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Introduction: 

In this paper, a probability inequality for sums of bounded symmetric 

random variables is obtained. This inequality sharpens and extends a 

previous result due to Eaton (1970) and it is assumed the reader is fami~iar 

with that paper. 

Let Y1 , ... ,Yn be independent symmetric random variables such that IYi1i 1. 

For real numbers 61 , ... ,8 n with 
n 
L 
1 

1, let T (8) 
n 

!Theorem 1.1: 

ILet tp (x) = l/VSf and suppose et > fi. Then 

P{T (6) > } ~ 
2e3/ 2 \p( et) 

W(l 3 ) et - c,:t n 9 et 
Cl, 

I 

where 

3.~ 
"2x 

(l-x) W(x) e 
(1 5/2 ) 0< 1. 4 + 2 

, x< 
x x 

]J'urther, W is a strictly decreasing function on (0,1). , 

n 
L 8. Y .• 
1 ~ ~ 

(1.1) 

(1. 2) . 

The proof of this result is given in Section 2. The method of proof ~s us~ 

the inequality 

00 

P (T (8) > CI,) < ! 'f 
n 

f (x) . tp(x) dx (1.3) 

~stab1ished ~n Corollary 2 of Eaton (1970). 



- 2 -

----[The function f ranges over a class of functions described in Eaton (1970). 
! 

j 

Basically, the inequality (1.1) is derived by choosing f w (1.3) to be the 

function 

*' f (x) 
a 

(Ix I 3 
- (a - 3/a) )'4 

(3/ a )3 
a > 1./3. (1. 4) • 

Here (y) + = y if y ~ 0 and (y) + = 0 if y < o. 
* aowever, the method of arriving at f is of interest and we will indicat~ 

a 
i * how f an_ses. 

a 

:r? derive a "good" probability inequality from (1.3), one would like to 

finimize the right hand side of (1.3) over all f for which (1.3) is validl. 

~ut the class of functions in (1.3) is rather unwieldy and one is lead 
, 

!(for reasons given in the remark below) to consider the class Fa of functi:ons 

~efined as follows. For v E R, let (v)+ = v if v > 0 and (v)+ = 0 if 

Y < O. Consider a > 0 and let F be those functions f : R ~ (0,00) given 
! a 

co 

f(x) f 
o 

(Ixl - u)3 dF(u) 
,+ 

where F is a non-decreasing function on (0,00) such that 

f dF(u) = 1. 

For f E F , let 
a 

00 
R(f) = ! f f(x) tp(x) dx 

( 1.5) 

(1. 6) . 
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',----froposition 2.1 shows that 

inf R(f) 
/ 

f E F 
et 

inf 
O<u<et 

where,for 0 < u < et , 

f (x) 
u 

3 (I x I - u) 
.+ 
3 

(et - u) 

00 

f 
u: 

f (x) <.p(x) dx 
u 

(1. 7) 

(1.8) . 

Verifying the conditions of Corollary (2) m Eaton (1970) for f , we have 
! u 

P{T (6) > et} 
n 

< inf 
O<u<et 

00 

f f (x)<.p(x) dx 
u 

(1. 9) . 
u 

M~nimizing (approximately) the right hand side of (1.9), we find that 
! 

u! = et - 3/et for et > VI yields the approximate minimum and this gives the 

fhnction f * 1n (1.4). 
et 

, 
An immediate corollary of Theorem 1.1 1S 

Corollary 1.1: If et ~ et o > VI, then there exists a constant K 

3/2 2 ~_ '. 
9 

W (1 - :32 ) such that 
eta 

for all et > eta (1.10) 

Remark: Suppose f R ~(O ,00) 1S a symmetric function with a derivative f 

I 

I' 



fhich satisfies 

1 
t 
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[f' (t + 1).) - f' (-t + 1).)1 (1.11) 

/ / 
~s non-decreasing in t > 0 for each I). ~ O. Then f E F where F ~s de-
i 
! 

fined in Eaton (1970). 

~enuna 1.1: If f : R ~ (0,00) is symmetric, ff" exists, and if f'" (x) is! 
! 
hon-decreasing for x> 0, then f satisfies (1.11). 

?roof: For t > 0 and I). > 0 

f I , , (t + 1).) - f" I (-t + 1).) > 0 (1.12 ) 

so 

t[f " I (t + 1).) - f'" (-t + tc.) 1 + f 11 (t + 1).) + f" (-t + 1).), 

> f" (t + 1).) + f I I (-t + 1).) • (1.l3) . 

Hence , 

~ t [t (f' , (t +1).) + f I I (-t + 1).)] 

~' ~ t, [f' (t + 1).) - f I (-t + 1).)] (1.14) . 

therefore 

t [f I I (t + 1).) + f I I (-t + 1).)] 

> f I (t + 1).) - f' (-t + I). ) 
"" 

(1.15). 



But 

_d_ [ f r (t + b.) - f I (-t + M l 
dt L t J 

t [f' '(t + b.) + fir (-t + b.)] - [f I (t + b.) - f' (-t + b.) ] 
> 0 (1.16)' 

t 2 

by (1.l5).! 

Now, assume f satisfies the conditions of Lemma 1.1 and f(j)(O) 0 

for j = 0,1,2,3. From the integral form of Taylor's Theorem, 

f(x} 

3 (x - u) 
'+ 

3! dF(u) , x > 0 

00 

'where F ~s a non-decreasing function., The condition J 
o 

3 
(a - u) + 

3 ! 

(1.17) 

dF(u) 

:is simply a normalization (f(a) = 1) so Corollary 2 in Eaton (1970) can be 
, 
:applied. It is the above considerations which lead to F . 

a 

1 
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------iSection 2: Proof of Theorem 1.1: 

~or f E f ,let ex, 

H(f) 
00 

J f(x) dcI>(x) 
o 

00 

~ J f(x)~(x) dx 
-00 

(2.1) 

Iwhere cI>(x) H the cumulative distribution function of a N(O, 1). 

Proposition 2.1: 

inf H(f) 
f E F ex, 

For ex, > 0, 

00 

inf J 
o < u < ex, 0 

f (x) dcI>(x) 
u 

iwhere O<u<ex,andf ~sgivenby(1.8). 
u 

~roof: For f E f ex, 

00 

H(f) J f(x) dcI>(x) 
o 

00 x 

J J 
o 0 

(x - u)3 dF(u)dcI>(x) 
+ 

00 00 00 

J J (x - )3 dcI>(x)dF(u) J w(u) dF(U) u'" 
0 u 0 

00 

where w(u) J 3 dcI>(x) (x - u) ._+ 
U 

and F satisfies the side condition 

(2.2) 

(2.3) 
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00 
3 (a - u) dF(u) 

+ 
1 (2.4). f 

o 

Clearly, the infimum over F will occur for F with all its lncrease In 

~he interval (O,a) 

I 
I 

Let dG(u) 

\rhus 
I 

(a - u)3 dF(u) so (2.4) becomes 
1-

a 
f dG(u) 
o 

inf / H(f) 
f E F 

a 

1 

a 
inf r 
G 0 

w(u) 
3 (a - u) 

(2.5). 

dG (u)<;1 inf . 
0< u< a 

W(u) 
. 3 
(a - U? 

3 with equality for the G which puts mass 1 at a minimum of w(u)/(a- u) . 

thus 

inf/ H(f) 
f E F 

a 

00 

inf f 
o ~ u <0\> u 

this completes the proof. ~ 

Proposition 2.2: For f defined by (1.8), 
u 

00 

P{T (8) > a} < f f (x) d<i>(x) 
n u 

u 

d<i>(u) (2.7) . 

(2.8) . 

(2.6 
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It is straight forward to check that f satisfies the assumptions: 
u 

i 

~f Corollary 2 in Eaton (1970). /I 
= 

Now, to minimize (approximate 1y) J 

1 
3T 

= 
J 

u 

3 (x - u) d~(x) 

u 
f (x)d~(x), first note that 

u 

(2.9). 

kquation (2.9) follows from Chernoff and Ray (1965, equation 4.9). 

Also, for u > 0 (Feller (1950), problem 1,p.179) 

~ 
Vsing (2.11) in (2.10), we have the inequality 

Thus, we have 

= i J (x - u)3 d~(x) 'S. 
u 

. [u2 1 u3 u 1 1 3 15 1 
tp(u) r + 3" + (6:+ 2")(- U + 3" - 5" + 7) J 

_ u u u 

[ 1 15] tp(u) - + --
4 2 6 

= 
J 

u 

u u 

3 (x - u) 
3 

(a - u) 
d~(u) < 6c.p(u) 3 .[~ + P 6 ] 

(a - u) u 2u 

(2.~0). 

(2.11). 

(2.12), 



and therefore 

P{T (s) >a} < 
n '" = 

- 9 -

inf 
O?: u < a 

6tp(u) [ 

(a - u) 3 

1 
~ + 

4 
u J (2.l3D· 

The approximate infimum of the right hand side of (2.13) (fora large) 

is achieved by setting u = a - 1 for a > {J. 
a 

Thus 

[ 1 +: 

3/2 64)(a) 
- 3/a 2) e· W(l (2.14) 

33 a 

!where 3 
Z-x 

e r (1 - x) ],{) < W(x) = 1 + 5/2 x< 1. (2.15) . 4 L 2 ." x x 

It is not hard to show that W' (x) < 0 for 0 < x < 1 so W is strictly 

:decreasing on (0,1). Clearly W(l) = e 
3/2 

This completes the proof of 

ITheorem 1.1. 

lRemarks: Two questions concerning the above inequality remaln open. First, 

;can the function W be improved to yield a better inequality? It is the 

:author I s opinion that the techniques: used in this paper will not yield a 

better function W. 
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;Second, can the inequality (1.1) be extended to random variables which 

pave mean 0 (rather than being symmetric)? The author has had no success in 

iattempting to generalize the argument above to the non-symmetric case. 

Acknowledgement: I would like to thank Herman Chernoff, Grace Wahba, 

and Coby Ward for Helpfull discussions on various aspects of the results 
~ 

above. 
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