PREPRINT

MAY 1972

Morris L. Eaton

A Probability Inequality for Sums of Bounded Symmetric Random Variables

UNIVERSITY OF COPENHAGEN INSTITUTE OF MATHEMATICAL STATISTICS

Morris L. Eaton

A PROBABILITY INEQUALITY FOR SUMS OF BOUNDED SYMMETRIC RANDOM VARIABLES

Preprint 1972 No. 5

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

May 1972

1 On leave from the University of Chicago. This work was partially supported by N.S.F. Grant No. GP 27210 at Stanford University.

Section 1. Introduction:

In this paper, a probability inequality for sums of bounded symmetric random variables is obtained. This inequality sharpens and extends a previous result due to Eaton (1970) and it is assumed the reader is familiar with that paper.

Let Y_{1}, \ldots, Y_{n} be independent symmetric random variables such that $\left|Y_{i}\right| \leqslant 1$. For real numbers $\theta_{1}, \ldots, \theta_{n}$ with $\sum_{1}^{n} \theta_{i}{ }^{2}=1$, 1et $T_{n}(\theta)=\sum_{1}^{n} \theta_{i} Y_{i}$.

Theorem 1.1:
Let $\varphi(x)=1 / \sqrt{2 \pi} e^{-\frac{1}{2} x^{2}}$ and suppose $\alpha>\sqrt{3}$. Then

$$
\begin{equation*}
P\left\{T_{n}(\theta) \geqq \alpha\right\} \leqq \frac{2 e^{3 / 2}}{9} \frac{\varphi(\alpha)}{\alpha} \quad W\left(1-\frac{3}{\alpha^{2}}\right) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
W(x)=\frac{e^{\frac{3}{2} x}}{x^{4}}\left(1+5 / 2 \frac{(1-x)}{x^{2}}\right) \quad, 0<x \leqq 1 \tag{1.2}
\end{equation*}
$$

Further, W is a strictly decreasing function on (0,1).
The proof of this result is given in Section 2. The method of proof is use the inequality

$$
\begin{equation*}
P\left(T_{n}(\theta) \geqq \alpha\right) \leqq \frac{1}{2} \iint_{-\infty}^{\infty} f(x) \varphi(x) d x \tag{1.3}
\end{equation*}
$$

established in Corollary 2 of Eaton (1970).

The function f ranges over a class of functions described in Eaton (1970). Basically, the inequality (1.1) is derived by choosing f in (1.3) to be the function

$$
\begin{equation*}
f_{\alpha}^{*}(x)=\frac{(|x|-(\alpha-3 / \alpha))_{+}^{3}}{(3 / \alpha)^{3}} \quad, \quad \alpha>\sqrt{3} . \tag{1.4}
\end{equation*}
$$

Here $(y)_{+}=y$ if $y \geqq 0$ and $(y)_{+}=0$ if $y<0$.
However, the method of arriving at f_{α}^{*} is of interest and we will indicate how f_{α}^{*} arises.

To derive a "good" probability inequality from (1.3), one would like to minimize the right hand side of (1.3) over all f for which (1.3) is valid.

But the class of functions in (1.3) is rather unwieldy and one is lead (for reasons given in the remark below) to consider the class F_{α} of functions defined as follows. For $v \in R$, let $(v)_{+}=v$ if $v \geqq 0$ and (v) $=0$ if $v<0$. Consider $\alpha>0$ and let \hat{F}_{α} be those functions $f: R \rightarrow(0, \infty)$ given by

$$
\begin{equation*}
f(x)=\int_{0}^{\infty}(|x|-u)^{3} d F(u) \tag{1.5}
\end{equation*}
$$

where F is a non-decreasing function on $(0, \infty)$ such that

$$
\int_{0}^{\infty}(\alpha-u)_{+}^{3} d \mathbf{F}(u)=1
$$

For $f \in F_{\alpha}$, let

$$
\begin{equation*}
H(f)=\frac{1}{2} \int_{-\infty}^{\infty} f(x) \varphi(x) d x \tag{1.6}
\end{equation*}
$$

$$
\begin{equation*}
\inf _{f \in \mathcal{F}_{\alpha}} H(f)=\inf _{\leqq} \int_{u<\alpha}^{\infty} f_{u}(x) \varphi(x) d x \tag{1.7}
\end{equation*}
$$

where, for $0 \leqq u<\alpha$,

$$
\begin{equation*}
f_{u}(x)=\frac{(|x|-u)_{+}^{3}}{(\alpha-u)^{3}} \tag{1.8}
\end{equation*}
$$

Verifying the conditions of Corollary (2) in Eaton (1970) for f_{u}, we have

$$
\begin{equation*}
P\left\{T_{n}(\theta) \geqq \alpha\right\} \leqq \inf _{0 \leqq u<\alpha \int_{u}^{\infty} f_{u}(x) \varphi(x) d x} \tag{1.9}
\end{equation*}
$$

Minimizing (approximately) the right hand side of (1.9), we find that $u=\alpha-3 / \alpha$ for $\alpha>\sqrt{3}$ yields the approximate minimum and this gives the function f_{α}^{*} in (1.4).
An immediate corollary of Theorem 1.1 is

Corollary 1.1: If $\alpha \geqq \alpha_{0}>\sqrt{3}$, then there exists a constant $K=K\left(\alpha_{0}\right)$
$=\frac{2 e^{3 / 2}}{9} W\left(1-\frac{3}{\alpha_{0}^{2}}\right)$ such that

$$
\begin{equation*}
\left.P\left\{T_{n}(\theta)>\alpha\right\}\right\} K \frac{\varphi(\alpha)}{\alpha} \quad \text { for all } \alpha \geqq \alpha_{0} \tag{1.10}
\end{equation*}
$$

Remark: Suppose $f: R \rightarrow(0, \infty)$ is a symmetric function with a derivative f
which satisfies

$$
\begin{equation*}
\frac{1}{t}\left[f^{\prime}(t+\Delta)-f^{\prime}(-t+\Delta)\right] \tag{1.11}
\end{equation*}
$$

is non-decreasing in $t>0$ for each $\Delta \geqq 0$. Then $f \in \mathcal{F}^{\prime}$ where \hat{F} is defined in Eaton (1970).

Lemma 1.1: If $f: R \rightarrow(0, \infty)$ is symmetric, $f^{\prime \prime \prime}$ exists, and if $f^{\prime \prime \prime}(x)$ is non-decreasing for $x \geqq 0$, then f satisfies (1.11).

Proof: For $t>0$ and $\Delta \geqq 0$

$$
\begin{equation*}
f^{\prime \prime}(t+\Delta)-f^{\prime \prime \prime}(-t+\Delta) \geqq 0 \tag{1.12}
\end{equation*}
$$

so

$$
\begin{align*}
& t\left[f^{\prime \prime \prime}(t+\Delta)-f^{\prime \prime}(-t+\Delta)\right]+f^{\prime \prime}(t+\Delta)+f^{\prime \prime}(-t+\Delta) \\
\geqq & f^{\prime \prime}(t+\Delta)+f^{\prime \prime}(-t+\Delta) . \tag{1.13}
\end{align*}
$$

Hence

$$
\begin{align*}
& \frac{d}{d t}\left[t\left(f^{\prime}(t+\Delta)+f^{\prime}(-t+\Delta)\right]\right. \\
\geqq & \frac{d}{d t}\left[f^{\prime}(t+\Delta)-f^{\prime}(-t+\Delta)\right] \tag{1.14}
\end{align*}
$$

Therefore

$$
\begin{align*}
& t\left[f^{\prime \prime}(t+\Delta)+f^{\prime}(-t+\Delta)\right] \\
\gtrless & f^{\prime}(t+\Delta)-f^{\prime}(-t+\Delta) \tag{1.15}
\end{align*}
$$

But

$$
\begin{align*}
& \frac{d}{d t}\left[\frac{f^{\prime}(t+\Delta)-f^{\prime}(-t+\Delta)}{t}\right]= \\
& \frac{t\left[f^{\prime \prime}(t+\Delta)+f^{\prime \prime}(-t+\Delta)\right]-\left[f^{\prime}(t+\Delta)-f^{\prime}(-t+\Delta)\right]}{t^{2}} \geqq \tag{1.16}
\end{align*}
$$

by (1.15).//

Now, assume f satisfies the conditions of Lemma 1.1 and $f^{(j)}(0)=0$ for $j=0,1,2,3$. From the integral form of Taylor's Theorem,

$$
\begin{equation*}
f(x)=\int_{0}^{x} \frac{(x-u)^{3}}{3!} d F(u) \quad, x \geqq 0 \tag{1.17}
\end{equation*}
$$

where F is a non-decreasing function. The condition $\int_{0}^{\infty} \frac{(\alpha-u)^{3}+}{3!} d F(u)=1$
is simply a normalization $(f(\alpha)=1$) so Corollary 2 in Eaton (1970) can be applied. It is the above considerations which lead to \bar{F}_{α}.

Section 2: Proof of Theorem 1.1:

$$
\begin{align*}
& \text { For } f \in \mathrm{~F}_{\alpha} \text {, let } \\
& H(f)=\int_{0}^{\infty} f(x) d \Phi(x)=\frac{1}{2} \int_{-\infty}^{\infty} f(x) \varphi(x) d x \tag{2.1}
\end{align*}
$$

where $\Phi(x)$ is the cumulative distribution function of $a(0,1)$.

Proposition 2.1: For $\alpha>0$,

$$
\begin{equation*}
\inf _{f \in \bar{F}_{\alpha}} H(f)=\inf _{0 \leqq u<\alpha} \int_{0}^{\infty} f_{u}(x) d \Phi(x) \tag{2.2}
\end{equation*}
$$

where $0 \leqq u<\alpha$ and f_{u} is given by (1.8).

Proof: For $f \in \hat{F}_{\alpha}$,

$$
\begin{align*}
H(f) & =\int_{0}^{\infty} f(x) d \Phi(x)=\int_{0}^{\infty} \int_{0}^{x}(x-u)_{+}^{3} d F(u) d \Phi(x) \\
& =\int_{0}^{\infty} \int_{u}^{\infty}(x-u)_{+}^{3} d \Phi(x) d F(u)=\int_{0}^{\infty} w(u) d F(u) \tag{2.3}
\end{align*}
$$

where $w(u)=\int_{u}^{\infty}(x-u)_{+}^{3} d \Phi(x)$
and F satisfies the side condition

	- $7-$
	$\begin{equation*} \int_{0}^{\infty}(\alpha-u)_{+}^{3} d F(u)=1 \tag{2.4} \end{equation*}$

Clearly, the infimum over F will occur for F with all its increase in the interval $(0, \alpha)$.

Let $d G(u)=(\alpha-u)^{3} d F(u)$ so (2.4) becomes

$$
\begin{equation*}
\int_{0}^{\alpha} d G(u)=1 \tag{2.5}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\inf _{f \in \mathcal{F}_{\alpha}} H(f)=\inf _{G} \int_{0}^{\alpha} \frac{\mathrm{w}(\mathrm{u})}{(\alpha-\mathrm{u})^{3}} \mathrm{dG}(\mathrm{u}) \leqq \inf _{0 \leqq \mathrm{u}<\alpha} \frac{\mathrm{w}(\mathrm{u})}{(\alpha-\mathrm{u})^{3}} \tag{2.6}
\end{equation*}
$$

with equality for the G which puts mass 1 at a minimum of $w(u) /(\alpha-u)^{3}$.

Thus

$$
\begin{equation*}
\inf _{f \in F_{\alpha}} H(f)=\inf _{0 \leqq u<\alpha} \int_{u}^{\infty} \frac{(x-u)^{3}}{(\alpha-u)^{3}} d \Phi(u) \tag{2.7}
\end{equation*}
$$

This completes the proof. //

Proposition 2.2: For f_{u} defined by (1.8),

$$
\begin{equation*}
P\left\{T_{n}(\theta) \geqq \alpha\right\} \leqq \int_{u}^{\infty} f_{u}(x) d \Phi(x) \tag{2.8}
\end{equation*}
$$

Proof: It is straight forward to check that f_{u} satisfies the assumptions of Corollary 2 in Eaton (1970). //

Now, to minimize (approximately) $\int_{u}^{\infty} f_{u}(x) d \Phi(x)$, first note that

$$
\begin{equation*}
\frac{1}{3!} \int_{u}^{\infty}(x-u)^{3} d \Phi(x)=-\left(\frac{u^{3}}{6}+\frac{u}{2}\right) \Phi(-u)+\left(\frac{u^{2}}{6}+\frac{1}{3}\right) \varphi(u) . \tag{2.9}
\end{equation*}
$$

Equation (2.9) follows from Chernoff and Ray (1965, equation 4.9).

Also, for $u>0$ (Feller (1950), problem 1,p.179)

$$
\begin{equation*}
\Phi(-\mathrm{u}) \geqq \varphi(\mathrm{u})\left[\frac{1}{\mathrm{u}}-\frac{1}{u^{3}}+\frac{3}{u^{5}}-\frac{15}{u^{7}}\right] \tag{2.10}
\end{equation*}
$$

Using (2.11) in (2.10), we have the inequality

$$
\begin{align*}
& \frac{1}{6} \int_{u}^{\infty}(x-u)^{3} d \Phi(x) \leqq \\
& \varphi(u)\left[\frac{u^{2}}{6}+\frac{1}{3}+\left(\frac{u^{3}}{6}+\frac{u}{2}\right)\left(-\frac{1}{u}+\frac{1}{u^{3}}-\frac{3}{u^{5}}+\frac{15}{u^{7}}\right)\right] \\
= & \varphi(u)\left[\frac{1}{u^{4}}+\frac{15}{2 u^{6}}\right] \tag{2.11}
\end{align*}
$$

Thus, we have

$$
\begin{equation*}
\int_{u}^{\infty} \frac{(x-u)^{3}}{(\alpha-u)^{3}} d \Phi(u) \leqq \frac{6 \varphi(u)}{(\alpha-u)^{3}}\left[\frac{1}{u^{4}}+\frac{15}{2 u^{6}}\right] \tag{2.12}
\end{equation*}
$$

$$
\text { - } 9 \text { - }
$$

and therefore

$$
\begin{equation*}
P\left\{T_{n}(\theta) \geqq \alpha\right\} \leqq \inf _{0 \leqq u \leqq \alpha} \frac{6 \varphi(u)}{(\alpha-u)^{3}}\left[\frac{1}{u^{4}}+\frac{15}{2 u^{6}}\right] \tag{2.13}
\end{equation*}
$$

The approximate infimum of the right hand side of (2.13) (for α large) is achieved by setting $u=\alpha-\frac{3}{\alpha}$ for $\alpha>\sqrt{3}$.

Thus

$$
\begin{align*}
& P\left\{T_{n}(\theta) \geqq \alpha\right\} \leqq \frac{6 \varphi(\alpha-3 / \alpha)}{\frac{3^{3}}{3}(\alpha-3 / \alpha)^{4}}\left[1+\frac{15 \alpha^{2}}{2\left(\alpha^{2}-3\right)^{2}}\right] \\
= & \frac{6 \varphi(\alpha) e^{\frac{3}{2}} e^{\frac{3}{2}\left(1-\frac{3}{\alpha^{2}}\right)}}{3^{3} \alpha\left(1-3 / \alpha^{2}\right)^{4}}\left[1+\frac{15 / \alpha^{2}}{2\left(1-3 / \alpha^{2}\right)^{2}}\right] \\
= & \frac{e^{3 / 2}}{3^{3}} \frac{6 \varphi(\alpha)}{\alpha} \quad W\left(1-3 / \alpha^{2}\right) \tag{2.14}
\end{align*}
$$

where

$$
\begin{equation*}
W(x)=\frac{e^{\frac{3}{2} x}}{x^{4}}\left[1+5 / 2 \frac{(1-x)}{x^{2}}\right], 0<x \leqq 1 \tag{2.15}
\end{equation*}
$$

It is not hard to show that $W^{\prime}(x)<0$ for $0<x<1$ so W is strictly decreasing on $(0,1)$. Clearly $W(1)=e^{3 / 2}$. This completes the proof of Theorem 1.1.

Remarks: Two questions concerning the above inequality remain open. First, can the function W be improved to yield a better inequality? It is the author's opinion that the techniques used in this paper will not yield a better function W.

Second, can the inequality (1.1) be extended to random variables which have mean 0 (rather than being symmetric)? The author has had no success in attempting to generalize the argument above to the non-symmetric case. Acknowledgement: I would like to thank Herman Chernoff, Grace Wahba, and Coby Ward for helpfull discussions on various aspects of the results above.

References.

(1) Chernoff, Herman and Ray, S.N. (1965). A Bayes sequential sampling inspection plan. Ann. Math. Statist. 36, 1387-1407.
(2) Eaton. Morris L. (1970). A note on symmetric Bernoulli random variables. Ann. Math. Statist. 41, 1884-1888.
(3) Feller, W. (1950). An Introduction to Probability Theory and Its Applications, Vol. I. Second Edition. Wiley, New York.

