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1. Introduction and Summary. We shall consider the convex 

cone K of finite continuous convex functions defined on a con

vex set K in R2. A large class of extremal functions is iden

tified and it is proved that the extremal functions are dense -

in K. 

Thus the results are very different from the results obtained 

for convex functions on intervals, where all the extremal func

tions are of the form a V b for some affine functions a and b, 

see Blaschke and Pick [1]. 

It is easily seen that 

K n (-K) " = A, 

where A denote the affine functions. Hence the cone is not 

pointed and the usual definition of an extremepoint has to be 

modified as follows: 

Definition: Let f, g, and h be elements of K, then f 1S cal-

led extremal if for all g and h such that 

1 
f = Z(g+h) 

there exist a constant a > 0 and an affine function a, such 

that 

f = ag + a. 

We shall apply the following concepts from the theory of con

vex sets and functions, see Rockafellar [2]. 

, 
A polyhedral set is aal:,~(j;~! con vex set which is the in t er sec -

tion of a finite number of halfspaces. 

A polytope 1S a compact polyhedral set. 

A face of a polyhedral set P is a subset F C P with the pro

perty that 

xEF, yEP, zEP, x 
1 
Z(y+z) ~ yEF, zEF. 
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The 0 dimensional faces are the extreme points or the verti-

ces. The I-dimensional faces are the edges. A polyhedral 

set is bounded by a finite number of edges and has a finite 

number of vertices. A polytope is the convex hull of its 

vertices. 

The family of polyhedral sets PI' 

ring of the convex set K if 

,P is called a cove
m 

and 

• •• U P 
m 

Here r1 denotes the relative interior. The order of a ver-

tex of a polyhedral set in the covering is the number of po

lyhedral sets which contains it. 

a denote a family of affine functions, then 
n 

f = max a. 
l<i<n 1 

1S called a polyhedral function and it is seen that it 1S 

convex and continuous, and that the sets 

P. =' {f=a. }, dim P. = 2, 
1 1 1 

give rise to a covering of R2, and therefore of K, by polyhe

dral sets. 

Theclass of extremal functions on R2 which 1S found here can 

be described as polyhedral functions which induce a covering 

where the vertices are of order 3, see Theorem 1. 

An alternative way of describing them is as follows: consi

der the cylinder 

2 
II ~ 0, xER }. 

Any affine function aEA can be thought of as cutting away 

from C the set 



{(x,lJ) 
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2 o ~ lJ ~ a(x), xER'} 

After having cut C by means of the affine functions a l ,.·· ,an 

we are left with the epigraph of f = 0 V a l V e _. V a 
n 

C { (x, lJ) : lJ ~ f (x), xE R 2 } . 
n 

If each function a m' m = 1,2,.,.,n is chosen such that 

es not cut through an extremepoint of C m-I then f will 

treme, since then the vertices of the covering induced 

will have order 3. 

it do-

be ex-

by f 

The result that the functions thus constructed can approxima

te any continuous convex function f uniformly on a compact 

set is now rather obvious since the epigraph of f can be cut 

out of C by continuing the above procedure, each time avoing 

the vertices already created, see Theorem 2. 

The accmal proofs for convex sets . R2 1n are more complicated 

since we need extra conditions to ensure that there are 

enough vertices inside K, see the lemma. 

2. A Combinatorial Lemma. 

Lemma. Let C be an open convex set of dimension 2. Let 

•• " P be a covering of C with convex closed polyhedral 
m 

sets e).£ cl i~4inili.on 2 s uc h t ha t 

1) Each polyhedral set has a vertex in C. 

2) Any two vertices in C can be connected by a path of 

edges in C. 

3) No vertex is in the relative interior of an edge. 

4) Each vertex is of order 3. 

Let finally f be a continuous function which is affine G'n 

each P., i = l, •.. ,m. 
1 

Then if f = 0 on two polyhedral sets, 

with a common edge then f = 0 on C. 

Proof: Let PI and P 2 have a common edge L = PI n P 2 and let ---
f = 0 on PI U P 2 0 We want to prove that there is a third po-

lyhedral set P 3 which has an edge Ll 1n common with PI and an 



-4-

edge L2 in common with P 2 , then S1nce f is affine on P 3 and 

o on Ll and L 2 , the condition 3) will ensure that f = 0 on 

P3 " 

If L n C contains no vertex of PI (or P 2 ) then L would bisect 

C, such that PI and P 2 would be on different sides of L. Now 

PI and P 2 each have a vertex in C. by condition l),and by 2) 

they can be connected by a path of edges inside C. This path 

must meet L n C and hence L n C does contain a vertex. Let 

therefore VI be a vertex in L n C. 

there is a third polyhedral set P3 
VI. This set clearly has a common 

Since VI is of order 3 

which meets PI and P 2 at 

edge with PI and with P 2 

and by the above argument f = 0 on P 3 • 

This was the start of the induction and we can now prove that 

the conditions 1) through 4) are sufficient that the presen

ted argument spreads to all of C. 

Let us assume that f = 0 on 

Ck = PI U 

which is connected and contains a vertex in the interior, na

mely VI" 

If C'Ck = 0 we have proved that f = 0 on C. Otherwise let 

xEC'Ck , and let P be a polyhedral set which contains x. Let 

V2 be a vertex in C n P. 

Now consider the connected path that leads from VI to V2 in~-

s id e C. Let V3 be the first vertex on this path which lies 

on the boundary of Ck . 

Notice that since V3 is reach from inside Ck ' the three edges 

that meet at V3 all lie in Ck ' but since V3 is on the bounda

ry of Ck and in C there must be a polyhedral set Pk + l say, 

which is outside Ck and which meets the boundary of Ck at V3 

and at two edges. Hence since f is affine on Pk + l and 0 on 

Ck we find that f is 0 on Pk + l as well. 

induction and the proof of the lemma. 

This completes the 
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Let us remark, 
2 that in case C = R there are two cases possib-

le. Either there are no vertices at all ~n which case the 

covering (PI' 

the plane, or 

,P ) consists of parallel strips covering 
m 

there is at least one vertex, in which case 1) 

and 2) are automatically satisfied. 

Notice also that if the covering is induced by a convex func-

tion then 3) is automatically satisfied and hence we see that 

the most important condition is the fourth condition that each 

vertex should have order 3. 

3. The Extremal Functions. We can not identify all the ex-

tremal convex functions, but we can find so many that there 

are enough to prove the main result that they are dense in K. 
~ 

Theorem 1. A polyhedral convex function f is extremal in K 

if the covering of K given by f satisfies the conditions 1), 

2), and 4) for C = int K. 

Proof: Let g and h be elements of K and let 

1 
f = Z(g + h). 

Let PI' ~ •• , Pm denote the covering induced by f which satis

fies the conditions 1),2) and 4). The condition 3) will then 

automatically be satisfied. 

Clearly g and h must be affine on each of the polyhedral sets 

••• , P and we shall assume that g and h are polyhedral 
m 

functions. 

Now let a, b, and c denote affine functions, such that 

fl = f-a, gl = g-b, and hI = h-c 

all vanish on PI' then 

Let then xoEint P 2 n int K, where P 2 has an edge ~n common 

with PlO 
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If gl(xO) = 0 then ~l is 0 on P 2 and PI and by the lemma 

gl = 0 on K which proves that g is affine and hence that f 

is extremal. 

Let us therefore assume that gl(xO) > O.and by a similar ar

gument that hl(xO) > O. 

Let us then define 

then 

f2 = exg 2 + (l-ex)h 2 

where 

o < ex gl(xO)/2f l (xO) < 1. 

Now we have that 

f2 g2 = h2 0 on PI 

and 

f 2 (xO) f 2 (xO) h 2 (xO) 1 

but then 

If we apply the lemma to the piecewise affine function f 2-8 2 

:we get that: 

which implies that f is extremal. This completes the proof 

of Theorem 1. 

Proposition: Let a and b be affine functions then a and avb 

are extremal functions. 

the equations 

If c is an affine function such that 
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a(x) = b(x) = c(x) 

have only one solution in int K then a V b V c is extrema1. 

Proof: It 1S easily seen that a is extrema1, and that the 

construction in the proof of Theorem 1 will give that a vb 

is extrema1. The above condition on c ensures the existence 

of a vertex in int K and the covering induced by a v b v c 

satisfies the conditions 1), 2), and 4) of the lemma. 

Corollary. In the convex cone of finite continuous convex 

functions defined on R2, the polyhedral functions which in

duce coverings with vertices of order 3 are extrema1. 

In particular the functions a, a V b, and a V b V care ex

trema1 if the equations 

a(x) = b(x) = c(x) 

have only one solution. 

Proof: This follows from the remarks after the proof of the 

lemma, together with Theorem 1 and the proposition. 

We shall now prove the main result. 

Theorem 2. Any finite continuous convex function on the con~ 

vex set K can be approximated uniformly on any convex compact 

subset of K by an extrema1 convex function. 

Proof: Let fEK be given as a finite continuous convex func-

tion on K. Let K1 c K be a compa~t convex set uf dimension 2. 

We shall prove that f can be approximated by modifying the 

function on K1 a finite number of times in such a way that the 

final modification is an extrema1 function in K,which differs 

less than E from f on K1 . 

1) The first modification is to approximate f by a polyhe

dral function 

sup 
l<i<n 

a. 
1 
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as follows: For each xEKl 

mine a neighbourhood N of 
x 

we find a sub gradient a and deter
x 

x, such that f(y) < a (y) + E/4, 
x 

yEN • x 

By compactness we can pick out a finite number of neighbour

hoods which cover Kl and the corresponding subgradients pro

vide us with the function flo 

2) The next step consists in modifying fl such that the po

lyhedral covering induced by fl satisfies condition 1) of the 

lemma. Let therefore P be such a polyhedral set where fl is 

affine and such that 

int P n int Kl * 0. 

The set P need not have any vertices in int Kl but let us 

choose 

Now choose three affine functions a, b, and c, such that 

a (x) = b (x) = c (x) 

only have the solution x = xl" The function 

fl + 0 a V b V c 

will be a convex polyhedral function with a vertex at xl. 

This function clearly induces a covering of Kl with more po

lyhedral sets than before, but each new polyhedral set will 

have a vertex in int Kl • 

We then repeat this construction for each polyhedral set 

from fl which does not pOsses a vertex in int Kl " The final 

modification f2 will consist of fl plus a sum of simple ex

tremal convex functions and will have an induced covering 

satisfying the first condition of the lemma. 

ly small If2-fll < E/4 on Kl • 

For 0 sufficient-

3) The vertices of f2 need not be connected but let xl and 

x 2 be any two vertices in int Klo Let a be an affine func-
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tion such that 

and such that a i O. 

The function 

f2 + cS(ova) 

is a convex polyhedral function whose covering of Kl will con-

tain some new polyhedral sets. Each new set however, will 

have a vertex on the line determined by xl and x 2 inside 

int Kl , and xl and x 2 can be connected by a path of edges ~n 

int Kl , also lying on the line [xl' x 2 ] . ~. Th i s procedure is 

repeated by replacing x 2 by any of the vertices from f2 each 

time adding an a simple extremal function. We end up with a 

function f3 whose covering satisfies conditions 1) and 2) of 

the lem.ma. For cS sufficiently small we .get 'f 2-f 3 ' < E/4 on 

Kl • 

~) The final step consists 1n ensuring that all vertices ha

ve order 3. 

Assume V to be a vertex of order s > 3 and let a be a subgra

dient such that 

Then 

f3 V (a+cS) 

1S a convex polyhedral function with the property that for cS 

sufficiently small the corresponding polyhedral covering will 

be changed only around V in such a way that V~will be surroun

ded by a small polytope with s vertices each of order 3. 

Clearly the new polyhedral sets constructed this way still 

have vertices in int Kl and these can still be connected in-
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side int Kl" 

This construction is repeated for each vertex of order > 3 

each time taking the maximum of the function so far obtained 

and a suitable affine function. The final function will in-

duce a covering with all the desired properties listed in the 

lemma. 

For 0 sufficiently small this function f4 will lie within 

E/4 of f3 on Klo 

Thus we can apply Theorem 1 and we get that f4 is an extremal 

function which differs less than E from f on Kl as was to be 

proved. 
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