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; §l: Introduction and Notation: 

I The purpose of this note is to give a necessary and sufficient condition: 
! , 

for the existence of a Gauss-Markov (G-M.) estimator of a mean vector 

for a general linear model to be defined below. A careful examination 

. of Theorem 3 in Kruskal (1968) suggests that the proper context 

for G-M estimation is within finite dimensional vector spaces without 

: inner products, even though Kruskal's proof does·involve an inner 

product. Using results due to Kruskal (1968), Eaton (1970) gave necessary 
! 

iand sufficient conditions for the existence of a G-M estimator when the 

covariance operators in the linear model were non-singular. 

The conditions given In the current paper do not require non-singularity 

of the covarlance operators. In fact, the arguments presented here show 

that the singularity or non-singular of the covariance operators In the 

linear model is really irrelevant, and it lS the introduction of an 

inner product which leads one to worry about the singularity of covarl-

,ance operators. 

It is assumed that the reader is familiar with finite dimensional vector 

space theory as presented in Halmos(1958) or other comparable texts. 

!Throughout, V will be a finite dimensional real vector space, V will 

denote the dual space of V, and the value of the linear functional 

:~ E V at ~ E V is [~,x] The usual canonical identification of 

\ " " , 
V with V is assumed so the value of x E V(= V ) at ~ E V lS 

[~ ,X;] 
." 2 

Let Y E V be a random vector with E [~, Y] < +co for 
, ,-

~all ~ E V . Then the mean vector of Y, say 11 == EY, exists and the co-

~arlance operator of Y, say L == Cov(Y) exists. 



- ~ -

, I 

~Y definition [1;,].1] == E [I;,Y] for I; E V , and Covariance{ [~l'Y], [1;2'Y]} == 

I 

:[1;1'I:1;2] == Cov{ [l;l'Y], [1;2'Y]} . Thus I: is a linear transforamtion (Lt.) on 

y to V and I: ~ Or that is, I: is self adjoint and positive semi-definite.! 
, 

:If A : V ~ W is a linear transformation, A is the adjoint of A, R(A) is 
I 
I 

.JI' 
the llal'lge.0f.A, ana.N(A) is the null space ofA~. For a linear manifold 

:,. 

o ' Mz·V. M.c V, tieno>testhe:annihilator· of·ML In this ' notation, .• a result ==., == 

if ' 
which is often J.:iSed)·in this paper,is'(E.(AHo = N(A) (Halmos (1958». 

, 
Suppose D,': V ~ V al'ld I: ~ O. Let M be a linear manifold inV. 

{O} . (1.1) 

, 
see this, first note that N(I:) ={I; I ~~I:I;] = O} . 

r 0 0 NOW, u E M iff ll;,u] = 0 for all I; EM; and u E I:(M )impHes u = I:1;1 
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§ 2: The Simple Linear Model: 

By a simple linear model we mean a random vector Y E V such that: (a) the 

,mean vector of Y,]1, ranges over a fixed linear manifold M and (b) 

where L1 ~ 0 LS a fixed known linear transformation. 

/' 
Given the simple linear model (V,M,L1), define the set A of linear transr 

formations on V to V by 

(.2.1) 

C1ear1y,f£. B : V ~ V, then BY is an unbiased estimator of ]1 iff B E A. 
/ 

Definition 2.1: A1 E A is a Gauss-Markov Operator (G-M.O.) iff 

I 

Ci;, A1L1A 1 t;J ~ [s ,AL1As] (2.2) 

V 
.... 

and AEA. 

I '" rs,AL1 A s] = Variance (rs ,AY» , AlE A LS a G-M.O. if A1 minimizes 

Var fs,AY] 
/ , 

(over A) for all s E V . This is the usual interpretation of 

a G-M estimator. 

I 

Theorem 2.1: Let N c V be a linear manif61d complimentary to M such that 

o N ~ L1(M ) and let P1 denote the projection on M along N. 

Then P1 LS a G-M.O. 

Proof: 
/' 0 I / 0 0 

By assumption, N(P1) ~ L1 (M ). Since R«I-P1) )= [N(I-P1)] = Mi, 

o /' 0 o for all x E L1 (M ). Thus N(P1) ~ L1 (M ) 

LS equivalent to 

O. (2.3) 
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! ' For A E A, AP I = PI so A = AP I + A(l - PI) = PI + A(l - PI)' Thus 
. -~1 

(2.4) 

From (2.3), we have 

Var [E; ,AY] > Var [E;, PlY] (2.5) 

fith equality iff Var ~,A(l - Pl)Y] = 0 for all E; E Vi .H 

,,-

irheorem 2.2: Al E A is a G~M.O. iff 

Proof: From the condition for equality in (2.5), Al is a G-M.O. if£ 

is a G-M.O. 

./ 

But (2.6) holds iff N(Al ) ~ R«l - Pl)L l ). 
!" , 0 
.ince R(P l ) = M and N(P l ) ~ Ll(M )·1 

i 
Corollary 2.1: 

q;orollary 2.2: , , 
i 
vncorrelated. 
i 
I 

Froof: 
, 

A G-M.O. is unique iff M + Ll(Mo) = v. 

j.,,/ 0 

~(AI) ~ R(Ll(l - Pl)') = Ll (M ). 
! 

The conclusion follows from Theorem 2.2.# 

= 0 if£ 
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-_JCoro llary 2.3: If Ll : Vi ~V is non-singular, then the G-M.O,Al , 

r. unique. Further Al the projection on M along Ll (Mo) [L -1 (M)]o ~s ~s = 
1 

From the previous results, we must only establish that 

-1 ° ° ° ~l (M)] and to do this, it will be shown that (Ll(M » 

Now u E (L l (Mo»o iff[u,Lln] = 0 for all nEMo iff ~lu,n] = 0 for 

~ll nEMo. But ~lu,n] = 0 for all nEMo iff u E Ll-l(M).q 

Remark: 
! 

An alternative interpretation of a G-M.O. ~s the following. 

i 
'-1 

L] (M). 
, 

Let C 
I ° 

V ~ V' be any positive definite self-adjoint linear transformati,on. 

Consider the simple linear model (V,M,Ll ). Define a bilinear function T 

on pairs of linear transformations A,B (mapping V to V) by 

T(A,B) (2.7) 

~t is easy to show that if AY and BY are incorrelated, then T(A,B) = o. 
I 

further, T(A,A) = 0 iff ALIA' = O. The following result is not hard to 

[ 
prove. 

theorem 2.3: 
i 

/ 

A E A ~s a 

° 
G-M.O. iff T(A ,A ) ~ T(A,A) for all AEA. 

° ° = 
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-!§ 3: The General Linear Model: 

By a general linear model we mean a random vector Y E V such that: 

'" I(a) E(Y) =. ]J ranges over a fixed linear manifold M, and (b) Cov(Y) = I 

ranges over a fixed set r of positive semi-definite linear transformatio~s 
I 

bn Vi to V. 

, 
Definition 3.1: A E A ~s a G -M.O. for the model (V,M,r) iff A ~s a 

o 0 

G-M.O. for each of the simple linear models (V,M,I), I E r. 

yJith this definition, the following results are obvious. 

Theorem 3.1: A G-M.O. A exists for the model (V,M,r) iff there exists a 
o 

~anifold N ~ V complementary to M such that I(Mo) C N for all I E r. 
~ 

! 
Theorem 3.2: Consider the linear model (V,M,r) and suppose each I E r 
( 

~s non-singular. A G-M.O. exists iff Il-lM = I 2- IM for all I l ,I2 E r. 

Note that Theorem 3.2 was given by Eaton (1970) ~n the context of inner 

~roduct spaces. Also, if one is working with an inner product space, then 

*0 becomes ~. - the orthogonal complement of M, and the conditions in the 
! 

1bove theorems are then in terms of L(~). 

±n particular, when the identity operator on V to V ~s ~n r, then applicaj

tion of Theorem 3.1 shows that a G-M.O. exists iff I(~) C ~ for all 

~ E r. But I(~) ~ ~ is equvivalent to I(M) C M since each L is self ad-
I 

joint. Hence we have 

Theorem 3.3: Consider the linear model (V,M,r) where V is an inner produc 

~pace with inner product (.,.) and I : V ~ V, I E r, ~s self adjoint and 

positive semi-definite with respect to (".). If I E r, then a G-M.O. ex~ ts 

Hf 
! 

for a]l I Er. 
I 

I(M) C M (3.1) 
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- -I 
Applications of tQe results in this section include those given by Eaton 
I 

K1970) and Kruska1 (1968). Also, the references ~n these two papers cbntain 

1'llany examples to which the above results are directly applicable. 
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