’Uffe Moller

On Two Algorithms
Finding the Maximal Flow
in a Network

Preprint
February

1973

3

Institute of Mathematical Statistics
University of Copenhagen

Uffe Mgller

On Two Algorithms Finding the

Maximal Flow in a Network.

Preprint 1973 No. 3

INSTITUTE OF MATHEMATICAL STATISTICS

UNIVERSITY OF COPENHAGEN

February 1973

Abstract:

The present paper first states the linear programming problem
of finding the maximal flow in a network. Secondly, it presents
a new algorithm for the solution of the problem, and thirdly

it makes a remark on an existing erroneous algorithm.

Key-words: network, linear programming, maximum flow.

Description:

A network consists of a set of nodes (Ni) el 0 and a set

)

of arcs (N connecting the nodes. Nij will here denoteithe

1981, 7 e[2.;. .4 a)

directed arc from node Ni to node Nj'

For every arc Ni' we have a nonnegative real number bij which
we call the capacity of the arc. This means that we allow a
< x <

flow x.,. in the arc satisfying the condition 0 < 17 = bij'

The connection between the flows in the different arcs will

be:

1) We allow one node (Nl) to be a source, at which there
will be an inlet of flow, and one node (Nn) to be a
terminal which will be the outlet of flow. Some authors
use the word sink for the terminal.

2) For any other node we must demand that the sum of flows

to it is equal to the sum of flows from it.

This means that the inlet and the outlet of flow mentioned in

1) will be equal, and it is this flow we want to maximize.

The new algorithm presented in this paper follows the labeling

method described by Hu [1] with the one exception that we allow

noninteger capacities. In order to assure convergence to the
true maximum we will consider all flows 1less than a given

(small) number, say 10_6, being zero.

Denoting the number of nodes by n we have in the new algorithm
the capacities stored in an n x n array such that bij = caB(i,j).
At the return from the procedure the resulting actual flow

of the solution (or of one of the solutions) will be given as

x.. = flow(i,j), where flow is an n x n array.

1]

It is assumed that the nodes are numbered from 1 to n and that
the source is numbered 1 and the terminal n. This is not a
serious restriction, and the procedure could easily be re-
arranged to include two call parameters for the numbers of the
source and the terminal. The reason for not doing it here 1is

that transfer of parameters is often much time-consuming.

Operation:

For each increase of the flow the nodes are divided in-

to two complementary subsets in the array chain, separated

by the index pointer. The first subset (in [2] denoted by X)
contains the nodes to which the flow can be increased from’the
source. The second subset (in [2] denoted by X and in the al-
gorithm by CX) contains the rest of the nodes. Within X the
nodes are stored in the same order as they were transferred to
it from X beginning with the source, and as X is scanned se==

quentially for arcs to nodes in X, it means that we use the

so—-called first—labeled first—-scanned method mentioned in (2).
This means further that any flow augmenting path we obtain is

the one which contains the minimum number of arcs.

When a node, N., is transferred from X to X by means of a
possible augment of flow from the node Ni’ from [j] is set to

d,and plus [j] is set to the maximal possible augment of flow.

Tests:

The algorithm has been tested with numerous examples, ensuring
test of all parts of the algorithm.Results have been compared
with the results from algorithm 324 [3] showing that all devia-

tions were due to the error in algorithm 324, which will be

mentioned in the next section.

Remark on Algorithm 324:

The algorithm is not able to find a flow-increasing path from
the source to the terminal such that the orientation of one or
more of the arcs is directing to the source, i.e. such that the
flow in this branch (these branches) has to be decreased. See

[1] pp. 336-337. Thus the algorithm will in some cases produce

erroneous results.

Example:

A network with 6 nodes have the following capacities:

21, by, =31, by, =71, b =4, b,y = 31,

24, b45 = 63, b36 =71, b46 23, b56 44,

b12

L

]
]
U

bij indicating the capacity of the arc from node i to node j.

All other capacities are =zero.

Algorithm 324 will give a solution with the following flows:
f,, =16, £, =31, £, =71, £, =4, £,, = 16,

71, f46 = 23,f56 = 28,

f = 24, f 24, f£

43 36

45

and the maximal flow 122.

But the flow may be increased by 5 through the arcs from node
1 to node 2 and from node 2 to node 3, then decreasing the flow
node 4 to node 3 and again increasing the flow from node 4 to

node 5 and from node 5 to node 6.

In this way the maximal flow is found to be 127:

£1, =21, f£,4=31, £, =71, £, =4, f,, =21,

33.

71, £ = 23, f

£, =19, f,_ =29, f L6

43 45 56

36

References:

[1] Hadley, G.: Linear Programming. Addison-Wesley, Reading
(Mass.), 1962. (5th Printing 1971, paperback).

[2] Hu, T.C.: Integer Programming and Network Flows. Addison-

Wesley, Reading (Mass.), 1969.

[3] Bayer, G.: Algorithm 324, Maxflow, Comm. ACM. Vol. 11,
No. 2. Feb. 1968.

real procedure maxflow(n, max, flow, eps);

value ne eps;y
integer n real eps?
array maxe flow;
beain

comment the procedure computes the maximal flow

in a network. where ,

n is the number of nodes in the network.
The nades are numbered from 1 to n
with 1 as the source and n as the
terminal,

max(iej) is the maximal flow in the arc from

node i to node | (oriented), It must
be greater than or equal to zero. ‘

flow(ir.j) becomes in the same way the flow = or
one of the possible flows = in the
solution,

eps Flows Less than eps will not be taken
into consideration,

maxflow becomes the resulting flow in the
network from 1 to n,

The method is a modification of the method

descpribed in T,C.Hu: Integer Programming and

Network Flowse: pp.105=120, The method does not

take multiple solutions into account;

integer array from, chain(1:n);

real array plus(izn);

real a, b, c. more, total;

integer ie je ke me xo nonxe pointer;

boolean nonterm;

comment

nonterm is false when the node n is in the set
¥ and true otherwise

from(ij) indicates the node from which the flow
to node i was increased or to which
the flow from node i was decreased,

chain chain(1) to chain(peinter=1) are the
nades in the set X, the rest are the
nodaes of CX,

plusCi) is the maximal increase of flow to the
node i through the path indicated in
from, , ,

total is the present flow from 1 to n.

more is the present increase of flow from
1 to n; :

48
49
49
50
51
b4
52
53
53
54
55
56
56
57
57
58
59
60
61
62
63
64
65
66
67
68
69
70
(&
7e
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
21
92
93
94
95
926
o7

-6 -
comment the flow is set to zero;

for i = 1 gstep 1 until n do
for j 2= 1 step 1 until n do
flow(iej? 2= 0.,0;

total 2= 0,0;

plus(1) 3= 1,00600; comment the maximal number;
if eps<=3,0’=10 then eps = 3,0°=10;
comment the relative precision;

comment start the iteration;

for m 2= 1.m+1 while =«.nonterm do
hegin
comment the initial state: the source is the
only node in X3
pointer = ¢; v
for k 3= 1 step 1 until n do chain(k) := k;
for | 2= 1,1+1 while i<pointer and nonterm do
begin
comment a new nodes x, in X is selected;
x 2= chain(il);
more 3= plus(x); ‘
for | = pointer.j+1 while j<=n do
begin
camment a node, nonxs, in CX is selected;
nonx = chain(j);
a 1= max{(xenonx);
b 1= max(nonxex);
comment check if a flow between x and nonx
is possible;
if abg(a+b)>eps then
begin
c 1= a = flow(xsnonx) + flowl(nonxex);
comment check if the flow may be increased;
if c>eps then
begin
comment the flow may be increased:
transfer nonx to X. note that the
transfer took place be means of the
are from x and note the increase of
the flow;
from(nonx) = x;
plus(nonx) := if c<more then ¢ else more;
chain(j) := chain(pointer);
chain(pointer) %= nonx;
pointer = pointer + 1
end ¢>0;
end a+b>0;
end j=loop;
nonterm 2= chain(n)=n and pointer<=n
end i=loop;

- 7 -

97

97 comment 1f a flow=augmenting path existss the
98 flow in the network will be increased;
99

99 if =spnonterm then

100 begin

101 more = plus(n);

102 total = total + more;

103 for i 1= n,j while i>1 do

104 begin

105 j 2= from(i)g

106 comment the path came from node j;
107 a := flow(iej) = more;

108 comment first try if the flow in the
109 opposite arc may bhe decreased;

110 if a>50,0 then flow(isj) = a

1711 else

112 hegin o .
113 comment second increase the flow from
114 j to i (a is negative);

115 flow(i,j) = 0,0;

116 flow(j,i) = flow(j.i) = a

117 end:

118 end i=loan;

119 end 1increase of flow;

120 end m=loop;

121

121 maxflow = total

122

122 end maxflow;

123

123

123

	forside 3, 73
	Preprint 1973 - No 3 Møller, Uffe - On Two Algorithms Finding the Maximal Flow in a Network

