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1. INTRODUCTION AND SUMMARY 

Considerable attention has been glven recently to the partial 

autocorre1ation functions (PACF's) of stationary, discrete pa­

rameter, time series having particular model structure. See 

Box and Jenkins [3], for example. Barndorff-Nie1sen and Schou 

[2] provided a fundamental theorem which argues strongly ln 

favor of parameterizing autoregressive models by their parti­

al autocorre1ations. 

This paper extends the Barndorff-Nie1sen and Schou result by 

establishing a characterization of a stationary time series 

from its PACF, wherein th~ structural restrictions of statio-

narity are easily understood. Some well known structural fea-

tures of stationary time series are discussed in terms of the 

PACF and the likelihood function is presented. 

Parameterization of a time series by its PACF, though it pro­

vides a useful Vlew of the structure, does not unfortunately 

facilitate the difficult inference problems. 
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2. PRELIMINARIES 

Let Z ='{O, ±l, ±2, .. ,} and Z = {1,2, .e.}, The discrete 
+ ~ 

parameter time ser1es x =' {xt ' tEZ} is called a second order 

time series if all second moments are finite. x is said to 

be wide-sense stationary if it is a second order time series 

whose first and second order moments are independent of car­

dinal time. 

Let X be the set of all Gaussian, wide-sense stationary time 

series with zero mean and unit variance. (It is convenient 

to consider only X but to think of an element xEX as being a 

typical member of a broad equivalence class of WoS. stationa­

ry series obtainable by location and scale changes and, pos­

sibly, distributional changes leaving the first and second or­

der moments fixed). 

Let R be the set of all sequences P = {Pt' tEZ} which satisfy 

(i) 

(ii) 

and, 

Po = 1; 

P- t ' 'it, (symmetry); 

for every nEZ, and all choices of indices 
+ 

from Z and of real numbers 01' .. 0, on' 

(iii) 
n n 

L L o'C'~t -t > 0 (pososemi-def.)o 
i=l j=l 1 J i j 

It 1S convenient to consider 

(2. 1) R B (R) + I (R) , 

<t 
n 

where I(1t) - the "interior"-consists of all sequences which 
~', ~ 

are strictly positive definite, while B(~)' - the "boundary"­

consists of all sequences where equality in Ciii) is achievab­

le for some non-trivial set' {c.}. 
1 
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It is well known that there is a 1 - 1 mapping ~: X ~ R for 

which ~(x) P if and only if P E{x x } for every tEZ. 
t t 0 

The sequence P = ~(x) is called the autocorrelation function 

(ACF) for the time series x. 

Definition: The partial autocorrela;ion function (PACF) for 

the second order proce~s x ='{xt , tEZ} is the doubly infinite, 

sequence'{~ ; t > sEZ} which has ~ 1 the ordinary cor re-
s,t s,s+ 

lation between x and x 1 and has, for t > s+l, ~ being 
s s+ s,t 

the partial autocorrelation between Xs and x t eliminating li-

near regressions on x l' ••• ,x '. s+ t-l 

The PACF of an xE~ is determined by a singly infinite sequen-
~ 

ce ~ =' {~ , tEZ } where ~ = ~ 
t + ~ t s,s+t 

for all sEZ and tEZ • 
+ 

Supposing that pEI(R), the sequence ~ can be determined by 

solving the sequence of matrix equations 

(2. 2) R o:(k) 
-k- £k' for kEZ +' 

where 
(k) 

1 PI Pk - l PI 0: 

1 

PI 1 Pk - 2 P2 
o:(k) 

o:(k) 2 
R - Ek '::::k , 

Pk - l Pk - 2 1 Pk 
(k) 

0: 

k 

The PACF 1.S the sequence given by 

(2.3) ~k = (k) for k€Z . O:k ' ++ 

Durbin [4] gave a method for sequentially solving (2.2). The 

relevant equations are: 

(E. 1) ~l = 
(1) 

PI 
cc = 1 

(Er. 2) 2 
1 ~2 

crI = -
1 

(E.3) ~k+l 
(k+l) , k (k)' 2 

= 0: = {Pk+l-,f,O:j Pk+l-j}/cr k+l 
J=l 

k 

(E.4) (k+l) (k) - ~k+l 
(k) 

(j=l, .•. ,k) 0:. cc, 0: • 

J J k+l-J' 
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(E.5) 

The first two equations of E =' {(E.l), ,(E.5)} give 

starting values and the 

from stage k to (k+l). 

in one of two ways. It 

remaining three explain how to go 

Physically, ~~k) may be interpreted 
. th J .. 

1S the J-- coeff1c1ent in an autore-

gressive model of order k (AR(k). It is also the coeffici-

ent of x k + l - j in the linear regression of xk+l on {x1' ..• ,xk }. 

The value of a~ is, physically, the variance of the residual 

from that regression. 

further that 

Equation (E.5) can be used to show 

(2. 4) I R I ~ (l_<f>:),k+l-j. 
-k+l = 

j =1 J 

What seems to have been overlooked is the simple observation 

that any sequence of constants <f> having I<f>kl < 1 also defines, 

via E, a unique sequence p which is positive definite because 

of (2.4). This is the essence of the proof for Theorem 1. 
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3. A REPRESENTATION OF X 

The intention here is to describe an xEX by its PACF; i.e. to 

describe what sequences are PACF's for wide sense stationary 

time series. 

Definition: Let the set S consist of all real valued sequen-

ces s ='{sk' kEZ+} which satisfy 

~ 

( a) I 'ski < 1, for all kE Z +; and 

Cb) 

Definition: 

(3.1) 

1 implies s 
k+l 

Let S be decomposed as 

S =B(S) + I(S), 

s 
k' 

where I(S) consists of all sES for which (a) holds as a strict 

inequality for all k. Thus B(S) consists of sequences which 

have Iskl = 1 for some k. It is convenient to refer here, as 

before, to the components ~n (3.1) as, respectively, the 

"boundary" and "interior" of S. 

Theorem 1: The real, discrete parameter, second order time 

series x is wide senSe stationary if and only if its PACF 
~ 

{~ t' t > sEZ} satisfies s, 

(A) ~ s,s+k ~k for all sEZ and kEZ . and +' 

~ ~ 

(B) ~ = {!Pk' kEZ+}ES. 

Furthermore, !PEI(S) if and only if ~(x) pEI (R) • 

Equivalently 

Theorem 1: There exists a one-to-one mapping e: R ~ S such 

that if p = ~(x) for xEX, then ~ = ~(p) is the PACF of ~. 

Furthermore, pEI(R) if and only if ~(p)EI(S). 
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Proof: Case I - Necessity for pEI(R). E has a unique solu-

tion for~. Each ~k is the correlation between two well de­

fined random variables and thus I~kl 2 1. However (2.4) 1m­

plies strict inequality must hold so that ~EI(S). 

Case 11 - Sufficiency for ~EI(S). E has a unique solution 

for p. (2.4) implies I!kl is strictly positive for all k. So 

for each N, all principal minorants of !N have positive deter­

minants. This implies !N is positive definite for every NEZ+ 

which implies that P is itself positive definite. 

Note E only specifies Pk for kEZ+, but this uniquely determi­

nes P by extension using (i) and (ii) in the definition of R. 

Case III - Necessity for pEB(R). There exists a positive 1n­

teger p for which I!kl 0 for all k ~ P and I!kl > 0 for all 

k < p. E has a unique solution for {~l'" .'~p-I} where each 

is strictly less than one in magnitude. There exists, since 

R has rank (p-l), a vector 
-p 

AI = (AI, ••. ,A) whose direction - p 
1S unique, which has Al * 0 and A * 0 and for which 

p 

AIR A 
- -p-

p 
Var{ L A.x.} 

j =1 J J 
0, 

(where p = ~(x». Using stationarity of x, it follows that 

for every t > s+p, the residuals from regressions of Xs and x t 

on x l"."x I are zero with probability one. Hence, in the s+ t-
sense that zero predicts zero perfectly, ~ t = ~ = ±l for 

s, t-s 
all t-s ~ p, where the sign is determined by whether Al and 

A have like or apposite signs. 
p 

in B(S). 

Case IV - Sufficiency for ~EB(S). 

Clearly the resulting ~ is 

There exists a p for which 

I~kl = 1 for all k ~ P and I~kl < 1 for all k < p. E has a 

un1que solution for {PO,Pl'."'Pp} where Po 1, I!kl > 0 for 

k < P and IR 11 = O. Let' {xl' ••• ,x I} be defined as having - -p+ p+ 
a multivariate Gsussian distribution with means zero, varian-

ces one and covariance matrix R I (of rank p). The residuals -p+ 
from regressions of xl on'{x2 , .•• ,xp + l } and of xp+l on 
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{xl, ••• ,xp } are zero with probability one. 

probability one, 

That is, with 

p 
(3. 2) x t L~.Xt+· 

j=l] ] 
et 1) 

and 
p 

x t = L a.x . (t p + 1) • 
j=l ] t-] 

(3.3) 

Extend the sequence {xl, ••• ,xp + l } according to the difference 

equation (3.2) for t = 0, -1, -2, ••• and according to (3.3) 

for t = p+2, p+3, The result is a wide sense stationa-

ry time series for which ~ is the PACF. Clearly the corre-
~ 

sponding p, derivable from the series, is in B(R).' q.e.d. 

The advantage Theorem 1 enjoys over other ways of specifying 

the structure of wide sense stationary time series is that the 

stationarity region for the structural parameters is so simple 

Whereas condition (iii) for R describes complicated regions , 

for the individual correlations and ~hereas the stationarity 

conditions for autoregression models describe very complica--
ted regions for the model parameters, the structure of S is 

such that each partial autocorrelation is allowed to vary 

over the open interval (-1, 1) independently of the others. 

The time series x is called an autoregression of order p, 
th 

AR(p), if it satisfies a p-- order stochastic difference e-

quation with white noise Hshocks"; Le. if there exist real 

numbers aI' 

(3.4) 

... , a such that 
p 

p 
x t = L a.x . + Yt' for all tEZ, 

j=l ] t-] 

where y ='{Yt' tEZ} is a sequence of independent N(0,a 2 ) ran-

dom variables. It is well known that (3.4) has a stationary 

solution for x if and only if the roots of the characteristic 

polynomial equation 

(3.5) a (x) = l-alx- .•. -a x P = ° P 

all lie outside the unit circle in the complex plane. Refe-
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rence to the proof of this statement (see, e.g. Anderson [1]) 

shows that ~e unit circle itself, the boundary, may be inclu-
2 

ded provided a = O. 

Definition: A second order time series x which is a stationa-

ry solution to the homogeneous (Yt = 0) stochastic difference 

equation (3.4) is called a degenerate autoregression of order 

p. denoted DAR(p). 

Definition: A stationary solution to (3.4) where a 2 > 0 will 

be called non-degenerate, or NAR(p). 

The following statements are clear. 

the results above we decompose 

First, if according to 

(3.6) x = B eX) + I ( x) , 

then xEB(X) if and only if x is DAR(p) for some p < 00. Se­

condly x 1S NAR(p) if and only if ~k = 0 for all k > p. Fi­

nally, 

Theorem 2: (Barndorff-Nielsen and Schou [2]). There exists 

a 1 - 1 mapp1.ng 

NAR(p) onto the 

of the feasible'{al, ..• ,a } region for a p . 
p-dimensional cube (~l' .•• '~p)E(-l,+l)P. 
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4. A STRUCTURAL COMMENT 

Rewrite equation (E.5) as 

(4. 1) 

In the Wa1d decomposition for stationary time series, an x is 

purely deterministic if and only if a~ ~ 0 a~ N ~ 00. Intui­

tively if we continue to gather information as more of the 

series is observed, perfect prediction will ultimately be pos-

sib1e; 

Lemma: 

(4.2) 

i. e. 

If 

liml~~1 = w > 0, 
k~'P 

then x is purely deterministic. 

Proof : Cons id e r an Er! i~;\(o,,<J2)t 0 be given . (We may cons id e r 

~EI(S) since the boundary is obvious.) If 8 = l-w 2+E. 

choose ME so that 

ME > (10gE)/(10g8). 

Let'{k i , iEZ+} be a sequence of indices for which I~k. I ~ w 

. d 1 b 1 h' h 1-as 1- ~ 00 an et NE e arge enoug to 1.nsure t at there are 

ME of the k i less than NE which have 

~2 > w2 - E. 
k. 

1. 

From (4.1), 

2 ME 
(l-w +E) < E. q • e . cl • 

As a result of the Lemma, we may consider ~k ~ 0 1.n the fol­

lowing so that the right hand side of 

log a 2 = 
N 

N 2 
L log (l-~k) 

k=l 

l-



will be dominated by 

Therefore, we have 

10. 

N 2 
L <li k , 

k=l 

Theorem 3: xEK is purely deterministic if and only if 

<li = ~(~(x)) is such that 

N 
lim L <li 2 
N-+oo k=l k 

+00. 
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5. LIKELIHOOD FOR THE PACF 

The results of Theorem 4 seem to be well known for the case 

where x is NAR(p). It is, in our statement of it, appropri-

ate to consider the full parameterization for a stationary 

Gaussian time series as being'{v,Yo'~}. 

, 
Theorem 4: Let x = {x t ' tEZ} be such that, for every tEZ, 

1/2 
x t = V + YO y t' 

, 

where y ='{Yt~tEZ} is in I(~). Then 

and for k =1,2',,,'.,, 'and the conditional diseribtttiofi of xk+l 

given xl, ••. ,xk is Gaussian with mean and variance *iven re­

spectively by 

(5.2) 

and 

(5. 3) 

. (k) 
Here the a. coefficients are defined in (2.2) 

J 

Proof: The covariance matrix of x ' = ( xl' . • . , xk + 1) = , 
(~ , : xk + 1 ) i s s imp 1 y Y O!k + 1 • But i f wed e fin e .£ k as the ,. k ~ 1 : 

vector whose elements are the same as in .£k of (2.2) but in 

reverse order, then in the exponent of the joint density for 

x we find the quadratic form 
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since 1.S the vector ~(k) with its elements reversed 1.n 

order. The rest is straightforward. 

Two comments are in order at this point. First, it is even 

fairly clear how to determine the likelihood function when 

~EB(S). Secondly, (E.4) shows that though E(xk+l/xl, •.• ,xk } 

is a linear function in each of the parameters ~l' ••• '~k' it 

is a complicated function of all of them. In fact the entire 

joint distribution of xl' ••• ,xk + l depends only upon ~l' ••• '~k 

for each k, so that conditional inferences given xl, ••• ,xp 

about ~ , ••• ,~ using the Theorem 4 likelihood are uncondi-
p p+q 

tionally valid. 

In the usual parameterization for NAR(p) it is customary to 

follow Mann and Wald [5] and to condition on xl' .. . ,xp when 

constructing inference procedures. In that situation, where 

such conditioning is not technically justified for inferences 

on ~ +l' •• "~ ,the effect of the conditioning is to great-p p+q 
ly simplify the likelihood. When parameterizing a NAR(p) by 

its PACF, where conditioning is appropriate, the resulting 

likelihood is, alas, a nightmare. 

One may nevertheless draw some (well known) conclusions from 

it. With the sample Xl' ••• ,xN write L as the total likeli-

hood and 

(5.4) 

where 50 
n 

N 
-log L L 50 , 

n=l n 

comes from the conditional distribution of X given 
n 

i t sp'i~-cl.ecies$~ota-. That is, ignoring irrelevant constants, 

1 1 n 2 
= 2logYo~.L log(l-:-~.) 

J=l J 

n 2 -l{ n (n) }2 
+{l}¥:o n ( 1 - ~ . ) } (x + l-lJ) - L Cl.. (x + 1 _ . -lJ) • 

j=l J n j=l J n J 

Straightforward calculation gives 
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2 
1 n (l-CP,) 

.ca:~+l) = Y - n J 
o . l(l+cP.) 

J = J 

d2 ,Q, 
2 

E( n+l) (d ,Q,n+l) Vk, = E dcPkd].l = 0, dYOd]l 

2 

(5.5) E(d ,Q,n+l) = (2y~)-1 
\d 2 YO 

d2 ,Q, . 2 E( n+l) -cPk /{Y 0 (l-cP k )} 
dcPkdY O 

and 

Q (h, k) 
n 
n 
n (l-cP~) 

j=l J 

In the last expreSS10n 

n 
Q (h, k) = L 

n i=l 

Though these are difficult to evaluate, the equations in E 

allow certain reductions. 

(5.6) 

(5.7) 

Q (n,k) = 
n 

Q (n,n) = 
n 

0, for k < n. 

n-l 
n (l-cP~) 

j=l J 

and if both k and h are less than n, 

(5. 8) 

where 

(5. 9) 

Now 

2 Q (h,k) = {l+cP }Q 1(h,k)-2cP P l(h,k), n n n- n n-

P (h, k) 
n 

P (n,k) = 0, for k ~ n 
n 
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and 

P (n,n) = -<P IQ (n,n), n n- n 

but for k and it less than n, (5.9) is a mess. However, 

(5.6 ~ 8) imply that when <P = 0 for n > p, then 
n 

2 

E( Cl .Q,n+l) = 0, when k =1= h, 
Sl<fl h@Pk 

if either h or k exceeds p. And if k > p, then 

In summary, the total information matrix for the parameter 

vector er = ().l'YO,<P l , ••• ,<P ,<P +1".' ,<P ) under the hypothe-p p p+q 
sis of a NAR(p) is given by 

where 

r 
. ( ) I I I 

-~I-~-t-~-~~-;-i-~-~~-:;~----------
I N 0 I -N \o! 0 I 
, I 'I.' ------r--------T--------.----------
I . ( ) I G I 
I ]:N Y O" I I 
, , I 
, I I ------r--------T--------.----------
I "D I , , 

p-l -1 
YO L 

n=l 
n ---1 + n [l-<P'] 

j=l l+<P j 

G is a horrible p x p matrix, but D is a diagonal q x q ma­

trix with kth element on the diagonal 

i (<P k) = IN-p-k). N p+ 
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