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Introduction. 

This paper gives a construction of branching processes with discrete 

time and a continuous number of types. The approach differs from 

Moyal [3J or Harris [2J by leaning on the theory of integration in 

locally compact spaces, as treated in Bourbaki [lJ. 

The types of the process will be assumed to be the points in a locally 

compact space X. On basis of the topology on X, a locally compact topo

logy is constructed on Q~ the states of the process or the point-distri

butions (section 1). Section 2 deals with integration and harmonic analy

sis (i.e. generating functions) on QX. In section 3, the transition ope

rator is constructed; and finally, in section 4, a few of the classical 

results, concerning the form of the generating functions and the proba

bilities of extinction, are established in the given set-up. 

1. The topology on the state space. 

We start by recalling some algebraic and topological concepts. A monoid 

is a set with an associative composition (x, y) ~ xy with a.~ neutral ele

ment. If E, Fare monoids with neutral elements i E, iF' a homomorphism 

from E to F is a map f : E ~ F satisfying f(xy) = f(x)f(y) for all 

x,y E E and f(iE) = iF" A topological monoid is a monoid equipped 

with a topology in which the composition is continuous. We shall deal 

,only with commutative m(:Jnoids; for convenience we use the abbreviation 

CTM for commutative topological monoid. Important examples of eTM's 

are N~ the additive monoid of non-negative integers in the discrete 

topology, and ~ the multiplicative monoid of complex numbers with mo-

dulus ~ I in the usual topology. 

Let X be a set; X will later be the types of the process. We let ~X denote 

the set of all maps w : X ~ NO with finite support supp w (the "point distri-

butions"); QX is a monoid with pointwise addition. For w E QX 
w(X) denotes the total mass of w, w(X) = ~ w(x). The imbedding 

xEX 
E : X~ QX is defined the obvious way, that is, E(X) is the point distribu~ 

n 
tion, which is I in x and 0 otherwise. For n ~ ~ rn= X ~ QX is defined 

by rn(x1, ••• ,xn ) = E(xI ) + ••• + E(Xn ) and rO is defined as the map from 

an (arbitrary) one-point set Ca} to QX with rO(a) = O. 
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Suppose, now, that X is 

equip QX with the final 

a (Hausdorff) topological space. We shall then 

topology defined by (r) EN. 
n n 0 

L l.Lermna. The topology on QX has the following properties: 

(1) For each n E NO' {w E Qxl w (X) = n} is closed and open; in particular, 

o is isolated point. 

(2) Let W E Qx\{O}, w = 2(xl ) + ... + 2 (Xn ). The sets 2(Vl ) + .•• + 2 (Vn ), 

where V. is a neighbourhood of X. in X, form a basis for the system of 
l l 

neighbourhoods of w in QX. 

(3) The addition (w l ,w2) ~ wl + w2 is continuous, i.e. QX is a CTM. 

(4) 2 : X ~ QX is a homeomorphism X ~ 2(X) • 

If X is locally compact, furthermore: 

(5) The sets 

where N E NO and K c X is compact, form a basis for the compacts in 

QX in the sense, that each such set is compact and that each compact in 

QX is contained in such a set. 

(6) QX is locally compact and a-compact if X is so. 

Proof. Each of the assertions follows rather easily from the preceding 

ones or the definition and we omit the details.O 

1. 2. Propositiono Let X : X ~ A, where A is a cormnutative rnonoid. 

(1) X has an unique extension to a 

~omomorphism X : QX ~ A, given by 

~(O) = 0A and 

X(8(x l ) + + 2(x » =X(x l )+ ..• + X(x ) (*) n n 

(2) If A is a CTM and X continuous, X is continuous. 

A 

Proof. It is obvious that X is uniquely determined and well-defined by 

(*) and a homomorphism. Under the assumptions of (2), the continuity of 
~ N 

X follows from the fact that X 0 rn' being the map (xl' •• "xn ) ~ 

X(Xl ) + '00 +X(xn ), is continuous for each nol] 
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Expressed in another way: 

Qx is the free CTM over X. 

2. Integration and harmonic analysis on QX. 

In the followin& X (and therefore Qx) is assumed to be locally compact. 

Let Z be a locally compact space Chere X or QX). Following mainly 

Bourbaki [lJ, we use the following notation for spaces of continuous, 

complex-valued functions on Z: 

f E KCZ) <=> f has compact support 

f E CoCZ) <=> f vanishes at infinity 

f E CbCZ) <=> f is bounded 

f E C(Z, ,0.) <=> fez) E ,0. for all z E Z. 

We shall consider K(Z), CoCZ) and CbCZ) in the norm topology and CCZ,,0.) 

in the compact open topology Cthe topology for uniform convergence on 

compacts ). 

MlCZ) 

M!CZ) 

set of 

in the 

denotes the set of bounded measures on Z, i.e. the dual of KCZ), 

the set of positive ~ E MlCZ) and pCZ) = (~E MlCZ)I~Cl) = I} the 

probability measures on Z. We shall consider MtCZ), M!CZ) and pCZ) 

Cb_topology, defined by the linear functionals ~ ~ ~Cf), f E CbCz). 

For z E Z, 5 denotes Dirac-measure in z; one shows easily that 5 is a 
z 

homeomorphism Z ~ 5CZ). A discrete measure is a measure of the form 
n 
l: ex. 5 

i=l ~ zi 

2.1. Lemma. The positive discrete measures are dense in M!CZ) and the 

discrete measures in MlCZ). 

Proof. By the bipolar theorem, using that Cb(Z) is the dual of MlCZ).O 

Occassionally we shall use the norm topology on MlCZ) in which MlCZ) is 

a Banach space. For Z = QX' MlCQX) becomes a commutative Banach algebra 

with convolution 

as multiplication; Dirac-measure in 0 is neutral element by convolution. 
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Important properties of convolution are 

Ca) 

Let E be a CTM. The dual CTMf of E is defined as the set of continuous 

homomorphisms E ~ 6 (semicharacters), with pointwise multiplication and 

the compact open topology. If E is a group, then IX(x)1 = 1 for all 
... 

X E E and x E E, i.e., the dual CTM of E is the dual group of E. 

Proposition 1.2 sets up a one-to-one correspondance between X E C(X,6) 
~ 

and X E QX. Furthermore: 

2.2. Proposition. The identification between ~ and C(X,6) is a homeo

morphism in the compact open topologies. 

Proof. Clearly X. ~ X in Q' implies X. ~ X in C(X,6). To show the converse, L x L ~ _ 

it suffices by lemma 1.1, (5), to show that X. ~ X, uniformly on each of 
L 

the sets {w E Qxlw(X) ~ N, supp W S K} , where K S X is compact and 

N E NO' and to show this it suffices to show that the convergence is 

uniform on each of the sets 

n = 0, 1, ••• , N. 

This is easily obtained by induction in n, using that each w E A can be 
n 

written W wl + sex), wl E An_I' x E K, giving 

~ '" 
IX. (w) 

L 
= Ix.(w l ) X.(x) 

L L 

,... 

IXi (wl)(Xi ex) - X(x»1 + I (Xi (w l ) - X(W l » X(x)1 ~ 

'" ,... 

Ixi(x) - X(x)1 + Ixi(w l ) - X(wl)I.D 
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1 
2.3. Definition. For ~ EM (QX)' the generating function 

F~ : C(X,.6) -,+ C is defined 'by 

"" ~ 

F~(X) = ~(X) = J X(w) d~(w), X E C(X,.6). 

The definition is analogous with that of Moya1 [3J • From the remarks 

above it is seen that the generating function is a generalization of the 

Four-ier transform on a group. Also, for X = {1, •• ", kG , where 

C(X,.6) = .6k, F~ for ~ E P(Qx) is the classical probability generating 

function. 

Some. of the main properties of the generating function will be given in 

proposition 2.5. For the prooS we prepare the following 

2.4. Lemma. Let B be the set of real X E C (X,.6) with II Xii < 1, which 

vanishes at infinity, and A the real vectorspace spanned by B. A is con

tained in CO(QX) and is dense in the space of real f E CO(QX). 

Proof. Let X E Band s > O. We choose a compact K ~ X with I X(x) I 2: s 

x t/: K, and NE NO with IIXII N2: s. If w(X) > N, then obv~ous1y IX(w)l2: s 

If supp w rE K, we write w = w1+ s ex), x t/: K, and then I X(w)1 = 

Ix(wiX(x)l2: s. This shows that IX(w)l2: s for all w o~tside the compact 

{w E Qxl w (X) 2: N, supp w ~ K} and we conclude that X E Co (QX) and that 

A ~ Co (QX)· 

Now A is formed of all finite linear combinations 2::IX. X., IX. E R, X.E B. 
'. ~ 1.1. 1. 1. 

Since for Xl' X2 E B,we haveXIX2~ E B andXiX2 ;=x'lX2' lA is closed upder 

. multiplicatioJ1f' that is, an algebra. That,A is dense is now .an ,eiilsyconse

quenseo'£ 'theStoile",Weierstrass theorem in its locallM compact form. 0 

2.5. Proposition. 

1 
(1) F is an isomorphism of the algebra M (QX) onto an algebra of con-

tinuous functions on C(X, .6). 

For positive measures, furthermore: 

(2) (~, X) 4 Ff.l(X) is continuous. 
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Proof. F, obviously being linear, is a homomorphism by (b) p.4. Suppose 

FJJ. = Fv and let f E K(QX) be real. By lemma 2.4 , there erists a se

quence f EA with I! f - f I! ~ O. Since JJ.(g) = v(g) for all g EA, n n 
JJ.(f) = v(f); hence F is one-to-one. The continuity of FJJ. will follow 

from (2), since JJ. without loss of generality can be .<ilssumed to be positive. 

To prove (2), suppose (JJ.., X.) ~ efl, X), where JJ. and the fl.' s are positive. 
~ ~ ~ 

Now 

and since fl. ~ JJ., the second term approaches O. Let E > 0 0 We choose 
~ 

f : QX ~ [O,lJ with compact support K and JJ.(f) > fl(l) - s. For suf-

ficiently large i 1JJ..(1) - fl(l)! < s, 1JJ..(f) - JJ.(f)1 < sand 
~ ,.. ~ ~ 

IX.(w) - X(w)1 < s/(JJ.(l) + s ) for w E K. Then JJ..(1-f) < 3s and thus 
~ ~ 

and 

such that 

~ '" 
IFJJ..(X.) - Ffl.(X)1 ~ JIX~(w)- X(w)ldJJ.~(w) 
~~ ~ .L .L 

,.. ,.. 

= JK+ JQx\KIXi(w) X(w)ldJJ.i(w)~ JJ.(1)+ s JJ.i(K) + 2fli (QX\K) < s + 6 s 

and we conclude that FJJ.. (X.) ~ Ffl(X). 
~ ~ 

To prove (3), suppose Ffl.(X) ~ Ffl(X) for all X ~ C(X,6), where JJ. and the 
~ 

JJ..'s are positive. Then JJ..(1) ~ JJ.(1) and, in the notation of lemma 2.4 
~ ~ b 

JJ..(h) ~ JJ.(h) for all h EA. Let gEe (Qx) be real ands > O. There 
~ "',... 

exists X E B such that X is positive and fleX) > JJ.(1) - s. Now Xg is 

real and vanishes at infinity and by lemma 2.4 we can find a h E A with 
~ 

11 Xg - hi I < s. For sufficiently large i 

~ ~ 

Ifl.(l) - JJ.(1)1 < s, IJJ..(X) - fl(X)1 <s and 1JJ..(h) - fl(h)1 < s. 
~ ~ ~ 
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Then 
~ ~ 

l~i(g-h)1 ~ l~i(Xg-h)1 + l~i«I-X)g)1 ~ 

E;'~. (l) + 11 gll~· (I-X) ~ s(~(l) + s) + 11 gll· 3s. 
1. 1. 

Similarly, 1~(g-h)1 ~ s~(l) + 11 gll s and thus 

proving that ~.(g) ~ ~(g).O 
1. 

2.6. Corollary. Convolution of positive measures is continuous. 

2. 7. Corollary. P(QX) is a CTM with convolution as composition. 

3. The transition operator. 

Let T : X ~ P(QX) be continuous; the interpretation of Tx is as the distri

bution of the progeny of an object of type x. We shall now show that T 

has an unique extension to a transition operator P(QX) ~ P(QX) for a 

branching process. 

We shall allow ourselves some liberties concerning notation: We shall de

note the extension, which we for convenience will construct on the whole 
I 

of M (QX)' by T, also, and write Tw instead of TOw' Tx instead of Ts(x) 

or TB s(x)" 

The branching property of T is equivalent with the formula T(~*~) = T~*Tv. 

3.1. Proposition. T : X ~ P(QX) has an unique extension to a continuous 

operator T : Ml(Qx) ~ MI(Qx) satisfying T(~*v) = T~*Tv. This extension is 

continuous in the norm, I IT~I 1 ~ I I~I I, and maps probability measure into 
I probability measure. For ~ EM (QX)' T~ determined by 
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Proof. We start by showing the uniqueness. Let w E Qx\[O}, w = 
[(xl) + ••• + [(xn ). Since T should be a homomorphism of the algebra 

Ml(Qx) into itsel~ we must have Tw = TXl * ••• * TXn" This implies 

'15 0= 50' and thusthe~Unearityand continuity of T gives uniqueness 

by lemma 2. C 

To show existence, we start by extending T to QX by the formulas just given. 

By proposition 1.2 and corollary 2.7 this gives a continuous homomorphism 

QX ~ P(Qx)' For an arbitrary ~ we then define 

This is well-defined since w ~ Tw(f) is continuous and bounded (by 1I fll ). 

An immediately check now gives that f ~ T~(f) is linear and continuous, i.e. 
1 

T~ EM (QX)' and that ~ ~ T~ is linear, continuous and extends 

T : QX ~ P(QX). By definition T(w l + w2 ) = TW1* Tw2, and since convolution 
1 

is bilinear and continuous when restricted to M+ (QX) (corollary 2.6), we 

obtain T(~ * v) = T~ * Tv for positive ~,v and then, by bilinearity, for 

all ~,v. 

b To show the formula T~(f) = J Tw(f) d~(w) to hold for all fE C (QX)' we 

can without loss of generality assume ~ and f to be positive. Then there 

exists an increasing net fi E K(QX) of positive functions with 

lim f. (w) = f(w),V w E Qv, and repeated application of a well-known result 
i ~ A 

on Radon measures then gives 

= lim T~ (f .) = . ~ 
~ 

Um 
i 

= J (lim Tw(f.» d~(w) 
~ 

i 

If ~ E P(QX) it is obvious that T~ is positive and by the formula just 

proved, T~(l) = 1, i. e. T~ E P(Qx). S.ince fOir f E Cb(Qx)' 11 fll ~ 1 

IT~(f)I~ J TwCifl) dl~lw ~ "~II, we obtain IIT~II ~ "~II·D 
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4.The probability generating functions and the probability of extinction. 

For X EO C(X,,6) we define 

* T X X ~ C 

by 
* ... 

T X(x) = Tx(X) = FTx(X). 

* One easily checks that T X EO C(X, ,6). 

The classical result on the generating functions has now the following 

form: 

* 4.1. Proposition. FT~(X) = F~(T X) 

Proof. Both sides are linear, multiplicative and continuous in ~, so it 

suffices to take Dirac-measure in sex) for ~. But then the identity re

* duces to the definition of T X. [1 

n *n 
4.2. Corollary. FT ~(X) = F~(T X). 

,., 
Let ~ EO P(QX)' The mass of ~ in 0 is ~({O}) = ~(O) = F~(O), since 0, the 

extension of the zero map X ~ ,6 to a continuous homomorphism QX ~ ~ is 

given by 0(0) = 1 and O(w) 0, w f o. Obviously T~(O) = 
~ N ~ 

J Tw(O)d~(w) G J O(w)d~(w) = ~(O). 

Given we start with one object of type x, we define q (x) as the pro ba
n 

bility that the process becomes extinct at time nand q(x) as the proba~ 

bi1ity that it becomes extinct sooner or later. q is determined by 
n ~ n 

q (x) = T x(O) and this formula easily gives that q is continuous, in-
n * n 

creasing and - by induction - that q = T nO. Since q is increasing, 
n n 

q t q. 
n 

4.3. Proposition. q and ~ are lower semi-continuous and satisfies the 

functional equation q(x) = Tx(~). 

If q is continuous, qn t q, uniformly on compacts, and 

q(x) = FTx(q), 

i. e. * q = T q. 
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Proof. q and q are 1. s. Co as the upper bounds of the sequences q and 
n 

er of continuous functions. The equation q(x) = Tx(q) follows by monotone 
n 

convergence from the identity 

* T q (x) = Tx(q ). 
n n 

The last part of the proposition follows immediately from the theorem 

of Dini.O 

An easy counter-example, showing that q is not in general continuous, is 

obtained by taking X = [O,lJ and Tx as the distribution with mass x in 

o and I-x in dx). Here q (0) = 0 and q (x) = 1, x > O. 
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