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1. Introduction 

A standard problem of time serles analysis lS from observati

ons of a part of the serles, say xl' '.', x n ' to infer about 

the structure and parameters of the probability mechanism ge

nerating the series and ~t the same time to predict future 

outcomes of the series. 

The classical approach to time series analysis lS to treat 

these problems of inference separately, i.e. the "structural" 

inference is performed using ordinary statistical methods, and 

the prediction is done under the assumption of complete know

ledge of the probability structure of the series. This seems 

to be unsatisfactory and suggests a development of a theoreti

cal framework allowing a simultaneous treatment of different 

aspects of inference in time series analysis. 

Sufficiency is one of the basic concepts In classical stati-

stical theory. This concept is clearly made up for the pur-

pose of structural, l.e. parametric inference only as an an

swer to the question: how much can we reduce our data and 

still keep all available information about the parameters of 

our model? In time series analysis, the corresponding que

stion is: how much can we reduce the data and still keep all 

available information about parameters and about unobserved 

values of the series ? 

It lS the purpose of the present paper to define a concept of 

sufficiency corresponding to the last question and investigate 
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some of its basic properties. 

But first we shall consider an example, which will play a fun-

damental role throughout the paper showing some of the diffi-

culties and results. 

Example 1. 1: Let (Xt , t = 0, ±l, ±2, ) be a normal st a-

tionary autoregressive process of order 1 and mean value 0, 

i.e. Xt - SXt _ l = ~t' whe~e (~t' t = 0, ±l, ±2, are 1n-

dependent and normally distributed with mean zero and var1an-

ce 0 2 , $SI < 1, Sand 0 2 are unknown parameters. 

Suppose that x = (Xl'.'" x n ) are observed and we want to e-

stimate 2 
Sand 0 and predict X 1"·· ,X k" n+ n+ 

The likelihood 

function 

(1 ) 2 L(S,O ,x) =~(S,02)"e 

1 2 2 2 n-l 2 ~ 
---2(xl +x +(l+S ) L x,-2S 2: x.x. 1) 

20 n i=2 1 i=2 1 1-

shows that the minimal sufficient statistic 1S 

( 2 ) 

" "2 2 
The procedure would now be to find estimates (6,0 ) of (S,O ) 

"-
based on the sufficient statistics and then use (x ,S) to pre

n 

dict X . as 
n+1 

x 
n 

l=l, ••• ,k. 

So obviously, if you throwaway x and keep only the suffici
n 

ent statistic (t l ,t 2 ,t 3 ) you are not as well of as you would 
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like to be. Similarly, if it was interesting to say something 

about the past, you would like to keep xl' 

Suppose also, that you have two statisticians, one of them 

If both 

statisticians reduce thei~ data by sufficiency to respectively 

and 

2 2 k-l 2 k 
(x 1 +xk ' I: x., I: x. x. 1) 

i=2 1 i=2 1 1-

n-l 2 n 
.I:xl , I: x.x. 1) 
l=k+ 2 i=k+.2 1 1-

you cannot from their reduced data get the sufficient reduc-

tion of (xl'." ,xn ); this, however, is possible if both sta

tisticians also keep the first and last observation from their 

data. 

n-l 2 n 
We shall later see, that the statistic (xl' I: x., I: x.x. l'x ) 

i=2 1 i=2 1 1- n 

1S what we call "t~otally sufficient". 

2. Totally ~SufficientSubfields 

Let (n,!) be a measurable space, ~ a family of probability mea-

sures on (n,!), T an arbitrary set and (';t,tET) a real' val:'U~d 

stochastic process on (n,!). Let!T denote the a-field ge
o 

B ~ n, lB is indicator of B, i.e. 

for wEB 

for wEtB 
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For ~, ~ subfields of ~ with ~ c ~ we write S suf (TI,~) if S 

is sufficient for TI on ~, i.e. if VBE~ 3~B~~nteasurable V:pE7T~ 

(2 ) 

For ~, ~, C subfields of ~ we write ~~SC if ~ and Care condi
p 

tionally independent given S according to p, i.e. if \lBE~ \I{)EC~ 

In the following, we shall not always explicitety write "A.~. 

(p)", hoping that the reader will not be confused. 

Definition 2.1: A subfield ~O ~ ~T 1S said to be totally suf
o 

ficient for TI relative to TO' and we write SOtsuf(TI,TO)' if 

Condition (a) and (b) ensures, that all information concerning 

TI and ~T'T available from ~T is summarized in ~O. You might 
o 0 

call (a) "parameter sufficiency" and (b) "prediction sufficien-

cy" • 

Proposition 2.1: ~T tsuf (TI,TO) 
o 

Proof: (a) 1S true as we can use lA as ~A in the definition 

of sufficiency; (b) 1S true as for AE~T ,A*E~~T : 
o 0 
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Before we proceed to more interesting propositions, we shall 

prove the following lemmas: 

Lemma 2.1: Let (O,Jt,p) be a probability space, Jt O' Jt1 , SO'~\ 

s~~rields of Jt so that So ~ JtO' Sl ~ Jt l " Then 

S 
1 

A Jto~p Jtl ~ VAOEJtOVA1EJt l : 

(3) .. 

Proof: To prove "=>" it lS enough to show, that for 

( 4 ) 
S S 

E (lS· . ()S ····n· A ()A) = lE (lS ns1-.rE °lA • E llA ) 
P 0 lD - 1:. P 0 1 PoP 1 

as the sets (SOnSllsOES O' SlES1 ) form a semialgebra genera

ting So V Sl" 

But 
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and (4) is proved. The conditional independence is used only 

to establish the equalities marked ~, otherwise only standard 

properties of conditional expectation are used. 

If, on the other side, we have 

we can put AO = n and get 

( 6 ) 

So 
and therefore, uSlng E on both sides of (5) 

p 

The c~nditional independence lS established and the proof lS 

complete. 

Lemma 2.2: Let (O,A,p) be a probability space, Ao,Al,SO'~l 
Se 

subfields of A so that So ~ AO' ~l ~ Al and AO~p AI" Then if 

AOEAO' AIEAl 

( 8 ) 

Proof: We have 

Using lemma 2.1 with SI = AI' (9) lS equal to 
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(10) 

and (8) lS proved. 

Now we are able to show a proposition on combination of total-

ly sufficient subfields. 

Proposition 2.2: n T2 = 0. If SI tsuf(rr,T l ) 

= ~2A ' where ~l and ~2 
2 

can be ehosen as regular conditional probabilities, on Al resp. 

Proof: 

(11) 

The sets 

nerating 

For Al E AT ' A2 E AT ' lemma 2.1 gives: 
1 2 

Sl vS 2 
~l : ~2 E 1 = • p Al nA2 Al A2 

(AI n A2 , Al E ~T ' A2 E ~T ) form a semialgebra ge-
l 1 2 2 

AT nT· As~. (w) and ~. (w) are probability measures 
1 2 

for all w, the function 

(12) 

uniquely extends to ~T UT. It is trivial to verify, that for 
1 2 

(13) 

as the finite measure 

(14) 
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lS determined on sets of the form 

We have now proved the "Parameter sufficiency" of SI V S2" 

(15 ) 

but, agaln from lemma 2.2 

(16) 

Combining (11), (15) and (16), we have 

Again the function p(o,A*'S12)' defined as 

(16) 

lS a finite measure on 1 determined on sets of the form TI UT 2 

(AlnA2IAlE1T ,A2E1T ), so that 
1 2 

SlVS 2 <p12 E 1 
A12 P A*, 

and the prediction sufficiency lS proved. 

The above proposition ensures the possibility of combining 

totally sufficient reductions of different observations of 

data concerning the same problem, even if these observations 



- 9 -

happen to be dependent. The next proposition shows, that the 

condition (b) in the definition of total sUfficiency with 

mild restrictions on n is necessary to ensure a "calculus of 

sufficient reduction". 

Proposition 2.3: Let (O,!) be a measurable space,n a family 

of probability measures on (O,!), !l' !2 subfields of !, ~l~!l' 

S2~!2 so that SI suf (n'!l)' ~2 suf (n'!2) and SI V ~2 suf 

(n'!lv!2). Then 

(18) 

Proof: Then, from lemma 2.1 

The sufficiency of Sl'~2 and ~l V S2 gives, that the right 

and left sides of (19) are independent of PO' so that 

(20) 

Using lemma 2.1, we have 

(21) 

and the proof 2S complete. 
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If, for example, i 1 and i2 are independent for just one pE~, 

the theorem applies, i.e. you must have prediction sufficiency 

to be able to combine parameter sufficient subfields. 

3. Relation between sufficiency and total sufficiency. 

Spring 1972, Barndorff-Nielsen pointed out to me, that he to-

gether with SkIDinsky worked out a concept of adequate subfields 

[1], which in a later paper by Skibinsky [3] was generalized 

to something seemingly equivalent to total sufficiency. 

Apart from a slightly different motivation and framework, the 

two concepts can easily be proved to be identical, i.e. 

Skibinsky proves the equivalence between adequacy and suffici-

ency with respect to a certain family of conditional distribu-

tions (Theorems 1 and 2 of [2]). In this formulation, rough-

ly speaking, So is totally sufficient for ~ relative to TO iff 

So is sufficient for the family of (regular) conditional pre

AT'T 
babilities (p 0, pE~) on AT' This equivalence gives rize 

o 
to the "translation" of most standard theorems on sufficiency 

to adequacy. Results like proposition 2.2 and 2.3 are not 

available from this equivalence as the structure of the index 

set and the subfie&ds of A are used. 

We shall briefly mention some definitions analogous to the the-

ory of sufficiency. 



Definition 3.1: 

- 11 -

So ~ AT 1S said to be minimal totally suffi
o 

cient for rr relative to TO' and we write SOmin tsuf (rr,T O) if 

Definition 3.2: An AT -measurable statistic to 
o 

where (n~A*) is a measurable space is said to be totally suf

ficient relative to TO if t~l(A*) tsuf (rr,T O). 

A minimal totally sufficient statistic can be defined analo-

gously to a minimal sufficient statistic, and in regular ca-

ses, where a minimal totally sufficient statistic tT for any 
, 0 

TO exists and generates a min tsuf subfield, proposition 2.2 

or Tn words, that the m1n tsuf statistic for the un10n of two 

disjoint subsets of T is a function of the min tsuf statistics 

for the subsets. 

This property seems to make the theory applicable in classical 

statistical theory, where a lot of interesting models should 

be seen included 1n a "pattern of repetition" more complicated 

than independent repetitions of the same experiment. 

4. Some examples. 

Example 4.1: Put T = ~ and let (Xt , tE~) be a stationary auto-

regressive process of order 1 (see Ex. 1.1) with [S[<l and 
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cr > 0 unknown. 

For TO ='{l, ••• ,n} a mln tsuf statistic lS easily seen to b~E 

n 2 n 
tT ()/'l"'" X ) = (Xl' ~ X2 , ~ X. X. -1 ,X ) = 

o n i=l i=2 1 1 n 

( t (1) 
T ' o 

Put Tl ='{n+l, •.• ,m} and notice, that 

and further with a short notation 

t (3 ) = t(3) + t(4) t (1) + 
TOUTl TO TO Tl 

t(4) ,fro .. 
TOUTl = t.'1' ' 

l. 

t (3 ) 
Tl 

which illustrates the effect of proposition 2.2 (compare with 

example 1.1). It is easy to see, that all autoregressive pro-

cesses admit proper totally sufficient reductions: for TO being 

an interval of ~. 

The following example shows, that the existence of a pEn glvlng 

conditional independence is not a superfluous condition in pro-

position 2.3. 

Example 4.2: Let (Xl,oo.,Xn ), (Yl, ... ,Yn ) be normally distri

buted random variables with EX. = ';,EY. = n, Var(X.)=Va~\Y",)';'l 
1 1 1 1. 
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Cov(x. ,Y.) = po .. where ';,nE~ are unknown, and p 
1 1 1J 

is a fixed, 
n 

known correlation between X. 
1 

and Y •• 
1 

Let SI = cr( L X.), 
i=l 1 

n 
S2 = cr( L Y.), 1. = 

. III 1= . . . .,.,2n. 
m1ly of probab1l1ty measures on n def1ned above. 

If however, p * 0 it is not true, that 

for any value of ~" 1'1,~ .. 

5. Questions to be discussed. 

It 1S 

The present paper is to be seen as a preliminary report on 

some ideas about total sufficiency. A lot of open questions 

is still left to investigation, some of them being of a pro-

babilistic and some of statistical nature. 

For T = ~ or T = Zn, what kind of families TI on ~T admit proper 

totally sufficient reductions of dimension p, whenever TO is 

something nice, say an interval? Exactly when will total 

sufficiency and sufficiency coincide ? 

How shall we use the statistics for inference purpose ? 

What comes out if we t~y to formulate statistical models as 

stochastic processes, where a glven set of data observed cor-

respond to a part of the indexset? The concept of a stati-

stical population seems to have a precise formulation in this 

framework. Problems related to nuisance-structural parame-

ters and conditional inference also seem to be suited for a 

formulation like this. 
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We hope to work out answers for some of these questions ln the 

future. 
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