Uffe Møller

On Two Algorithms

Finding the Maximal Flow
 in a Network

Uffe M \quad 11er

```
On Two Algorithms Finding the
    Maximal Flow in a Network.
```

```
Preprint 1973 No. 3
```


Abstract:

The present paper first states the linear programming problem of finding the maximal flow in a network. Secondly, it presents a new algorithm for the solution of the problem, and thirdly it makes a remark on an existing erroneous algorithm.

Key-words: network, linear programming, maximum flow. key Hoxde: thetvork litheat prostambing. maximan flow

Description:

A network consists of a set of $\operatorname{nodes}\left(N_{i}\right)_{i \in\{1, \ldots, n\}}$ and a set of $\operatorname{arcs}\left(N_{i j}\right)_{i, j \in\{1, \ldots, n\}}$ connecting the nodes. $N_{i j}$ will here denote the directed arc from node N_{i} to node N_{j}.

For every arc $N_{i j}$ we have a nonnegative real number bij which we call the capacity of the arc. This means that we allow a flow $x_{i j}$ in the arc satisfying the condition $0 \leqq x_{i j} \leqq b_{i j}$. The connection between the flows in the different arcs will be:

1) We allow one node $\left(N_{1}\right)$ to be a source, at which there will be an inlet of flow, and one node $\left(N_{n}\right)$ to be a terminal which will be the outlet of flow. Some authors use the word sink for the terminal.
2) For any other node we must demand that the sum of flows to it is equal to the sum of flows from it.

This means that the inlet and the outlet of flow mentioned in 1) will be equal, and it is this flow we want to maximize.

The new algorithm presented in this paper follows the labeling method described by $H u$ [1] with the one exception that we allow
noninteger capacities. In order to assure convergence to the true maximum we will consider all flows less than a given (small) number, say 10^{-6}, being zero.

Denoting the number of nodes by n we have in the new algorithm
 At the return from the procedure the resulting actual flow of the solution (or of one of the solutions) will be given as $x_{i j}=$ flow (i, i), where flow is an $n x$ array.

It is assumed that the nodes are numbered from 1 to n and that the source is numbered 1 and the terminal n. This is not a serious restriction, and the procedure could easily be rearranged to include two call parameters for the numbers of the source and the terminal. The reason for not doing it here is that transfer of parameters is often much time-consuming.

Operation:

For each increase of the flow the nodes are divided into two complementary subsets in the array chain, separated by the index pointer. The first subset (in [2] denoted by X) contains the nodes to which the flow can be increased from the source. The second subset (in [2] denoted by \bar{X} and in the algorithm by CX) contains the rest of the nodes. Within X the nodes are stored in the same order as they were transferred to it from \bar{X} beginning with the source, and as X is scanned seru quentially for arcs to nodes in \bar{X}, it means that we use the
so-called first-labeled first-scanned method mentioned in (2). This means further that any flow augmenting path we obtain is the one which contains the minimum number of arcs.

When a node, N_{j}, is transferred from \bar{X} to X by means of a possible augment of flow from the node N_{i}, from [j] is set to \sim_{\sim}^{i} and Plus $^{[j]}$ is set to the maximal possible augment of flow.

Tests:

The algorithm has been tested with numerous examples, ensuring test of all parts of the algorithm. Results have been compared with the results from algorithm 324 [3] showing that all deviations were due to the error in algorithm 324 , which will be mentioned in the next section.

Remark on Algorithm 324:

The algorithm is not able to find a flow-increasing path from the source to the terminal such that the orientation of one or more of the arcs is directing to the source, i.e. such that the flow in this branch (these branches) has to be decreased. See [1] pp. 336-337. Thus the algorithm will in some cases produce erroneous results.

Example:

A network with 6 nodes have the following capacities:
$b_{12}=21, b_{13}=31, b_{14}=71, b_{15}=4, b_{23}=31$,
$\mathrm{b}_{43}=24, \mathrm{~b}_{45}=63, \mathrm{~b}_{36}=71, \mathrm{~b}_{46}=23, \mathrm{~b}_{56}=44$,
$b_{i j}$ indicating the capacity of the arc from node i to node j. Al1 other capacities are zero.

Algorithm 324 will give a solution with the following flows:
$\mathrm{f}_{12}=16, \quad \mathrm{f}_{13}=31, \mathrm{f}_{14}=71, \mathrm{f}_{15}=4, \mathrm{f}_{23}=16$,
$\mathrm{f}_{43}=24, \mathrm{f}_{45}=24, \mathrm{f}_{36}=71, \mathrm{f}_{46}=23, \mathrm{f}_{56}=28$,
and the maximal flow 122 .

But the flow may be increased by 5 through the arcs from node 1 to node 2 and from node 2 to node 3 , then decreasing the flow node 4 to node 3 and again increasing the flow from node 4 to node 5 and from node 5 to node 6 .

In this way the maximal flow is found to be 127:
$\mathrm{f}_{12}=21, \mathrm{f}_{13}=31, \mathrm{f}_{14}=71, \mathrm{f}_{15}=4, \quad \mathrm{f}_{23}=21$,
$\mathrm{f}_{43}=19, \mathrm{f}_{45}=29, \mathrm{f}_{36}=71, \mathrm{f}_{46}=23, \mathrm{f}_{56}=33$.

References:

[1] Hadley, G.: Linear Programming. Addison-Wesley, Reading (Mass.), 1962. (5th Printing 1971, paperback).
[2] Hu, T.C.: Integer Programming and Network Flows. AddisonWesley, Reading (Mass.), 1969.
[3] Bayer, G.: A1gorithm 324, Maxf1ow, Comm. ACM. Vo1. 11, No. 2. Feb. 1968 .
real procedure maxflow(n, max flow eos):
value n! eps:
integer n" real eps:
array
max. flow:
begín
comment the procedure computes the maximal flow
in a network. where
is the number of nodes in the network.
The nodes are numbered from 1 to n
with 1 as the source and n as the
terminal.
max(i,j) is the maximal flow in the apc from
node i to node j (oriented). It must
be greater than or equal to zero.
H(ow(i.j) becomes in the same way the flow or
one of the possible flows in the
solution.
eps Flows less than eps will not be taken
into consideration.
becomes the resulting flow in the
network from 1 to n.
The mothod is a modification of the method
described in T.C.Hu: Integer Ppogramming and
Network flows. op. 105-120. The method does not
take multiple solutions into account:
integer array from, chain(1:n):
real array plus(1in):
real a, b. ce more total:
integer i. j. k. m. x, nonxe pointer:
boolean nonterm:
comment
nonterm is false when the node n is in the set
x and true otherwise
from(i) indicates the node from which the flow
to node i was increased or to which
the flow from node i was decreased.
chain chain(1) to chain(pointer-1) are the
nodes in the set x. the rest are the
nodes of CX .
plus(i) is the maximal increase of flow to the
node if through the path indicated in
trom.
total is the present flow from 1 to n.
more is the present increase of flow from
1 to n:
49
52

```
comment the flow is set to zero:
```

comment the flow is set to zero:
4 9 fon i:=1 step until n do
50 for j:= 1 stop 1 until n do
51 flow(i,j):=0.0:
52 total:=0.0:
5 3 plus(1):= 1.00600: comment the maximal number:
54 if eps<=3.00-10 then eps : = 3.0%-10:
5 5 ~ c o m m e n t ~ t h e ~ r e l a t i v e ~ p r e c i s i o n : ~

```

53
56
56
57
57
57
```

 6 -
 comment stapt the iteration:
for m:= 1.m+1 while =nonterm do
begin
comment the initial state: the sounce is the
only node in x:
pointer:=2;
for k:=1 step 1 until n do chain(k):=k;
for i = 1,i+1 while i<pointer and nonterm do
begin
comment a new node. x, in x is selected;
x = chain(i)
more = plus(x):
for j:= pointerej+1 while j<=n do
begin
comment a node. nonx, in CX is selected:
nonx := chain(j):
a := max(x,nonx);
b:=max(nonx,x):
comment check if a flow between }x\mathrm{ and nonx
is possible:
if abs(a+b)>eps then
begin
c:=a-flow(x,nonx) + flow(nonxex):
comment check if the flow may be incpeased:
if c>eos then
begin
comment the flow may be increased:
transfer nonx to x, note that the
transfer took place be means of the
arc from }x\mathrm{ and note the increase of
the flow:
from(nonx) := x:
blus(nonx):= if c<more then c else more:
chain(j):= chain(pointer):
chain(pointer):= nonx:
pointer : pointer + 1
end c>0;
end a+b>0:
end j-loop:
nontemm := chain(n)=n and pointer<<"
end i-loop:

```
```

 comment if a flow-augmenting path exists, the
 Hlow in the network will be increased;
 if -nonterm then
 begin
 more := olus(n):
 total:= total + more:
 for i = n.j while i>1 do
 begin
 j:= from(i):
 comment the path came from node j;
    ```

```

 comment first try if the flow in the
 opposite arc may be decreased:
 if a>=0.0 then flow(i,j) i=a
 else
 begin
 comment second increase the flow from
 j. to i (a is negative);
 40w(i.j)=0.0;
 flow(j,i)= flow(j,i) - a
 end:
 end i-1000:
 end increase of flow:
 end m-loop:
 max+low= total
end maxtlow:

```
```

