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Preface 

The work summarized in this report bas mainly been carri­

ed out in the period from 1970 to 1973 and was initiated by 

Professor Gerald S. Goodman, who presented his results on the 

change of time scale for Markov chains and its implications to 

the imbedding problem in a lecture at the Institute of Mathe­

matical Statistics in Copenhagen. 

Since then I have been collaborating closely with Gerald 

Goodman and most of the results have grown out of discussions 

with him and I wish to thank him sincerely for his continuing 

interest in my work and for insisting that the imbedding pro­

blem was important. 

In 1912/1973 Professor F.L. Ramsey visited the Institute 

and I want to thank him for discussions which eventually led 

to one of the few explicit results in the theory. 

I also want to thank Professor D.R. Cox for allowing me 

to spend a fruitful year at Imperial Colle~e in 1971/72 and 

to Professor G.E.H. Renter for many valuable comments. 

Finally I wish to thank my collegues at the Institute of 

Mathematical Statistics for patiently listening to a long se­

ries of seminars all having to do with the imbedding problem 

and all having the same title as the present report. 

Copenhagen, October 1973 
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1. Introduction 

The problem of characterizing the stochastic matrices 

which can occur in a continuous time Markov chain was first 

formulated by Elfving in 1937, ses[ 7.] and [8]. The:; pro­

blem was mentioned by Chung in 1960) [1] p. 203, and in the 

last 10 years a number of papers have appeared. 

In this note we shall present a brief outline of the me­

thods and results in the papers [13] - [20] and relate them to 

the other work in the area. 

We first introduce the basic notation and definitions for 

finite state chains. ~et P denote an n x n stochastic matrix 

with elements p •. , i. e. 
1J 

that 

p .. > 0. r:. p .. '" 1-
1J = J 1J 

An intensity matrix Q is a matrix with elements q •• , such 
1J 

> O. i lii j. L q.. ::: 0-. 
J 1. J 

A Markoy chain is a continuous £amily 

. {P ( s • t), 0 i s ,,:s t < to} (1. 1.) 

of stocha~tic matrices satisfying the Chapman-KolmogoroY equa­

tions: 

P(s,t) '" P(s,u)P(u,t). 0 ,,:s s < u ~ t < to' 0.2) 

and 

pes,s) '" I, 0 ~ s < to. (1. 3) 

The stochastic matrix P is called imbeddable if there 

exists a Markov chain such that 

P(O,1) .. P. (1. 4) 

We say that P is imbeddable in a homogeneous chain if 
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the family (1.1) depends only on t-s. 

An important idea in the discussion of the equations 

(1.2) is the following: The equations are clearly invariant 

under a homeomorphic change of time scale and it was observed 

by Goodman [10] that if one chooses 

<'p(t) - In Det P(O,t) (1. 5) 

as the new time scale, then the functions P(.,t) and P(8~.) 

become absolutely continuou~ and can be characterized as the 

unique solution to the Kolmogorov differential equations: 

(1. 6) 

(1. 7) 

pes,s) = I. (1. 8) 

where N is a null set for Lebesgue measure, and Q(.) is a 

bounded measurable f~n~tion with values in the set of intensi~ 

ty matrices. 

The solution to these equations can be constructed as a 

product integral 

t· 

P(s,t) = n (1 + Q(u)du), 
s 

see Schlesinger [38] and Dobru~in [6]. 

(1. 9) 

In view of these results the imbedding problem can be 

formulated by means of the theory of differential equations. 

More specifically, consider the controlsystem (1.6) for s = 0 

and P(t) = P(O,t): 

DP(t) = P(t)Q(t), t ~ N. (1. 9) 

where the controller Q(.) is chosen in the convex cone of in-

tensity matrices. In this language a matrix P can be imbed-

ded if it can be reached using a bounded measurable controller 

in a finite time, and the imbedding problem is that of charac-
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terizing the reachable set. 

In this formulation one naturally asks for a Bang-Bang 

representation of an imbeddable matrix~ i.e. a representation 

of P as a finite product of matrices generated by the extremal 

intensity matrices since this corresponds to reaching P by 

switching the controller a finite number of times between the 

extremal controllers. This problem has been treated in [16J 

and [19]. 

For countable state chains the definitions are similar 

to (1.1), (1.2), (1.3) and (1.4) but one willhave to specify 

in each case which concept of continuity is required. 

Clearly the deter~inant need not exist and one will have 

to choose another time scale. In [14] it is shown that under 

the assumption of conOLnuity of Pij(s.t) uniformly in (i,j) 

one can use the expected number of jumps and in [20J it is 

shown that for a class of Markov branching processes one can 

choose the expected size of the population provided it is 

assumed to be finite and continuous in (s,t). 

One can think of the above as a semigroup approach, since 

clearly the set of stochastic matrices as well as the set of 

imbeddable matrices form a semigro~p. 

It is, ,however, also possible to apply a convex analysis 

to the set of stochastic matrices, which clearly from a convex 

compact set. The extreme points are easily identified with 

the matrices with entries 0 and 1 and they form a semigroup 

under multiplication. A stochastic matrix can then be repre-

sented as a convex combination of the extreme points or as a 

probability measure on a semigroup. Conversely given a proba-

bility measure on a semigroup one can construc~ the correspon­

ding random walk which is a Markov chain with discrete time. 

It is easily seen that ~oDvolution of the probability mea­

sures corresponds to multiplication of the stochastic matrices~ 

see [15],[20] and also Maksimov [29]. 
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Thus the stochastic matrices can be thought of as a re­

presentation of the measures on semigroups, and there is a 

close co~nection between stochastic processes with independent 

increments and imbeddable stochastic matrices This relati-

on is used in [17] and [20] to suggest the definitions and re­

sults for Markov chains as well as a central limit theorem for 

random variables on finite semigroups and the definition of in­

finite factorizability. 

There is also a relation between the Livy-Khinchin repre­

sentation of infinitely divisible distributions see (13] and the 

Bang-Bang representation as presented in [16] and [19J in that 

they both clarify the r~le of the extreme intensities as gene­

rating the "building blocks" of the semigroup. 

The basic structure of the stochastic matrices that is u­

sed is that they form a convex semigroup. The set has many 

other properties, like the extreme points form a semigroup, 

the multiplication is bilinear and for finite state space the­

re exists a homomorphism onto [0,1] with multipliaation, name­

ly the determinant. 

There are many other examples of convex aemigroups. the 

most obvious is that the set of probability measures on a se­

migroup is itself a semigroup under convolution. The set of 

doubly stochastic matrices with multiplication, the set of cha­

racteristic functions of probability measures on R again with 

multiplication, but also the set of generating functions of 

probability measures on the positive integers with composition 

as the semigroup operation form convex semigroups see [20]. 

Many of the results derived here for finite stochastic 

matrices can be proved for convex semigroups with some extra 

structure as indicated above, but we shall only be concerned 

here with results that have a direct interpretation in terms 

of Markov chains. 
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2. Non-homogeneous finite state Markov chains. 

In this section we shall give some of the results obtai­

ned on the imbedding problem for finite state non-homogeneous 

Markov chains and in particular for processes with indepen­

dent increments and values in a finite semigroup. 

2. 1. Definition. A stochsstic matrix P is called infi-

nitely factorizable if for all E > 0 there exist. PI' 

such that 

•.• ,P . 
n 

where 

III - pI! 

p 
n 

, n. 

r.lo .. - p .. 1 "" 2sup.(1-p .. ). 
J 1J 1J 1 11 

(2.1) 

(2.2) 

This concept was first used by Loewner [28] who studied 

the semigroup of schlicht mappings of the ~nit disc into it­

self but has also been used by Maksimov (31] and [32] in the 

discussion of probability measures on groups. 

2. 2. 

k ... 1, 

D~finit}on. A triangular array is a family {Pm• kt 

,ID, m ~ 1,2, ... } of stochastic matrices. The mar-

ginal products are 

p "" m 

m 

n P . k 
k=l IDlf 

and the limit is lim P • m ID 
The array is a null array if 

Hm suPkllr--p kll =0. m m, 

The concept of a triangular array is well known in proba-

bilityg see Grenander (11), Kendsll [23], 

Gnedenko and Kolmogorov [9]. 

Davidson [5] and 

The relation between probability measures on semigroups 

and stochastic matrices suggests the following results, which 
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has been proved in [17]: 

2. 3. Theorem. Let P be 8 non-singular Btochastic matrix, 

then the following statements are equivalent: 

p is imbeddable. (2.3 ) 

p U3 infinitely factorizable (2. 4) 

p ~s the limit of a triangular 
null array (2.5) 

The basic idea of the proof is to find the proper notion 

of a compan~on array dS in the classical theory of infinitely 

divisible distributions. 

If we consider the problem as a control problem we have 

to discuss the extremal controllers. The intensity matrices 

form a convex cone and anextremal element has at most one po-

sitive off-diagonal element. The stochastic matrix generated 

by anextremal intensity is called a Poisson matrix and is 

characterized by having at most one positive off-diagonal e­

lement. 

By means of this we prove ~n [17] the following theorem: 

2.4. Theorem. Let P be a non-singular stochastic matrix, 

then P is imbeddable if and only if P can be approximated by 

a finite product of Poisson matrices. 

Usin~ this result and the techniques from control theory 

se Lee and Markus [26] we get the following Bang-Bang repre­

sentation [16]: 

2.5. Theorem. Let Pbe in the interior of the imbeddab-

le matrices, then P has a representation as a finite product 

of Poisson matrices. 

Finally one would like to extend this result to hold for 

all imbeddable matrices. 

This has been proved ~n [19] for 3 x 3 matrices, and in 

fact if Det P > 1 we need only use 6 Poisson matrices to re­
= 2 
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present P. 

Kingman and Williams [25] have studied the zero configu­

ration of the imbeddable matrices and shown that it can be re­

presented as a finite product of zero configurations which 

are reflexive and transitive. 

The set of imbeddable matrices 18 not convex, but 1n [16] 

it is proved that it is starsbaped around the stochastic matrix 

with equal entries, and it is quite easily seen that the con­

vex hull is the set of all stochastic matrices. 

In [18] another semigroup 18 considered namely the set 

of matrices that can b( imbedded using symmetric intensity 

matrices. This problem continues an investigation by Loewner 

[27] who considered the control problem 

DX(t) = - Q(t)X(t), X(t) E Rn 

where Q(t) is a symmetric intensity matrix. 

It can easily be seen that the symmetric stochastic ma­
- I 

trices with two off-diagonal elements equal to 2 and the rest 

equal to 0 are on the boundary of the imbeddable set. There 
1 

are 1n(n-l) ,such matrices, and one can prove that the convex 

hull of the set we get by taking products of not more than 

~n(n-l) of these equals the closed convex hull of the imbeddab-

le matrices. Thus we have found the smallest convex semigroup 

containing the matricesimbeddable by symmetric intensities. 

The result is proved for n = 3 in [18]. where also the suppor-

ting hyperplaues of the set are found. This gives thus a lot 

of necessary conditions for imbeddability. 

The semigroup of probability measures on a finite semi­

group is studied to give results about the special type of Mar­

kov chains formed by processes with independent increments. 

The semigroup has all the properties of the set of sto­

chastic matrices, in particular we have a homomorphism defined 

by 
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h(V) - !Det P(V) I 

where P(v) denote the transition probability matrix for the 

random walk determined by the probability measure v. 

Martin-L3f [33] used results about Markov chains to de­

rive results about random walks and infinitely divisible di-

stributions. In [17] we prove a central limit theorem and 

characterize the marginal distributions in processes with in­

dependent increments in a manner analogous to Theorem 2.3. 

This generalizes some results by Maksimov [30] and [31]. 

Finally we can turn these results around and ribtain a 

criterion for imbeddability: 

2. 6. Theorem. A stochastic matrix is imbeddab1e if and 

only if it can be represented by a non-singular infinitely 

factorizable probability measure on the extreme stochastic 

matrices. 

3 •. Homogeneous finite state Markov chains 

For homogeneous chains the imbedding problem is that of 

finding a continuous one parameter semigroup of stochastic ma­

trices that contains P. Since any continuous one parameter 

semigroup is of the form {pet) = exp tQ, 0 ~ t < oo} for some 

intensity-matrix Q, 

the logarithm of P. 

this problem is closely related to finding 

In fact Elfving [7] assumed that P had 

distinct eigenva1ues, which then have to be positive or come 

in complex conjugate pairs, and then determined the various 

logarithms by diagonalizing the matrix. 

He proved that only finitely many logarithms were admis­

sible and the solution to the imbedding problem is then to 

search among these logarithms for an intensity matrix. 

Cuthbert (3) and [4J discussee the logarithm~ function by 

means of the Jordan form and finds criteria for a unique im­

bedding. He also gives a criterion for imbeddability in terms 
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of a series expansion for the logarithm. Speakman [39] gave 

an example of a stochastic matrix which ~ould be imbedded in 

two different ways. 

Elfving [7] obtained some simple inequalities for the ei­

senvalues of an imbeddable matrix and Runneburg [36J descri­

bed the region of the complex plane where the eigenvalues can 

be found, using results of Karpelewitch [22]. 

In [15] a criterion for imbeddability is given 1n terms 

of a power series expression for the logarithm. For n = 3 

this gives manageable conditions for imbeddability in terms 
2 

of P,P and the eigenvalues of P. 

Conditions of a different kind can be found using infini­

te divisibility. 

3.1. Definition. The stochastic matrix P is called infi-

nitely divisible if f< r all n there exists P such that P = 
n 

The basic result is due to Kingman [2ft] who proved that a 

non~singular P is imbeddable in a homogeneous chain if and on-

ly if P is infinitely divisible. It was this result that revi-

ved the interest in the imbedding problem and it has inspired 

almost all the subsequent work in this area. 

Ott [35] extended this result to ~ingular P and Vere-Jo­

nes proved the result for the semigroup of stochastic matrices 

that reduce to diagonal form by a fixed non-singular transfor-

mation. 

In [17] we also prove Kingman's result and characterize 

the non-singular imbeddable P as limits of triangular null ar~ 

rays with commuting elements in each row. 

We also obtain results for processes with independent in­

crements similar to the results in the non-homogeneous case and 
/ 

then apply them to the imbedding problem as follows: 
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3. 2. Theorem. A stochastic matrix P can be imbedded in -----, 
a homogeneous Markov chain if and only if it can be represen­

ted by an infinitely divisible probability measure on the ex­

treme stochastic matrices. 

This result is proved 1n [15]. It should be emphasized 

that the notions of infinite factorizability and infinite di­

visibility coincide if the sem1group is commutative. 

Finally Cohen [2] has defined a class of semigroups ob-

tained from a given semigroup and a kernel. /:le then applies 

this result to characterize a subclass of infinitely divisib­

le matrices by means of a positive definiteness condition. 

4. Countable state Markov chains. 

No results are known for the general imbedding problem 

for countable state Markov chains. For certain classes of Mar-

kov chains, however, the problem has been studied. 

The first example is the set of random walks on the inte-

gers which are Markov chains. The multiplication of the matri-

cas corresponds to convolution of the measures underlying the 

random walks. 

Since this convolution is commutative there is no distinc­

tion betw~en the homogeneous and the non-homogeneous imbedding 

and the imbeddable matrices just correspond to the classical 

infinitely divisible distributions, Bee Gnedenko and Kolmogo­

rov [9] or [13]. 

Another example 18 the Markov branching processes. The 

stochastic matrices considered here have the property that 

the glth row is the s-fold convolution of the first row. The-

se matrices form a semigroup and one can prove the analogue of 

Theorems 2.3. and 2.4 for this semigroup with an appropriate 

definition of infinite factorizability and the continuity of 

the imbedding family, see [20], 
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The homogeneous imbedding problem has been considered by 

Karlin and Mc Gregor [21] who gave many necessary conditions 

for imbeddability thereby proving that many of the wellknown 

distributions on the integers can not occur as distributions 

in continuous time Markov branching processes. see also Wang 

[ 41] . 

5. Dansk resume 

Indlejringsproblemet for Markov processer blev formule­

Tet af Elfving i 1937 se [7] og [8). I 1962 beviste Kingman, 

at en regulrer stokastisk matrix kanindlejres i en tidshomo­

gen Markovkrede, hvis og kun hvis den er uendelig delbar, og 

i 1970 viste Goodman [10] at indlejringsproblemet kunne for­

muleres som et kontrolproblem for en bilinerer differential­

ligning og knyttede forbindelsen til Loewners arbejde [28]. 

Disse arbejder sammen med den simple observation. at en 

stokastiskmatrix kan skrives som en konveks kombination af de 

ekstreme stokastiske ID ,tricer danner grundlaget for den teori 

jeg har arbejdet med i artiklerne [13] til [20]. 

Vi definerer en Markovkrede som en familie (1.1), der op­

fylder betingelserne (1.2) og (1.3), og vi siger, at P kan 

indlejres hvis der findes en Markovkrede saledes, at (1.4) er 

opfy1dt. _Hvis denne familie alene afhrenger af et-g) Biger vi, 

at P kan indlejres i en homogen krede. 

Betragter vi mrengden af regulrere n x n stokastiske mat ri­

eer, som en semigruppe, viI de matricer, der kan indlejres ud­

g~re en undersemigruppe. 

I [17] karakteriseres denne undersemigruppe som de e1e­

menter. der er uendelig faktoriserbare, se definition 2.1, 

a11er som de e1ementer. der er grrensevrerdi af trekantsskema­

er. se definition 2.2. 

Ved at udnytte Goodman'g ide om at formulere indlejrings-
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problemet som et kontrolproblem for Kolmogorov' differential 

ligninger (1.6), (1.7) og (1.8) er der i [16]bevist, at en­

hver matrix idet indre af de indlejrlige matricer kan reprresen­

teres som etiendeligt produkt af stokastiske matricer med prre­

cis eet positivt led uden for diagonalen og i [19] har jeg 

sammen med Fred Ramsey vist, at for 3 x 3 matricer kan alle ma-· 

tricer, der kan indlejres reprresenteres pa denne made. Denne 

reprresentation kaldes i kontrolteorien en Bang-Bang reprresen~ 

tation, idet den svarer til, at man har styret processen ved 

at skifte et endelig antal gange mellem de ekstremale kontrol­

ler. 

Ved at reprresentere en stokastisk matrix, som en konveks 

kombination af de ekstreme stokastiske matricer, der udg~r en 

semigruppe, kan mankhytte en forbindelse mellem foldning af 

mal pa endelige semigrupper og multiplikation af de ti1svaren­

de stokastiske matricer. 

Ved at udnytte disse ideer er der i [17] bevist en central 

grrensevrerdisretning for stokastiske variable rued vrerdier i en­

delige semigrupper, og vi kan derfor karakterisere de indlejr­

lige matricer s~m de, der kan reprresenteres ved et uendeligt 

faktoriserbart sandsynlighedsmal. 

I [18] er der unders~gt en anden sem1gruppe bestaende af 

de stokastiske matricer, der kan frembringes af syrumetriske 

intensiteter. Jeg finder her det konvekse hylster af de ind­

lejrlige matricer, og kan derfor finde en rrekke n~dvendige be­

tingelser for at en matrix kan indlejres. 

For det homogene indlejringsprobleru har jeg 1 [15J angi­

vet et kriterium for at en n x n stokastisk matrix P med for­

skellige egenvrerdier kan indlejres. For 3 x 3 matricer redu­

cerer dette til en relativt simpel betin~else udtrykt ved p,p2 

og egenvrerdierne. 

For processer med numerabelt tilstandsrum er resultaterne 

sparsomme. Problemet omkring tidsskift er behandlet sammen 

med Goodman [14J for processer med ligelig kontinuerte over-
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gangssandsyn1igheder og for forgreningsprocesser i [20]. 

1 [20] bar jeg vist, at de forskellige karakteriseringer af de 

indlejrlige matricer, der grelder for endeligt tilstandsrum, 

ogsa kan gennemf~res for forgreningsprocesser pa de hele po­

sitive tal. I [13] har jeg vist Levy-Khincbin formlen ved 

hjrelp af ekstremalpunkta metode, hvi1ket kan fortolkes som 

en reprresentation af de indlejrlige random walks pi R. 
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