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| Section 1. Introduction:

EIn this paper, a probability inequality for sums of bounded symmetric
'random variables is obtained. This inequality sharpens and extends a

jprevious result due to Eaton (1970) and it is assumed the reader is familiar

Ewith that paper.

FLet Yl’ ces ,Yn be independent symmetric random variables such that IYil§ 1.
| oo 2 |
'For real numbers 6.,, ... ,0 with X 6.7 =1, let T (6) = X 6.Y..
; 1 n 1 1 n ;i
Theorem 1.1:
| 2
| -1
Let @ (x) = IN21 e 2X and suppose & > V3. Then
3/2
2e @(a) a3
ﬁhere
32y
| 2 (1-x)
W) = "‘4 (1+5/2—--—’2‘-—) , 0< x< 1. (1.2).
x x

Further, W is a strictly decreasing function on (0,1).

ihe proof of this result is given in Section 2. The method of proof is use

the inequality

©o

P(T_(0) 2 0) < ¢ f £(x)@0x) dx

)

(1.3)

established in Corollary 2 of Eaton (1970).



~ The function f ranges over a class of functions described in Eaton (1970)..

Basically, the inequality (1.1) is derived by choosing f in (1.3) to be t%e

{

function

¥ o _ x|l - (o - 3/06))3'. , o> V3. (1.4).

f (%)
* (3/a)3

]
i

Here (y), =y if y 2 0 and (y), = 0 if y < 0.

] 3 . * 3 . . 3 3
However, the method of arriving at fOc is of interest and we will indicate

how f arises.
( a
?9 derive a "good" probability inequality from (1.3), one would like to

{

ﬁinimize the right hand side of (1.3) over all f for which (1.3) is valid.

But the class of functions in (1.3) is rather unwieldy and one is lead

ons

| s |
(for reasons given in the remark below) to consider the class Faof functi
aefined as follows. For v € R, let (v)+ =v if v > 0 and (V)+ =0 if

' s
v < 0., Consider o > 0 and let Fa be those functions f : R » (0,o) given
by

©o

fx) = [ (xl - w)> dF(u) (1.5)
0 +

where F is a non-decreasing function on (0,») such that

(o]

[ o(e-u)’ dr@u = 1.
o)

For f € Fu , let

[=e]

H(E) = § [ £(x) o(x) dx (1.6).

-0
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————7Proposition 2.1 shows that
(o]
inf  H(f) = inf J £, o(x) dx (1.7)
f € Fq 0 <u<oa .
where,for 0 < u< a ,
3
(Ixl =)
f (x) = . (1.8).
u 3
(@ - u)

<

% P{T_(8) > a} < . inf fmf (x)e(x) dx (1.9).
| n - 0 <u<a u v

Mjnimizing (approximately) the right hand side of (1.9), we find that

u=oa - 3/o for a« > V3 yields the approximate minimum and this gives the

*
function fu in (1.4).

An immediate corollary of Theorem 1.1 is

Corollary 1.1: If o > 0n > V§; then there exists a constant K = K(ao)

0
3/2 3
=‘__£_E;———- W (1l - iéi-) such that
\ 9 o
0
P{Tn(e) > o}t <K @;a) for all o > o (1.10)

Remark: Suppose £ : R »(0,o) is a symmetric function with a derivative f

erifying the conditions of Corollary (2) in Eaton (1970) for fu’ we have |

T




which satisfies

[£'(t +A) - £'(-t +A)] (1.11)

ot

|
. . . z z . ?
1s non-decreasing in t > O for each A > 0. Then f € F where F is de- |
i

fined in Eaton (1970).
Lemma 1.1: If f : R - (0,°) is symmetric, f''' exists, and if f'''(x) is

non-decreasing for x > 0, then f satisfies (1.11).

Proof: For t > 0 and A >0

(1.12)

\%
o

fvvv(t +A) - f"'(—t +A) >

so |
't[f"'(t"’A) —f"'(-t +A)] +f"(t +A) +fv|(_t +A),
|
> £'7 (e +A) + £'7 (-t +A). (1.13). i
ﬁence ﬁ
d 1 1 :
g [E(E' (e A) + £ (-t +A)]
> S IE'( +a) - £ (=t + )] (1.14)
Therefore

t[E'' (e +A) + £'7(-t +A)]

> f£'(t +A) - £'(-t +A) (1.15).
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d [(£'(t +A) = £'(-t +A) ] ~ %
de | = _

nv

2

t[f''" (e +A) + £'7(-t + A)] = [£'(£t + A) - £'(-t + A) ] 0
t !

?by (1.15). 7

;Now, assume f satisfies the conditions of Lemma 1.1 and f(J)(O) =0

for j = 0,1,2,3. From the integral form of Taylor's Theorem,

x  (x- u)f
£(x) =»jb T dF (u) » x>0 (1.17) |
‘ o (a - u)3 |
iwhere F is a non-decreasing function. The condition [ — T dF(u) =
i O ¢ |

;S simply a normalization (f(a) = 1) so Corollary 2 in Eaton (1970) can ﬁe

applied. It is the above considerations which lead to f&.

DAT VTN T TADRT AL A DAT VTMTIENTCT TRYVYER T
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(1.16)



ESection 2: Proof of Theorem 1.1:

? ,
For f € Fu , let

(=] [ee]

H(f) = [ f£(x) dd(x) = § [ fx)o(x) dx (2.1)

0 —0

where ®(x) is the cumulative distribution function of a N(0,1).

Proposition 2.1t For o > 0,

oo
inf _ H(f) = inf f £ (x) do(x) (2.2)
f € Fa 0 <u<a 0

where 0< u< a and fu is given by (1.8).

?roof: For f € f& s

i

oo © X
H(f) = [ f(x) do(x) = [ | (x - uz? dF (u)d®(x)
0 0 O
= J [ (x-u)’ @®EFW = w) dF@  (2.3)
0 u 0
where w(u) = [ (x - u)f dd (x)
| u

and F satisfies the side condition




MANUSKR

w__, Ioo

(o - u)3 dF(u) =1
0 %

Ehe interval (0,a) .

Let dG(u) = (a - ul? dF(u) so (2.4) becomes

o
[ de(u) =1
0
ihus
inf  H(f) = inf w(u)
. fef ¢ 0 (a-u)

(2.4).

Clearly, the infimum over F will occur for F with all its increase in

(2.5).

dG(u) <«  inf -

0<u<a (a-u

&ith equality for the G which puts mass 1 at a minimum of w(u)/(a- u)3.

ihus
5 ©(x - )3
% inf  H(f) = inf S d0(u) (2.7).
fEFoc O<u<a u (oo = u)
fhis completes the proof.Ay
Eroposition 2.2: For fu defined by (1.8),
(2.8).

P{Tn(e) >oal} < fu fu(x) dd(x)

‘w(u) |

(2.6)



_ Proof: It is straight forward to check that fu satisfies the assumptions

of Corollary 2 in Eaton (1970)./

Now, to minimize (approximately) [ fu(x)di(x), first note that

; u

S T 3 o3 o 1

i —3T f (x - u)"dd(x) = - (—3 + E)@(-u) + (—€-+ 5)@(u). (2.9).

u

i

Equation (2.9) follows from Chernoff and Ray (1965, equation 4.9).

Also, for u > 0 (Feller (1950), problem 1,p.179)

o(-u) > ©(u) { 2oL —%] (2.10).

c
[
[

Using (2.11) in (2.10), we have the inequality

% f (x - u)3 do(x) <

u

2 3
1 u u 1 1 3 15
°(u) [ ty TG Plgr s —57*—7)]
u u u

, O\lc

- o) [ lz-+ 12 ] (2.11).
u 2u
?hus, we have
o 3
(x -._,_u>3 do(u) ¢ —20) 3 [ 14 * 1‘56 ] (2.12),
u (o - u) BECIRY “ 2u



,M,A_,fand therefore

§ P(T,(6) palg inf bola) [ Lok } (2.13).

|

fThe approximate infimum of the right hand side of (2.13) (forg large)

fis achieved by setting u = ¢ - 3- for d > V@i

iThus
6p(a = 3/a) 150&2
P{T_(8) > a} < 1+ ———
nooET R 43 4 2% - 3)?
=3 (@ = 3/a)
[0
3 3 3 | :
> e —2) i 2
6p(a) e e av [ 1 4 15/, ]
33 (1 - 3/a2)% 2(1 - 3/02)2
3/2 ‘
- = 69 (a) W(l - 3/a2) (2.14)
3 o ,
where eg_x |
W) = ——— [ 1+ 5/2 —(—1—-12—’-‘—)—],0 <x< 1. (2.15).
X X

11t is not hard to show that W'(x) < 0 for 0< x< 1 so W is strictly

|decreasing on (0,1). Clearly W(l) = e3/2- This completes the proof of

Theorem 1.1.

Remarks: Two questions concerning the above inequality remain open. First,
REMALLS. :
can the function W be improved to yield a better inequality? It is the

author's opinion that the techniques; used in this paper will not yield a

|

better function W.
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”wmww{Second, can the inequality (1.1) be extended to random variables which g«
%ave mean 0 (rather than being symmetric)?.The author has had no success in

attempting to generalize the argument above to the non-symmetric case.
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