16,

24, 28,

and the maximal flow 122.

But the flow may be increased by 5 through the arcs from node

1 to node 2 and from node 2 to node 3, then decreasing the flow

node 4 to node 3 and again increasing the flow from node 4 to

node 5 and from node 5 to node 6.

Ln this way the maximal flow is found to be 127:

21, 4, 21,

f43 19, 23, 33.

References:

[1] Hadley, G.: Linear Programming. Addison-Wesley, Reading

(Mass.), 1962. (5th Printing 1971, paperback).

[2] Hu, T.C.: Integer Programming and Network Flows. Addison

Wesley, Reading (Mass.), 1969.

[3] Bayer, G.: Algorithm 324, Maxflow, Comm. ACM. Vol. 11,

No. 2. Feb. 1968.

3
3
3 real proce
4 velue
5 integer
6 array
7
7 begin
8

- 5 -

n: real
mBX. flow:

.ps':

.PS;
8P~;

8 comment the proc ura computes the maximal flaw
9 in a network, where

10 n
1 1
12
13

is the number
The nodes are
with 1 as the
terminat~

of node. in the network.
numbered from 1 to n
source and n as the

14 max(itj) is the maxfmal flaw in the arC from
15 no i to no J (oriented). It must
16 be greater than Or equal to Z8ro~
11 flow(i,J) becomes In the same way the flow ~ or

cne of the possible flows - in the
sDlutiDn~

18
19
20 aps FLews lass than spa will not be taken

into conai ration. 21
22 maxflow becomas the resulting flow in the

network from 1 to n. 23
24
24 The method i9 a modification of the method
25 Bcribad in T~CftHu: Integer Programming and
26 Network FloWle .105~120Q The method daes nat
27 take multiple so utiona into account;
28
28
29
30
31
32
33
33
34
35
36
37
38
39
40
41
42
43
44
45
46
41
4B
48

integer array from. chain,1:n):
real array plus(1:n):
real at b. c, more. total;
integer ;$ j~ k, m, Xf nonx. pointer;
boalean nonterm;

comment
nonterm

chain

pLus(i)

total
more

is fal.e when the node" is in the .et
X and true otherwise
indicates th~ "ada from which the flow
to node i was increased or to which
the flow from nade i was decrea •• d~
choin(1) to chatn(potnter~1) are the
nodes in the set X, the rest are the
nodes of ex,
is the maximal increase of flow to the
node i through the path indicated in
from,
is the present flow from 1 to n~
is the present increase of flow from
1 to n;

- 6 -
48 COMment the flow is set to zero;
49
49 for i I_ 1 step 1 until n do
50 fo!'" j :_ 1 st~p 1 until n do
51 low(i,J':= 0.0;
52
52 'total :- OwO;

53 pLus(1) .- 1.0'600: comment the maximal number:
54 i1 epB<.3~O'-10 then ePI I- 3~O'-10;
55 comment the relative preCision;
56
56 COmment .taft the iteration:
57
57 for m := i.m.1 while -,nonterm
58 begin
59 comment the initial state; the source fs the
60 only node in X:
61 painter g= 2:
62 fOr k ~. 1 step 1 until n do cnain(k) :- k;
63 for t I- 1,t+1 white t<pointer and nonterm do
64 begin
65 comment a new noriee x, in X is ael~cted:
66 x I- chatn(i);
67 more := plua<xl;
68 for j :- pointer.).' whila j<~" do
69 begfn
70 Comment a nod., nonx, in ex is $elacted:
71 nonX :~ chain(j)i
72 a := max(x,nonx);
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
9.5
96
97

b ~. max(nonx.x);
comment check if a flow between x and nonx

is !)ossiblet
if s(a+b»eps then

bepin
ftow(x~nonx) + 1lOW("OnXf~):

comment check if the flaw may be increased:
if c>eps then

hag;n
Comment the flow may ba increased:

transfer nonx to X. nota that the
transfer took placa be means of the
arc from x and nota the increasB of
the ftow;

trom(nor!l() := x;
clua(nonx) :- if c<more then c else more;
chein(J) :- chain(pointBr):
~hain(pointer) := nonXf
pointer I~ pOinter + 1
€Hld c>O:

er'ld a+b>O:
er1ri j""looD;

nonterm ~~ chain(n)=n and. poi"ter<~n
(:';nd i - t tlO!:;q

- 7 -
97
97 comment if a fLow-AU nting PBth exists. the
98 flow in the network will be increased:
99
99 if ~'nonterm then

100 bEH:,;r,
101 more :~ ptus(n);
102 total:~ total + more;
103 tor i := n,j while i>1
104 be{;lin
105 j ;= frorn(i):
106 comment the path came from node J;
107 a :~ flo~(i,j) - more;
108 comment fi~st try if the flow in the
109 opposite arC may be decreased;
110 if a).O~O then flow(i,j) 1= •

111 el§B
112 begin
113 comment second increase the flow from
114 j to i Ca is negative):
115 flow(i,j) := 0,0:
116 HCl\..Jq,O ~~ flolfJ(j,D ""' a
117 end;
118 end i-loop;
119 end increase of flow:
120 end m-loop;
12 '1
121 m~xflow ~~ tot~l
122
122 Bnd maxflaw:
123
123
123

	forside 3, 73
	Preprint 1973 - No 3 Møller, Uffe - On Two Algorithms Finding the Maximal Flow in a Network

