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§1: Introduction and Notation:

{
|
i

| for the existence of a Gauss-Markov (G-M:) estimator of a mean vector

for a general linear model to be defined below. A careful examination

i
{

%of Theorem 3 1in Kruskal (1968) suggests that the proper context

' for G-M estimation is within finite dimensional vector spaces without

' inner products, even though Kruskal's proof does involve an inner

iproduct. Using results due to Kruskal (1968), Eaton (1970) gave necessary

The purpose of this note is to give a necessary and sufficient condition

i

'and sufficient conditions for the existence of a G-M estimator when the

{
1

|of the covariance operators. In fact, the arguments presented here show

‘that the singularity or non-singular of the covariance operators in the

|covariance operators in the linear model were non-singular.

linear model is really irrelevant, and it is the introduction of an

inner product which leads one to worry about the singularity of covari-

ance operators.

|

'The conditions given in the current paper do not require non-singularity

1
|

It is assumed that the reader is familiar with finite dimensional vector |

'space theory as presented in Halmos(1958) or other comparable texts.

1

Throughout, V will be a finite dimensional real vector space, V will

denote the dual space of V, and the value of the linear functional

| '
EEV at x €V is [E,x] . The usual canonical identification of

1

&(,E] = [gsx,]

1 1
V  with V is assumed so the value of X € V(=V ) at £ € V 1is

. Let Y € V be a random vector with E [g,Y]2 < 4o for

] -
all £ € V . Then the mean vector of Y, say u = EY, exists and the co-

variance operator of Y, say £ = Cov(Y) exists.

{
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i . . . '/ '
By definition [,u] = E[E,Y] for £ € V , and Covariance{[&l,Y], EZ,Y]} = |
5&1,252] = Cov{ El,Y], EZ,Y]} . Thus ¥ is a linear transforamtion (l.t.) on

1
V. toVand X > 0; that is, X is self adjoint and positive semi-definite.

| ' |
If A : V> W is a linear transformation, A 1is the adjoint of A, R(A) is |

| : 7

the range of A, and N(A) is the null space of A. For a linear manifold
i 1

Moci¥) M° c V denotes the annihilator of M. In this notation, a result

/ 1
which is often used in this paper is (R(A))o = N(A ) (Halmos (1958)).
1
Suppose ¥°: V -V and X > 0. Let M be a linear manifold in V.
Then

s®) n M= {0} . (1.1)

To see this, first note that ﬁ(Z) ={g | [, ze]l =0} .
Now, u € M iff [E,ul = 0 for all £ € M°; and u € Z(M°) implies u = zE,

for £, € M°. Hence u =zfgl € (M%) N M implies [ ,%£,]1 = 0 so u =3¢, = 0.




”ﬁ§ 2: The Simple Linear Model:

'By a simple linear model we mean a random vector Y € V such that: (a) the
i

'mean vector of Y,u, ranges over a fixed linear manifold M and (b)

‘Cov(Y) = Zl where Zl > 0 is a fixed known linear transformation. j

'Given the simple linear model (V,M,Zl), define the set A of linear transr
| formations on V to V by

Ve
Aem DalA ¥ 2 liandx somiwarn €M), (2.1)

Clearly, if B : V > V, then BY is an unbiased estimator of u iff B € X.

/
Definition 2.1: A1 € A is a Gauss-Markov Operator (G-M.0.) iff

1
e, AzA (el ¢ [,A7 AE] (2.2)
' -
for all £ € V and A € A.

1 |
Since E,AzlA g] = Variance ( [£,AY]), A1€ A is a G-M.O0. if A1 minimizes
/ ! ‘

Var [ ,AY] (over A) for all ¢ € V . This is the usual interpretation of

a G-M estimator.

Theorem 2.1: Let Nc V be a linear manifold complimentary to M such that

N2 Zl(MO) and let P1 denote the projection on M along N.

Then P1 is a G-M.0.
o}

' Pl
Proof: By assumption, ﬁ(Pl) 2 Zl(MO). Since R((I—Pl) )=|N(I—Pl)]o = M/,

7
) =0 iff P.x = 0 for all x € X;(M°). Thus N(P,) 2 ; (1)

PZ (I -P

is equivalent to
1

PlZl(I - Pl)v = 0. (2.3)




?or A€ A, AP1 = P1 so A = APl + A(I - Pl) = P1 + A(I - Pl). Thus
Var [g,AY] = Var [5,PY + A(I - P))Y] = Var [f,P;¥]+
(2,5 (T - B)'A'E] + Var [,A(T - P (2.4)
From (2.3), we have
Var [,AY] > Var k,PlY] (2.5)

Qith equality iff Var [g,A(I - Pl)Y] =0 for all ¢ € V' ./

iheorem 2.2: A

{

Proof:

e P
L €Adsa gMo0. iff N(&) 23T 00).

Var [£,A (T - P)Y] = 0 iff A(T - P)¥,(I - P)'A’' = 0. Since %

But (2.6) holds iff N(A))

is a G-M.O.

Al(I - Pl)Z = 0.

éince ﬁ(Pl) = M and ﬁ(Pl) é Zl(MO);H

éorollary 2.1: A G-M.O. is unique iff M + Zl(Mo) =V,

12

From the condition for equality in (2.5), A1 is a G-M.0. iff

0, Al

2 R((T - P))Z;). However, R((I - P)I)) = zl(M9)

¢orollary 2.2: A1 € K is a G-M.0. 1iff AlY and (I - Pl)Y are

uncorrelated.

Proof: A Y and (I - Pl)Y are uncorrelated iff Alz(I - Pl)'

1

N(a) 2 RE (@ - ppY =5, 00).

Ihe conclusion follows from Theorem 2.2.”

iff



Corollary 2.3: If Zl : V' - V is non-singular, then the G—M.O,Al,

Proof. From the previous results, we must only establish that

is unique. Further A1 is the projection on M along Zl(MO) = [Zl—l(M)]o .

Zl(MO) = El_l(M)]o and to do this, it will be shown that (Zl(MO))O = Zl—l(M).

Now u € (Z; °))® iff [u,Z;n] = 0 for all n € M° iff [Fju,n] = 0 for

all n € ¥°. But [fu,n] = 0 for all n € M° iff u € zl‘l(M).//

|

Remark: An alternative interpretation of a G-M.0. is the following.

Let Co : V> V' be any positive definite self-adjoint linear transformation.

Consider the simple linear model (V,M,Zl). Define a bilinear function T

@n pairs of linear transformations A,B (mapping V to V) by

|

T(4,B) = B AT - W, BT - W] . (2.7)

It is easy to show that if AY and BY are incorrelated, then T(A,B) = 0.

ﬁurther, T(A,A) = 0 iff AZlA' = 0. The following result is not hard to

prove.

| ' -
Theorem 2.3: Ao € A is a GM.0. iff T(AO,AO)'i T(A,A) for all A € A.
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§ 3: The General Linear Model:

By a general linear model we mean a random vector Y € V such that:
? -
(a) E(Y) = u ranges over a fixed linear manifold M, and (b) Cov(Y) = X

ranges over a fixed set I' of positive semi-definite linear transformations

on V' to V.

| Vs
Definition 3.1: AO € A is a G -M.0. for the model (V,M,I') iff A0 is a

i

G-M.0. for each of the simple linear models (V,M,X), X € T.

With this definition, the following results are obvious.

Theorem 3.1: A G-M.O. Ao exists for the model (V,M,T) iff there exists a

manifold N S V complementary to M such that > (M°) SN for all X € T.

Theorem 3.2: Consider the linear model (V,M,T) and suppose each X € T

is non-singular. A G-M.0. exists iff zl'lM = zz_lm for all T,,I, € T.

. ﬁote that Theorem 3.2 was given by Eaton (1970) in the context of inner
éroduct spaces. Also, if one is working with an inner product space, then
@O becomes Ml‘— the orthogonal complement of M, and the conditions in the
%bove theorems are then in terms of Z(Ml). |
in particular, when the identity operator on V to V is in I', then applica-
éion of Theorem 3.1 shows that a G-M.0O. exists iff Z(Ml) c Ml for all

i € I'. But Z(Ml) c M'L is equvivalent to I(M) € M since each ¥ is self ad-

joint. Hence we have

Theorem 3.3: Consider the linear model (V,M,I') where V is an inner product
épace with inner product (+,+) and ¥ : V>V, ¥ € T, is self adjoint and
positive semi-definite with respect to (-,+). If I € ', then a G-M.0. exists

iff |
- S(M) M for all X € T. (3.1)
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Applications of the results in this section include those given by Eaton
(1970) and Kruskal (1968). Also, the references in these two papers contain

@any examples to which the above results are directly applicable.
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