PREPRINT

FEB

 1972SØREN ASMUSSEN

Construction of Branching

Processes

UNIVERSITY OF COPENHAGEN INSTITUTE OF

Søren Asmussen
 CONSTRUCTION OF BRANCHING PROCESSES

Preprint 1972 No. 2

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

Introduction.

This paper gives a construction of branching processes with discrete time and a continuous number of types. The approach differs from Moyal [3] or Harris [2] by leaning on the theory of integration in locally compact spaces, as treated in Bourbaki [1].

The types of the process will be assumed to be the points in a locally compact space X . On basis of the topology on X , a locally compact topology is constructed on Ω, the states of the process or the point-distributions (section 1). Section 2 deals with integration and harmonic analysis (i.e. generating functions) on $\Omega \mathrm{X}^{\circ}$. In section 3 , the transition operator is constructed; and finally, in section 4, a few of the classical results, concerning the form of the generating functions and the probabilities of extinction, are established in the given set-up.

1. The topology on the state space.

We start by recalling some algebraic and topological concepts. A monoid is a set with an associative composition (x, y) $\rightarrow x y$ with a neutral element. If E, F are monoids with neutral elements i_{E}, i_{F}, a homomorphism from E to F is a map $f: E \rightarrow F$ satisfying $f(x y)=f(x) f(y)$ for all $x, y \in E$ and $f\left(i_{E}\right)=i_{F}$. A topological monoid is a monoid equipped with a topology in which the composition is continuous. We shall deal only with commutative monoids; for convenience we use the abbreviation CTM for commutative topological monoid. Important examples of CTM s are N_{0}, the additive monoid of non-negative integers in the discrete topology, and Δ the multiplicative monoid of complex numbers with modulus $\leqq 1$ in the usual topology.

Let X be a set; X will later be the types of the process. We let ${ }^{\Omega} \mathrm{X}$ denote the set of all maps $\omega: X \rightarrow N_{0}$ with finite support supp ω (the "point distributions"); Ω_{X} is a monoid with pointwise addition. For $\omega \in \Omega_{X}$ $\omega(X)$ denotes the total mass of $\omega, \omega(X)=\sum \omega(x)$. The imbedding $\mathrm{x} \in \mathrm{X}$ $\varepsilon: X \rightarrow \Omega X$ is defined the obvious way, that is, $\varepsilon(x)$ is the point distribution, which is 1 in x and 0 otherwise. For $n \geqq 1, r_{n}: x^{n} \rightarrow \Omega_{X}$ is defined by $r_{n}\left(x_{1}, \ldots, x_{n}\right)=\varepsilon\left(x_{1}\right)+\ldots+\varepsilon\left(x_{n}\right)$ and r_{0} is defined as the map from an (arbitrary) one-point set $\{a\}$ to Ω_{X} with $r_{0}(a)=0$.

Suppose, now, that X is a (Hausdorff) topological space. We shall then equip Ω_{X} with the final topology defined by ($\left.r_{n}\right)_{n} \in N_{0}$.
1.1. Lemma. The topology on Ω_{X} has the following properties:
(1) For each $n \in N_{0},\left\{\omega \in \Omega_{X} \mid \omega(X)=n\right\}$ is closed and open; in particular, 0 is isolated point.
(2) Let $\omega \in \Omega X \backslash\{0\}, \omega=\varepsilon\left(x_{1}\right)+\ldots+\varepsilon\left(x_{n}\right)$. The $\operatorname{sets} \varepsilon\left(V_{1}\right)+\ldots+\varepsilon\left(V_{n}\right)$, where V_{i} is a neighbourhood of x_{i} in X, form a basis for the system of neighbourhoods of ω in ΩX^{*}
(3) The addition $\left(\omega_{1}, \omega_{2}\right) \rightarrow \omega_{1}+\omega_{2}$ is continuous, i.e. Ω_{X} is a CTM.
(4) $\varepsilon: X \rightarrow \Omega$ is a homeomorphism $X \rightarrow \varepsilon(X)$.

If X is locally compact, furthermore:
(5) The sets

$$
\left\{\omega \in \Omega_{X} \mid \omega(X) \leqq N, \quad \operatorname{supp} \omega \subseteq K\right\}
$$

where $N \in N_{0}$ and $K \subseteq X$ is compact, form a basis for the compacts in Ω_{X} in the sense, that each such set is compact and that each compact in Ω_{X} is contained in such a set.
(6) Ω_{X} is locally compact and σ-compact if X is so.

Proof. Each of the assertions follows rather easily from the preceding ones or the definition and we omit the details.ロ
1.2. Proposition. Let $X: X \rightarrow A$, where A is a commutative monoid.
(1) X has an unique extension to a
$\underset{\sim}{\text { homomorphism }} \tilde{\chi}: \Omega_{\mathrm{X}} \rightarrow \mathrm{A}$, given by
$\tilde{x}(0)=0_{A}$ and
$\tilde{x}\left(\varepsilon\left(x_{1}\right)+\ldots+\varepsilon\left(x_{n}\right)\right)=\chi\left(x_{1}\right)+\ldots+\chi\left(x_{n}\right)$

(2) If A is a CTM and X continuous, \tilde{X} is continuous.

Proof. It is obvious that \tilde{X} is uniquely determined and well-defined by (*) and a homomorphism. Under the assumptions of (2), the continuity of $\tilde{\chi}$ follows from the fact that $\tilde{\chi} \circ r_{n}$, being the map $\left(x_{1}, \ldots, x_{n}\right) \rightarrow$ $X\left(x_{1}\right)+\ldots+X\left(x_{n}\right)$, is continuous for each $n_{0} \square$

Expressed in another way:
${ }^{\Omega} \mathrm{X}$ is the free CTM over X .

2. Integration and harmonic analysis on ΩX°

In the following, X (and therefore Ω_{X}) is assumed to be locally compact.
Let Z be a locally compact space (here X or Ω_{X}). Following mainly Bourbaki [1], we use the following notation for spaces of continuous, complex-valued functions on Z :

$$
\begin{aligned}
& f \in \mathrm{~K}(\mathrm{Z}) \Leftrightarrow \mathrm{f} \text { has compact support } \\
& \mathrm{f} \in \mathrm{C}_{0}(\mathrm{Z}) \Leftrightarrow \mathrm{f} \text { vanishes at infinity } \\
& \mathrm{f} \in \mathrm{C}^{\mathrm{b}}(\mathrm{Z}) \Leftrightarrow \mathrm{f} \text { is bounded } \\
& \mathrm{f} \in \mathrm{C}(\mathrm{Z}, \Delta) \Leftrightarrow \mathrm{f}(\mathrm{z}) \in \Delta \text { for all } \mathrm{z} \in \mathrm{Z}
\end{aligned}
$$

We shall consider $K(Z), C_{0}(Z)$ and $C^{b}(Z)$ in the norm topology and $C(Z, \triangle)$ in the compact open topology (the topology for uniform convergence on compacts).
$M^{1}(Z)$ denotes the set of bounded measures on Z, i.e. the dual of $K(Z)$, $M_{+}^{1}(Z)$ the set of positive $\mu \in M^{1}(Z)$ and $P(Z)=\left\{\mu \in M_{+}^{1}(Z) \mid \mu(1)=1\right\}$ the set of probability measures on Z. We shall consider $M^{1}(Z), M_{+}^{1}(Z)$ and $P(Z)$ in the $\underline{C}^{\text {b}}$-topology, defined by the linear functionals $\mu \rightarrow \mu(f), f \in C^{b}(Z)$. For $z \in Z, \delta_{z}$ denotes Dirac-measure in $z ;$ one shows easily that δ is a homeomorphism $Z \rightarrow \delta(Z)$. A discrete measure is a measure of the form $\sum_{i=1}^{n} \alpha_{i} \delta_{z_{i}}$
2.1. Lemma. The positive discrete measures are dense in $M_{+}^{1}(Z)$ and the discrete measures in $M^{1}(Z)$.

Proof. By the bipolar theorem, using that $C^{b}(Z)$ is the dual of $M^{1}(Z) \cdot \square$ Occassionally we shall use the norm topology on $M^{1}(Z)$ in which $M^{1}(Z)$ is a Banach space. For $Z=\Omega{ }^{\prime}, M^{1}\left(\Omega_{X}\right)$ becomes a commutative Banach algebra with convolution

$$
\mu * \nu(f)=\int f\left(\omega_{1}+\omega_{2}\right) d \mu\left(\omega_{1}\right) d \nu\left(\omega_{2}\right),
$$

as multiplicationg Dirac-measure in 0 is neutral element by convolution.

Important properties of convolution are
(a) $\delta_{\omega_{1}} * \delta_{\omega_{2}}=\delta_{\omega_{1}}+\omega_{2}$
(b) $f\left(\omega_{1}+\omega_{2}\right)=f\left(\omega_{1}\right) f\left(\omega_{2}\right) \Rightarrow \mu * \nu(f)=\mu(f) \nu(f)$.

Let E be a CTM. The dual CTM \hat{E} of E is defined as the set of continuous homomorphisms $\mathrm{E} \rightarrow \Delta$ (semicharacters), with pointwise multiplication and the compact open topology. If E is a group, then $|X(x)|=1$ for all $X \in \widehat{E}$ and $\mathrm{x} \in E$, i.e., the dual CTM of E is the dual group of E. Proposition 1.2 sets up a one-to-one correspondance between $X \in C(X, \Delta)$ and $\tilde{X} \in \widehat{\Omega_{X}}$ Furthermore:
2.2. Proposition. The identification between $\hat{\Omega}_{X}$ and $C(X, \triangle)$ is a homeomorphism in the compact open topologies.

Proof. Clearly $\tilde{X}_{i} \rightarrow \tilde{\chi}$ in $\widehat{\Omega}_{x}$ implies $X_{i} \rightarrow X \underset{\sim}{i n} C(X, \Delta)$. To show the converse, it suffices by lemma 1.1, (5), to show that $X_{i} \rightarrow X$, uniform1y on each of the sets $\left\{\omega \in \Omega_{X} \mid \omega(X) \leqq N\right.$, supp $\left.\omega \subseteq K\right\}$, where $K \subseteq X$ is compact and $N \in N_{0}$, and to show this it suffices to show that the convergence is uniform on each of the sets

$$
A_{n}=\left\{\omega \in \Omega_{X} \mid \omega(X)=n, \quad \operatorname{supp} \omega \subseteq K\right\}, \quad n=0,1, \ldots, N
$$

This is easily obtained by induction in n, using that each $\omega \in A_{n}$ can be written $\omega=\omega_{1}+\varepsilon(x), \omega_{1} \in A_{n-1}, x \in K$, giving

$$
\begin{aligned}
& \left|\tilde{x}_{i}(\omega)-\tilde{x}(\omega)\right|=\left|\tilde{x}_{i}\left(\omega_{1}\right) x_{i}(x)-\tilde{x}\left(\omega_{1}\right) x(x)\right| \leqq \\
& \left|x_{i}\left(\omega_{1}\right)\left(x_{i}(x)-x(x)\right)\right|+\left|\left(x_{i}\left(\omega_{1}\right)-\tilde{x}\left(\omega_{1}\right)\right) x(x)\right| \\
& \left|x_{i}(x)-x(x)\right|+\left|\tilde{x}_{i}\left(\omega_{1}\right)-\tilde{x}\left(\omega_{1}\right)\right| \cdot 0
\end{aligned}
$$

2.3. Definition For $\mu \in M^{1}\left(\Omega_{X}\right)$, the generating function $\mathrm{F} \mu: \mathrm{C}(\mathrm{X}, \Delta) \rightarrow \mathrm{C}$ is defined by

$$
\mathrm{F} \mu(X)=\mu(\tilde{X})=\int \tilde{X}(\omega) \mathrm{d} \mu(\omega), x \in \mathrm{C}(\mathrm{X}, \Delta) .
$$

The definition is analogous with that of Moyal [3] . From the remarks above it is seen that the generating function is a generalization of the Fourier transform on a group. Also, for $\mathrm{X}=\{1, \ldots, \mathrm{k}\}$, where $C(X, \Delta)=\Delta^{k}, F \mu$ for $\mu \in P\left(\Omega_{X}\right)$ is the classical probability generating function.

Some of the main properties of the generating function will be given in proposition 2.5. For the proof, we prepare the following
2.4. Lemma. Let B be the set of real $X \in C(X, \Delta)$ with $\|X\|<1$, which vanishes at infinity, and A the real vectorspace spanned by $\tilde{B}_{\text {. }} A$ is contained in $C_{0}\left(\Omega_{X}\right)$ and is dense in the space of real $f \in C_{0}\left(\Omega_{X}\right)$.

Proof. Let $X \in B$ and $\varepsilon>0$. We choose a compact $K \subseteq X$ with $|X(x)| \leqq \varepsilon$ $x \notin K$, and $N \in N_{0}$ with $||x||^{N_{\leqq}} \varepsilon$. If $\omega(X)>N$, then obvious $1 y|\tilde{x}(\omega)| \leqq \varepsilon$ If $\operatorname{supp} \omega \nsubseteq K$, we write $\omega=\omega_{1}+{\underset{\sim}{x}}^{\varepsilon}(x), x \notin K$, and then $|\tilde{x}(\omega)|=$ $\left|\tilde{X}\left(\omega_{1}\right) X(x)\right| \leqq \varepsilon$. This shows that $|\tilde{X}(\omega)| \leqq \varepsilon$ for all $\omega \underset{\sim}{\text { outside }}$ the compact $\left\{\omega \in \Omega_{X} \mid \omega(X) \leqq N\right.$, supp $\left.\omega \subseteq K\right\}$ and we conc1ude that $X \in C_{0}\left(\Omega_{X}\right)$ and that $A \subseteq C_{0}\left(\Omega_{X}\right)$.
Now A is formed of all finite linear combinations $\sum \alpha_{i} \tilde{X}_{i}, \quad \alpha_{i} \in R, X_{i} \in B$. Since for $x_{1}, x_{2} \in B$, we have $X_{1} X_{2} \in B$ and $\widetilde{X_{1} X_{2}}=\tilde{x}_{1} \tilde{x}_{2}, A$ is closed under multiplication, that is, an algebra. That A is dense is now an easy consequense of the Stone-Weierstrass theorem in its locally compact form. \square

2.5. Proposition.

(1) F is an isomorphism of the algebra $M^{1}\left(\Omega_{X}\right)$ onto an algebra of continuous functions on $C(X, \Delta)$.

For positive measures, furthermore:
(2) $(\mu, X) \rightarrow F \mu(X)$ is continuous.
(3) $\mu_{i} \rightarrow \mu$ iff $F \mu_{i}(X) \rightarrow F \mu(X)$ for all $X \in C(X, \Delta)$.

Proof. F, obviously being linear, is a homomorphism by (b) p. 4. Suppose $F \mu=F \nu$ and let $f \in K\left(\Omega_{X}\right)$ be rea1. By lemma 2.4 , there exists a sequence $f_{n} \in A$ with $\left\|f-f_{n}\right\| \rightarrow 0$. Since $\mu(g)=\nu(g)$ for all $g \in A$, $\mu(f)=\nu(f)$; hence F is one-to-one. The continuity of $F \mu$ will follow from (2), since μ without loss of generality can be assumed to be positive. To prove (2), suppose $\left(\mu_{i}, X_{i}\right) \rightarrow(\mu, X)$, where μ and the μ_{i} 's are positive. Now

$$
\left|F \mu_{i}\left(X_{i}\right)-F \mu(X)\right| \leqq\left|F \mu_{i}\left(X_{i}\right)-F \mu_{i}(X)\right|+\left|F \mu_{i}(X)-F \mu(X)\right|
$$

and since $\mu_{i} \rightarrow \mu$, the second term approaches 0 . Let $\varepsilon>0$ 。We choose $\mathrm{f}: \Omega_{\mathrm{X}} \rightarrow[0,1]$ with compact support K and $\mu(f)>\mu(1)-\varepsilon$. For suf-
 $\left|\tilde{x}_{i}(\omega)-\tilde{x}(\omega)\right|<\varepsilon /(\mu(1)+\varepsilon)$ for $\omega \in K_{\text {. }}$. Then $\mu_{i}(1-f)<3 \varepsilon$ and thus

$$
\mu_{i}(K) \leqq \mu_{i}(1)<\mu(1)+\varepsilon
$$

and

$$
\mu_{i}\left(\Omega_{X} \backslash K\right)=\mu_{i}\left(1-1_{K}\right) \leqq \mu_{i}(1-f) \leqq 3 \varepsilon
$$

such that

$$
\begin{gathered}
\left|F \mu_{i}\left(X_{i}\right)-F \mu_{i}(X)\right| \leqq \int\left|\tilde{\chi}_{i}(\omega)-\tilde{\chi}(\omega)\right| d \mu_{i}(\omega) \\
=\int_{K}+\int_{\Omega_{X}}|K| \tilde{\chi}_{i}(\omega)-\tilde{\chi}(\omega) \left\lvert\, d \mu_{i}(\omega) \leqq \frac{\varepsilon}{\mu(1)+\varepsilon} \mu_{i}(K)+2 \mu_{i}\left(\Omega_{X} \backslash K\right)<\varepsilon+6 \varepsilon\right.
\end{gathered}
$$

and we conclude that $F \mu_{i}\left(X_{i}\right) \rightarrow F \mu(X)$.
To prove (3), suppose $F \mu_{i}(X) \rightarrow F \mu(X)$ for all $X \in C(X, \Delta)$, where μ and the $\mu_{i}{ }^{\text {g }} \mathrm{s}$ are positive. Then $\mu_{i}(1) \rightarrow \mu(1)$ and, in the notation of lemma 2.4 $\mu_{i}(h) \rightarrow \mu(h)$ for all $h \in A$. Let $g \in C^{b}\left(\Omega_{X}\right)$ be real and $\varepsilon>0$. There exists $X \in B$ such that X is positive and $\mu(\tilde{X})>\mu(1)-\varepsilon$. Now \tilde{X}_{g} is real and vanishes at infinity and by lemma 2.4 we can find $a \mathrm{~h} \in \mathrm{~A}$ with $\left|\left|\tilde{x}_{g}-h\right|\right|<\varepsilon$. For sufficiently large i

$$
\left|\mu_{i}(1)-\mu(1)\right|<\varepsilon,\left|\mu_{i}(\tilde{X})-\mu(\tilde{X})\right|<\varepsilon \text { and }\left|\mu_{i}(h)-\mu(h)\right|<\varepsilon
$$

Then

$$
\begin{gathered}
\left|\mu_{i}(g-h)\right| \leqq\left|\mu_{i}(\tilde{x} g-h)\right|+\left|\mu_{i}((1-\tilde{x}) g)\right| \leqq \\
\varepsilon \cdot \mu_{i}(1)+||g|| \mu_{i}(1-\tilde{x}) \leqq \varepsilon(\mu(1)+\varepsilon)+||g|| \cdot 3 \varepsilon
\end{gathered}
$$

Similarly, $|\mu(\mathrm{g}-\mathrm{h})| \leqq \varepsilon \mu(1)+||\mathrm{g}|| \varepsilon$ and thus

$$
\begin{gathered}
\left|\mu_{i}(\mathrm{~g})-\mu(\mathrm{g})\right| \leqq\left|\mu_{\mathrm{i}}(\mathrm{~g}-\mathrm{h})\right|+\left|\mu_{\mathrm{i}}(\mathrm{~h})-\mu(\mathrm{h})\right|+|\mu(\mathrm{h}-\mathrm{g})| \\
\leqq £(\mu(1)+\varepsilon+3| | \mathrm{g}| |+1+\mu(1)+||\mathrm{g}||),
\end{gathered}
$$

proving that $\mu_{i}(\mathrm{~g}) \rightarrow \mu(\mathrm{g}) . \square$
2.6. Corollary. Convolution of positive measures is continuous.
2.7. Coro1lary. $P\left(\Omega_{X}\right)$ is a CTM with convolution as composition.

3. The transition operator.

Let $T: X \rightarrow P\left(\Omega_{X}\right)$ be continuous; the interpretation of $T x$ is as the distribution of the progeny of an object of type x. We shall now show that T has an unique extension to a transition operator $P\left(\Omega_{X}\right) \rightarrow P\left(\Omega_{X}\right)$ for a branching process.

We shall allow ourselves some liberties concerning notation: We shall denote the extension, which we for convenience will construct on the whole of $M^{1}(\Omega X)$, by T, also, and write $T \omega$ instead of $T \delta_{\omega}$, $T x$ instead of $T \varepsilon(x)$ or $T \delta_{\varepsilon(x)}{ }^{\circ}$
The branching property of T is equivalent with the formula $T\left(\mu^{*} v\right)=T \mu^{*} T v$.
3.1. Proposition. $T: X \rightarrow P\left(\Omega_{\dot{\prime}}\right)$ has an unique extension to a continuous operator $T: M^{1}\left(\Omega_{X}\right) \rightarrow M^{1}\left(\Omega_{X}\right)$ satisfying $T\left(\mu^{*} v\right)=T \mu^{*} T v$. This extension is continuous in the norm, $||T \mu|| \leqq||\mu||$, and maps probability measure into probability measure. For $\mu \in M^{1}\left(\Omega_{X}\right)$, $T \mu$ determined by

$$
T \mu(f)=\int T \omega(f) d \mu(\omega), f \in C^{b}\left(\Omega_{X}\right)
$$

Proof. We start by showing the uniqueness. Let $\omega \in \Omega_{\mathrm{X}} \backslash\{0\}, \omega=$ $\varepsilon\left(x_{1}\right)+\ldots+\varepsilon\left(x_{n}\right)$. Since T should be a homomorphism of the algebra $M^{1}\left(\Omega_{X}\right)$ into itself, we must have $T \omega=T x_{1} * \ldots * T x_{n}$. This implies $T \delta_{0}=\delta_{0}$, and thus the linearity and continuity of T gives uniquenes by 1emma 2.1.

To show existence, we start by extending T to $\Omega \mathrm{X}$ by the formulas just given. By proposition 1.2 and corollary 2.7 this gives a continuous homomor phism $\Omega_{X} \rightarrow P\left(\Omega_{X}\right)$. For an arbitrary μ we then define

$$
T \mu(f)=\int T \omega(f) d \mu(\omega), \quad f \in K\left(\Omega_{X}\right)
$$

This is well-defined since $\omega \rightarrow T \omega(f)$ is continuous and bounded (by $||f||$). An immediately check now gives that $f \rightarrow T \mu(f)$ is linear and continuous, i.e. $\mathrm{T} \mu \in \mathrm{M}^{1}\left(\Omega_{\mathrm{X}}\right)$, and that $\mu \rightarrow \mathrm{T} \mu$ is linear, continuous and extends $T: \Omega_{X} \rightarrow P\left(\Omega_{X}\right)$. By definition $T\left(\omega_{1}+\omega_{2}\right)=T \omega_{1}^{*} T \omega_{2}$, and since convolution is bilinear and continuous when restricted to $M_{+}^{1}\left(\Omega_{X}\right)$ (corollary 2.6), we obtain $T(\mu * v)=T \mu * T \nu$ for positive μ, v and then, by bilinearity, for all μ, ν 。
To show the formula $T \mu(f)=\int T \omega(f) d \mu(\omega)$ to hold for all $f \in C^{b}\left(\Omega_{X}\right)$, we can without loss of generality assume μ and f to be positive. Then there exists an increasing net $f_{i} \in K(\Omega X)$ of positive functions with $\lim _{i} f_{i}(\omega)=f(\omega), \forall \omega \in \Omega X^{\prime}$ and repeated application of a well-known result on Radon measures then gives

$$
\begin{aligned}
& T \mu(f)=\underset{i}{\lim } T \mu\left(f_{i}\right)=\lim _{i} \int T \omega\left(f_{i}\right) d \mu(\omega) \\
& =\int\left(\lim _{i} \operatorname{T} \omega\left(f_{i}\right)\right) d \mu(\omega)=\int T \omega(f) d \mu(\omega) .
\end{aligned}
$$

If $\mu \in P\left(\Omega_{X}\right)$ it is obvious that $T \mu$ is positive and by the formula just proved, $T \mu(1)=1$, i.e. $T \mu \in P\left(\Omega_{X}\right)$. Since for $f \in C^{b}\left(\Omega_{X}\right), \| f| | \leqq 1$ $|\mathrm{T} \mu(\mathrm{f})| \leqq \int \mathrm{T} \omega(|\mathrm{f}|) \mathrm{d}|\mu| \omega \leqq||\mu||$, we obtain $||T \mu|| \leqq||\mu|| \cdot \square$
4. The probability generating functions and the probability of extinction. For $X \in C(X, \triangle)$ we define

$$
\mathrm{T}^{*} \chi: \mathrm{X} \rightarrow \mathrm{C}
$$

by

$$
\mathrm{T}^{*} X(\mathrm{x})=\operatorname{Tx}(\tilde{X})=\operatorname{FTx}(X)
$$

One easily checks that $T^{*} X \in C(X, \Delta)$.
The classical result on the generating functions has now the following form:
4. 1. Proposition. $F T \mu(X)=F \mu\left(T^{*} X\right)$

Proof. Both sides are linear, multiplicative and continuous in μ, so it suffices to take Dirac-measure in $\varepsilon(x)$ for μ. But then the identity reduces to the definition of $T^{*} \chi . \square$
4.2. Corollary. $\mathrm{FT}^{\mathrm{n}} \mu(X)=F \mu\left(T^{*} \mathrm{n}^{\prime} X\right)$.

Let $\mu \in \mathrm{P}\left(\Omega_{X}\right)$. The mass of μ in 0 is $\mu(\{0\})=\mu(\tilde{0})=F \mu(0)$, since $\tilde{0}$, the extension of the zero map $\mathrm{X} \rightarrow \Delta$ to a continuous homomorphism $\Omega_{\mathrm{X}} \rightarrow \Delta$ is given by $\tilde{O}(0)=1$ and $\tilde{0}(\omega)=0, \omega \neq 0$. Obvious $1 \mathrm{y} \mathrm{T} \mu(\tilde{0})=$ $\int \mathrm{T} \omega(\tilde{0}) \mathrm{d} \mu(\omega) \geqq \int \tilde{0}(\omega) \mathrm{d} \mu(\omega)=\mu(\tilde{0})$.

Given we start with one object of type x, we define $q_{n}(x)$ as the probability that the process becomes extinct at time n and $q(x)$ as the probability that $\underset{\sim}{i t}$ becomes extinct sooner or later. q_{n} is determined by $q_{n}(x)=T^{n}(\tilde{0})$ and this formula easily gives that q_{n} is continuous, increasing and - by induction - that $q_{n}=T^{*} n^{0}$. Since q_{n} is increasing, $q_{n} \uparrow q$.
4.3. Proposition. q and \mathbb{q} are lower semi-continuous and satisfies the functional equation $q(x)=\operatorname{Tx}(\widetilde{q})$.

If q is continuous, $\mathrm{q}_{\mathrm{n}} \uparrow \mathrm{q}$, uniformly on compacts, and

$$
q(x)=F T x(q),
$$

i.e.

$$
\mathrm{q}=\mathrm{T}^{*} \mathrm{q} .
$$

Proof. q and \widetilde{q} are $1 . s . c$. as the upper bounds of the sequences q_{n} and $\widetilde{q}_{\mathrm{n}}$ of continuous functions. The equation $\mathrm{q}(\mathrm{x})=\mathrm{Tx}(\widetilde{\mathrm{q}})$ follows by monotone convergence from the identity

$$
q_{n+1}(x)=T^{*} n+1 \quad 0(x)=T^{*} q_{n}(x)=T x\left(\tilde{q}_{n}\right)
$$

The last part of the proposition follows immediately from the theorem of Dini. \quad.

An easy counter-example, showing that q is not in general continuous, is obtained by taking $\mathrm{X}=[0,1]$ and Tx as the distribution with mass x in 0 and $1-x$ in $\varepsilon(x)$. Here $q(0)=0$ and $q(x)=1, x>0$.

References.

[1] N. Bourbaki: Integration, ch. 1-4. Hermann, Paris (1965).
[2] T.E. Harris: The Theory of Branching Processes. Springer-Verlag. Ber1in-Gơttingen-Heidelberg (1963).
[3] J.E. Moya1: The General Theory of Stochastic Population Processes. Acta Math. 108, 1-31 (1962).

