

Steffen L. Lauritzen

Testing the Order of Autoregression

UNIVERSITY OF COPENHAGEN INSTITUTE OF MATHEMATICAL STATISTICS

Steffen L. Lauritzen

AN EXACT SIMILAR TEST OF THE ORDER

OF AN AUTOREGRESSIVE SCHEME

Preprint 1972 No. 9

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

October 1972

1. Introduction.

The order of an autoregressive scheme is commonly tested by two different methods (see [1]): (a) changing the model a little bit (e.g. making the model circular) and deriving the exact distribution of a test; (b) deriving approximate distributions of a test in the exact model. The present note shows a test in the exact model with an F-distribution not depending on the other parameters of the model. The derivation of the test is very easily performed using a conditioning technique. A similar technique has been used by J.E. Besag [2] in connection with nearest-neighbour systems.

2. Testing Independence in the Autoregressive Scheme of Order 1.

Let $(X_t, t = ..., -1, 0, 1, ...)$ be a stationary, normal autoregressive scheme of order 1, i.e. $(X_t - \xi) - \beta(X_{t-1} - \xi) = \varepsilon_t$, where the $\varepsilon_t - s$ are independent, identically, normally distributed with $E\varepsilon_t = 0$, $E\varepsilon_t^2 = \sigma^2 > 0$, $-\infty < \xi < \infty$ and $-1 < \beta < 1$. Let $X_1, ..., X_{2n+1}$, where n > 2 is an integer be observations from the above process. The conditional distribution of $(X_{2i}, i=1, ..., n)$ given $(X_{2i+1}, i = 0, ..., n)$ is then multivariate normal, X_{2i} independent of X_{2i} when $i \neq j$,

$$E(X_{2i}|X_{2j+1}, j = 0, ..., n) = \alpha + \gamma(X_{2i-1} + X_{2i+1})$$
(1)

$$Var(X_{2i} | X_{2j+1}, j=0,...,n) = \tau^2$$

where (α, γ, τ^2) are related to (ξ, β, σ_1^2) by the formulas

$$\tau^{2} = \sigma^{2} / (1 + \beta^{2})$$

$$\gamma = \beta \tau^{2} / (1 - \beta^{2})$$

$$\alpha = \xi (1 + 2\gamma)$$
(2)

The hypothesis $\beta = 0$ is seen to be equivalent to $\gamma = 0$, and it is well-known from regression analysis that the test for $\gamma = 0$ is of the form $\Phi > f$, where

- 2

$$\Phi = \frac{\text{SPD}^2(n-2)}{\text{SSD}^2 \text{SSD}^2 - \text{SPD}^2}$$
(3)

SPD =
$$\sum_{i=1}^{n} X_{2i}(X_{2i-1} + X_{2i+1}) - n\overline{X}, \overline{X},$$

$$= \sum_{i=1}^{2n} X_i X_{i+1} - n \overline{X}' \overline{X}'$$
(4)

$$SSD' = \sum_{i=1}^{n} X_{2i}^{2} - n\overline{X}'^{2}$$
(5)

SSD'' =
$$\sum_{i=1}^{n} (X_{2i-1} + X_{2i+1})^2 - n\overline{X}''^2$$

$$= x_{1}^{2} + 2(\sum_{i=1}^{n-1} x_{2i+1}^{2} + \sum_{i=1}^{n} x_{2i-1} x_{2i+1}) + x_{2n+1}^{2} - n\overline{X}^{*},^{2}$$
(6)

$$\overline{\mathbf{X}}' = \sum_{i=1}^{n} \mathbf{X}_{2i}/n \tag{7}$$

$$\overline{\mathbf{X}}'' = \sum_{i=1}^{n} (\mathbf{X}_{2i-1} + \mathbf{X}_{2i+1})/n$$

$$= (\mathbf{X}_{1} + 2\sum_{i=1}^{p-1} \mathbf{X}_{2i+1} + \mathbf{X}_{2n+1})/n.$$
(8)

POLYTEKNISK FORLAG OG POLYTEKNISK TRYKKERI

Under the hypothesis $\gamma = 0$, Φ has an F-distribution with D.F.(1,n-2). The distribution is conditional, but as it does not depend on $(X_{2i+1}, i=0, ..., n)$, the distribution is also marginal.

- 3 -

If the number of observations is not odd, the above technique can only be used if you "throw away" one observation.

3. Testing the Order q Against Order p, where p > q.

Conditioning upon $X_1, \ldots, X_p, X_{p+2}, \ldots, X_{2p+1}, \ldots, X_{mp+m+p}$, where n = mp+m+p is the number of observations, the techniques of ordinary regression analysis again can be used to get an F-test with D.F.(p-q,m-p-1).

4. Comment.

The test criterion Φ is in a way analogous to the difference test in the normal two sample problem. Suppose (X_1, \ldots, X_n) and (Y_1, \ldots, Y_n) are independent random variables from two normal distributions with $EX_i = \xi_X$, $EY_i = \xi_Y$, $Var(X_i) = \sigma_X^2$ and $Var(Y_i) = \sigma_Y^2$. If σ_X^2 and σ_Y^2 are not equal, you can avoid the Fisher-Behrens problem using

$$T = \sqrt{n}(\overline{X} - \overline{Y})/s, \qquad (9)$$

where

$$(n-1)s^{2} = \sum_{i=1}^{n} (X_{i} - Y_{i})^{2} - n(\overline{X} - \overline{Y})^{2}, \qquad (10)$$

as a similar test criterion for the hypothesis $\xi_{X} = \xi_{Y}$. The "price" is loss of degrees of freedom.

- 4 -

The same thing is happening above.

References.

/at

- Andersson, T.W. (1971): The Statistical Analysis of Time Series.
 Wiley, New York.
- [2] Besag, J.E. (1972): On the Statistical Analysis of Nearest-Neighbour Systems. Paper presented at the European Meeting of Statisticians, Budapest.