

Steen Andersson

Invariant Hypotheses II

UNIVERSITY OF COPENHAGEN INSTITUTE OF MATHEMATICAL STATISTICS

Steen Andersson

INVARIANT HYPOTHESES II

Preprint 1972 No. 7

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

June 1972

POLYTEKNISK FORLAG OG POLYTEKNISK TRYKKERI

Introduction.

In Andersson [1] we introduced the general canonical hypothesis and proved that all hypotheses defined by symmetries were general canonical. In this p paper we shall show that every general canonical hypothesis (with mean-value 0) can be defined by symmetries. We suppose that the reader is familiar with [1].

1. Notation.

R is the real field.

C is the complex field.

K is the quaternion field.

D is a field isomorphic with \tilde{R} , \tilde{C} or \tilde{K} .

A left [right] D-space means a left [right] vectorspace over D with finite dimension.

Let E be a left [right] D-space. E_0 is the deduced R-space.

 $P_{D}(E)$ is the semivectorspace over \hat{R}_{+} of right [left] positive symmetrical sesquilinear definite functionals on E. If $D \simeq \hat{R}$, we set $P_{\hat{R}}(E) = P(E)$.

p.d.s.f. (p.d.f.) is an abbreviation of positive definite symmetrical sesquilinear functional (positive definite form). [1], § 3.

GL(E) is the locally compact group of bijective D-linear mappings from E to E. $1_{\rm F}$ is the neutral lement in GL(E).

If f is a D-linear mapping, f_0 denotes the R-linear mapping deduced from f. For $B \in P_D(E)$, O(B) denotes the orthogonal group with respect to B. $\dot{\mathfrak{o}}(B)$ is a maximal compact subgroup in GL(E). $B_0 = \operatorname{Re}(B)$ is a p.d.f. on E_0 . For definition and properties of the real tensorproduct of two p.d.s.f. see [1] § 12.

- 2 -

- 2. Reflexive subsemivectorspaces in P(E).
- 2.1. Let E be an R-space. For $\Sigma \subset P(E)$ we define

 $\tilde{\mathfrak{o}}(\Sigma) = \{ \mathfrak{f} \in \operatorname{GL}(E) | \forall B \in \Sigma, \forall x, y \in E: B(\mathfrak{f}(x), \mathfrak{f}(y)) = B(x, y) \}.$

Note that

 $\hat{O}(\Sigma) = \bigcap O(B).$ $B \in \Sigma$

 $\hat{\rho}(\Sigma)$ is a compact group.

 $\boldsymbol{\Sigma}_1 \subseteq \boldsymbol{\Sigma}_2 (\subseteq \boldsymbol{\mathbb{P}}(\boldsymbol{\mathbb{E}})) \Rightarrow \boldsymbol{\widetilde{0}}(\boldsymbol{\Sigma}_1) \boldsymbol{\supseteq} \boldsymbol{\widetilde{0}}(\boldsymbol{\Sigma}_2)$

 $\tilde{O}(P(E)) = \{1_{E}, -1_{E}\}.$

$$O(\{\lambda_B \mid \lambda \in R_+\}) = \gamma(B), B \in P(E).$$

2.2. For S \subseteq GL(E) a relatively compact subgroup we define

 $\tilde{P}(S) = \{B \in P(E) | \forall f \in S, \forall x, y \in E: B(f(x), f(y)) = B(x, y)\}.$

Note that

P(S) is a subsemivectorspace in P(E).

- 3 -

 $\mathbf{S}_1 \subseteq \mathbf{S}_2 (\subseteq \operatorname{GL}(\mathsf{E})) \Rightarrow \mathbb{P}(\mathbf{S}_1) \supseteq \mathbb{P}(\mathbf{S}_2).$

$$P(\{1_{E}, -1_{E}\}) = P(E).$$

2.3. Definition: A subset $\Sigma \subseteq P(E)$ is reflexive if $P(O(\Sigma)) = \Sigma$. A relatively compact subgroup $S \subseteq GL(E)$ is reflexive if O(P(S)) = S.

2.4. Reflexive subsets in P(E) are subsemivectorspaces. Reflexive subgroups in GL(E) are compact.

 $\{1_{E_{+}}^{I} - 1_{E}^{I}\}$ and P(E) are both reflexive. O(B) and $\{\lambda B | \lambda \in R_{+}^{I}\}$ are both reflexive for B \in P(E).

2.5. <u>Proposition</u>: Let $\Sigma \subseteq P(E)$ and let S be a relatively compact subgroup in GL(E). Then $O(\Sigma)$ and P(S) are both reflexive.

Proof: Trivial.

2.6. <u>Proposition</u>: Let E be a left [right] D-space and let $B \in P_D(E)$. Then $O(B)_0$ is a compact irreducible subgroup of $O(B_0)$ of type D in E_0 . $\tilde{P}(O(B)_0) = \tilde{P}(O(B_0))$ and $O(B)_0$ is a maximal element in the class of relatively compact subgroups of $GL(E_0)$ of type D.

Proof: Suppose that O(B) is reducible and D $\simeq K$. Let F $\subset E_0$ be a non-

trivial \tilde{R} -subspace invariant under $O(B)_0$. If 1,i,j, and k is a natural basis for \tilde{K} , we have $E_0 = F \oplus_{\tilde{R}} iF \oplus_{\tilde{R}} jF \oplus_{\tilde{R}} kF$, since O(B) is irreducible in E. From this it follows that we can choose a \tilde{K} -basis, (\tilde{R} -basis for F) such that $O(B)_0$ can be described by real matrices in E. This is impossible, and we therefore have $O(B)_0$ irreducible in E_0 . Since the elements in $O(B)_0$ are \tilde{K} -linear, $O(B)_0$ is of type \tilde{K} . The case $D \simeq \tilde{C}$ is analogous and $D \simeq \tilde{R}$ is trivial $\tilde{P}(O(B)_0) = \tilde{P}(O(B_0))$ follows from [1] prop. 13.6. Let $O(B)_0 \subseteq$ $O_1 \subseteq GL(E_0)$, where O_1 is a relatively compact subgroup (trivially irreducible) of type D. Then the elements in O_1 are also D-linear. The set of p.d.s.f. on E invariant under O_1 is a non-empty subsemivectorspace of the semivectorspace $\{\lambda B | \lambda \in \tilde{R}_+\}$. Therefore $O_1 = O(B)$.

- 4 -

2.7. Let E_1 , E_2 be \widehat{R} -spaces. For $\Sigma_1 \subseteq P(E_1)$, $\Sigma_2 \subseteq P(E_2)$, S_1 , S_2 relatively compact subgroups in $GL(E_1)$ and $GL(E_2)$ respectively. We define

$$\Sigma_1 \oplus \Sigma_2 = \{ B_1 \oplus B_2 \in P(E_1 \oplus E_2) \mid B_1 \in \Sigma_1, B_2 \in \Sigma_2 \}.$$

$$S_1 \times S_2 = \{ g_1 \oplus g_2 \in GL(E_1 \oplus E_2) \mid g_1 \in S_1, g_2 \in S_2 \}.$$

We have

$$O(\Sigma_1 \oplus \Sigma_2) \ge O(\Sigma_1) \times O(\Sigma_2)$$
(*)

$$P(S_1 \times S_2) \supseteq P(S_1) \oplus P(S_2)$$
(**)

2.8. <u>Proposition</u>: If Σ_1 , $\Sigma_2(S_1, S_2)$ are reflexive, then (*) ((**)) are equalities.

- 5 -

Proof: Trivial.

2.9. <u>Proposition</u>: Let H be a right, F a left D-space. For $B \in P_D(F)$ we define

$$P_{D}(H) \bigotimes_{D}^{B} = \{A \bigotimes_{D}^{B} \in P_{\tilde{R}}((H \bigotimes_{D}^{F})_{0}) | A \in P_{D}(H) \}.$$

It follows that $P_{D}(H) \bigotimes_{D}^{\sim} B$ is reflexive and

$$\tilde{o}(P_{D}(H) \otimes_{D}^{B} B) = \begin{cases} 1_{H} \otimes_{D}^{D} O(B), & \text{if } \dim_{D}^{}(H) \geq 2. \\ \\ O(B_{0}), & \text{if } \dim_{D}^{}(H) = 1. \end{cases}$$

Proof: The last equation is trivial. Since $P(1_{H} \otimes_{D}^{0} 0(B)) = P_{D}(H) \otimes_{D}^{\infty} B$, ([1], prop. 13.9) $P_{D}(H) \otimes_{D}^{\infty} B$ is reflexive after 2.5. $O(P_{D}(H) \otimes_{D}^{\infty} B)$ must be of the form $1_{H} \otimes_{D}^{0} 0$ (dim_DH ≥ 2), where O_{0} is irreducible and of type D ([1] prop. 13.) and 2.5). Since $1_{H} \otimes_{D}^{0} 0(B) = O(P_{D}(H) \otimes_{D}^{\infty} B)$ and $O(B)_{0}$ is maximal (2.6) the first equation follows.

2.10. <u>Theorem</u>: Let E be an R-space and $\Sigma \subseteq P(E)$. Then Σ is reflexive if and only if there exist (unique) decompositions of E and S of the following form:

> $E = \bigoplus_{i \in I} (H_i \otimes_{D_i} F_i)_0$ $\Sigma = \bigoplus_{i \in I} (P_{D_i} (H_i) \otimes_{D_i} B_i),$

where $D_i \simeq \tilde{R}, \tilde{C}$ or \tilde{K} , H_i is a right, F_i a left D_i -space and B_i a right p.d.s.f. on F_i . In that case $\tilde{O}(\Sigma)$ can be obtained from 2.8 and 2.9. Proof: Follows 2.8, 2.9, and [1], prop. 13.10.

- 6 -

3. The general canonical hypothesis.

3.1. Theorem 2.10 shows that a hypothesis in the variance in a multidimensional normal distribution with mean-value 0 given by a subset $\Sigma \subseteq P(E^*)$ (see [1] § 8) is reflexive if and only if the hypothesis is general canonical.

In that case the hypothesis can be given by a (group) symmetry.

Let $\bigoplus_{i \in I} (B_i \bigotimes_{D_i D_i}^{\infty} P_i(H_i^*)) \subseteq P(E^*)$ ([1], § 8) be a general canonical hypoi \in I i ____i i ___i thesis. It is natural to choose the symmetry as follows:

 $G = \prod_{i \in I} G_{i}, \text{ where}$ $i \in I$ $G_{i} = \begin{cases} O((B_{i})_{0}), & \text{ if } \dim_{D_{i}}(H_{i}) = 1. \end{cases}$ $O(B_{i})_{0}, & \text{ if } \dim_{D_{i}}(H_{i}) \geq 2, \end{cases}$

and $\Pi((g_i)_i \in I) = \bigoplus_{i \in I} (g_i \otimes_{D_i H_i^*}).$

3.2. Note that the set of canonical hypothesis in the sense of [2] (mean-value 0) is precisely those hypothesis which can be obtained by a direct sum of symmetries of type R and multiplicityfree symmetries.

7	_

3-12-130-+S*

References.

- [1] Andersson, S.: Invariant Hypotheses I. Preprint No. 6, Institute of Mathematical Statistics, University of Copenhagen, Copenhagen 1972.
- [2] Brøns, H., Henningsen, I., and Jensen, S.T.: A Canonical Hypothesis in the Multidimensional Normal Distribution. Preprint No. 7, Institute of Mathematical Statistics, University of Copenhagen, Copenhagen 1971.

/at