

Søren Johansen

The Imbedding Problem for Finite Markov Chains IV

UNIVERSITY OF COPENHAGEN INSTITUTE OF MATHEMATICAL STATISTICS

Søren Johansen

THE BANG-BANG PROBLEM FOR STOCHASTIC MATRICES.

Preprint 1972 No.10

INSTITUTE OF MATHEMATICAL STATISTICS

UNIVERSITY OF COPENHAGEN

October 1972

1. Introduction and Summary

We shall consider the imbedding problem for n × n stochastic matrices. Such a matrix is called imbeddable if it can occur as transition probability matrix for a time continuous Markov process with n states.

It is proved that any matrix which is in the interior of the set of imbeddable matrices admits a representation as a finite product of exponentials of extreme intensity matrices.

Let \mathcal{P} denote the set of stochastic n × n matrices and \mathcal{Q} the set of n × n intensity matrices normalized such that trQ= -1, QE \mathcal{Q} .

Let $P \in \mathcal{G}$, then P is imbeddable if there exist a null set N and a measurable function $Q(\circ)$: $[o,1] \rightarrow \mathbb{Q}$ such that the solution $P(\circ)$ of the equation

- (1.1) $\frac{d}{dt}P(t) = P(t)Q(t), t \notin \mathbb{N}$
- (1.2) P(0) = I

satisfies the condition

(1.3) P(1) = P.

For a proof of this see [1] or [2].

Notice that Q is a convex compact set and that the extreme points of Q are characterized by the condition that exactly one off diagonal element is 1.

We shall investigate the role of the extreme intensitymatrices. If Q(t) = Q, then the solution to (1.1) and (1.2) is

$$P(t) = e^{tQ}$$

which is called a Poisson matrix when Q is extreme, see [2]. Let A denote the set of matrices which are finite products of Poisson matrices.

- 2 -

It was proved in [2] that \mathcal{A} is dense in \mathcal{M} . In this paper we shall investigate further proporties of \mathcal{A} . We can prove that exp tQE \mathcal{A} , QE int \mathcal{Q} (Corollary22), that \mathcal{A} is starshaped (Corollary26), and that int $\mathcal{M} \subset \mathcal{A}$, (Theorem22).

The problem of representing an imbeddable matrix as a finite product of Poisson matrices is known as the Bang-Bang problem in control theory: one can reach P by switching abstrubtly between extreme controllers Q a finite number of times. We therefore say that P admits a Bang-Bang representation.

The problem is also related to the representation of infinitely divisible and infinitely factorizable probability measures on finite semigroups, see [2] and in this sense the Bang-Bang problem is a generalization of the Lévy-Khinchin representation.

2. Main Results

The basic tool we shall use is a lemma which follows from the Brouwer fixed-point theorem, see Lee and Markus [1] p.251.

<u>2.1 Lemma</u>. Let f be a continuous map from a compact convex set \mathfrak{B} having interior points in $\mathbb{R}^{\mathbb{N}}$, into the space $\mathbb{R}^{\mathbb{N}}$. Let \mathbb{P}_0 be a point interior to \mathfrak{B} and assume

(2.1) $||f(P) - P|| \leq ||P - P_0||$

for all $P \in \mathcal{B}$, then the image $f(\mathcal{B})$ covers P_0 .

We shall apply this lemma to the compact convex set

(2.2)
$$\mathbf{B}_{\varepsilon} = \{\mathbf{P} | | | \mathbf{P} - \mathbf{I} | | \leq 2\varepsilon \},$$

where

$$||P-I|| = \sup_{i} \sum_{j} |p_{ij} - \delta_{ij}| = 2 \sup_{i} (1 - p_{ii}).$$

Notice that

where

(2.3)
$$\mathfrak{B}_{1} = \{P| \exists (i,j) : p_{ij} = 0\},\$$

The function f is defined by

(2.5)
$$f(P) = \prod_{i \neq j} e^{p_{ij}Q_{ij}}$$

where Q_{ij} is the extreme intensity matrix with (i,j)'th ele-

ment equal to 1. The order in which the multiplication is performed will be fixed throughout.

2.2 Lemma. For any
$$PG_{\varepsilon}$$
 we have
(2.6) $||f(P)-P|| \leq 2(n\varepsilon)^2 e^{2n\varepsilon}$

Proof. Since

$$P = I + \sum_{\substack{i \neq j}} p_{ij} Q_{ij}$$

we get

$$||f(P)-P|| = || \pi e^{p_{ij}Q_{ij}} - I - \sum_{i \neq j} p_{ij}Q_{ij}||.$$

Using an elementary inequality for products of exponentials, see [2] we get that

$$||f(P)-P|| \leq \frac{1}{2} (\sum_{i \neq j} p_{ij} ||Q_{ij}||)^2 \exp(\sum_{i \neq j} p_{ij} ||Q_{ij}||)$$

< $2(n\varepsilon)^2 e^{2n\varepsilon}$,

since

$$||Q_{ij}|| = 2, i \neq j$$

and

$$\sum_{\substack{i \neq j}} p_{ij} = \sum_{i} (l-p_{ii}) \leq n \sup_{i} (l-p_{ii}) \leq n\varepsilon.$$

The main idea in using Lemma 2.1 is now that from (2.6) it follows that the left-hand side of (2.1) decreases with ε^2 , where as by keeping P₀ in the interior of $\mathfrak{B}_{\varepsilon}$ and restricting P to \mathfrak{B}_1 or \mathfrak{B}_2 , the right-hand side of (2.1) will decrease with ε and hence (2.1) will be satisfied for ε sufficiently small. Let us define

(2.7)
$$\mathscr{P}(p) = \{P | p_{ij} \ge p\}, 0$$

2.3 Proposition. Let p be fixed, then for ε sufficiently small, the matrix

$$P_0 = (1-\varepsilon)I + \varepsilon R, R \in \mathcal{P}(p)$$

admits a representation of the form

for some stochastic matrix $P = (p_{i,j})$ such that $||I-P|| \leq 2\varepsilon$. Since Proof.

$$||P_{0}-I|| = \varepsilon ||R-I|| \le 2\varepsilon(1-p) < 2\varepsilon.$$
and since P₀ is interior to \mathscr{P} we have that P₀ ε integendent integendent integendent integendent integendent integendent integendent is interior to \mathscr{P} we have that P₀ ε integendent inte

Let now $\boldsymbol{\epsilon}$ be chosen so small that

= $|1-\varepsilon-(1-\varepsilon)-\varepsilon r_{ii}| \ge \varepsilon p$.

(

then we can combine (2.6), (2.8), (2.9), and (2.10) to see that Lemma 2.1 can be applied and that we can represent P_0 in the form f(P) for some $P \in \mathcal{B}_{E}$.

- 5 -

2.4 Corollary.

$$P = e^{tQ} \in \mathcal{A}, Q \in intQ.$$

Proof. Let us define the stochastic matrix R by

Q = R - I

then

$$P = (P_k)^k = (exp(k^{-1}t(R-I)))^k$$

and

 $P_{k} = I + tk^{-1}(R-I) + B$

where

$$||B|| \leq \frac{1}{2}k^{-2}||tQ||^2 \exp(k^{-1}||tQ||).$$

Rewriting this we obtain

$$P_{k} = (1-tk^{-1})I + tk^{-1}(R+kt^{-1}B).$$

Now fix $p = \frac{1}{2} inf_{i,j} r_{i,j}$ then p > 0 and for k sufficiently large $(R+kt^{-1}B) \in \mathfrak{S}(p).$

Now choose k so large that Proposition 2.3 can be applied with $\varepsilon = tk^{-1}$. We then get the existence of a stochastic matrix $P^{(k)}$ such that

$$P_{k} = \pi_{e}^{p_{ij}}^{(k)}_{q_{ij}}$$

It follows that

$$P = (P_k)^k = (\prod_{i \neq j} e^{p_{ij}})^{(k)} Q_{ij}^{(k)}$$

which proves that $P \in \mathcal{A}$

2.5 Corollary.

 $(1-\varepsilon)$ I + $\varepsilon M \in \mathcal{A}_{s}$ 0 < ε < 1.

Proof. We define

$$Q = (M-I)(-\ln(1-\varepsilon))$$

then $q_{i,i} > 0$ and

$$e^{Q} = (1-\varepsilon)I + \varepsilon M$$

and we can apply Corollary 2.4.

2.6 Corollary. The set A is starshaped around M.

<u>Proof.</u> Let $P \in A$, then since A is a semigroup we can apply Corollary 2.5 and get that

 $\operatorname{Pe}^{(M-I)(-\ln(1-\varepsilon))} = (1-\varepsilon)P + \varepsilon \varepsilon M \varepsilon_{\ell}, \quad 0 \leq \varepsilon < 1.$

We shall now prove that the interior of \mathcal{K} has a Bang-Bang representation. The idea here is that the Bang-Bang matrices are dense in \mathcal{M} and that each such matrix P is followed be a small "cone shaped" region $Pf(\mathcal{G}_{\varepsilon})$ of Bang-Bang matrices which point towards M.

Hence any matrix P_0 in the interior of \mathcal{M} will be surrounded by Bang-Bang matrices and it is proved that one of these will be behind P_0 (as viewed from M) in such a way that its "cone" covers P_0 .

2.7 Theorem. Any imbeddable matrix in the interior of \mathcal{M}_{has} a representation as a finite product of expotentials of extre-

me intensities or

(2.11) = int $\mathcal{M}_{c}A$.

<u>Proof.</u> From Proposition 2.3 it follows that for 0 , the open set

- 8 -

(2.12) $\mathcal{K} = \{P | P = (1-\alpha)I + \alpha R, 0 < \alpha \leq \varepsilon, r > p\}$

is contained in \mathcal{A} for ε sufficiently small.

Notice for $P \in \mathcal{A}$ we have

PK-A.

Now fix $P_0 \in int \mathcal{M}$ and consider the set of matrices in \mathscr{P} from which P_0 can be reached by a matrix in \mathcal{K} ,

 $(2.12) \qquad \mathcal{O} = \{ \mathbb{P} | \mathbb{P} \to \mathbb{P}_0 \}.$

It is easily seen that

and since the function $P \rightarrow P^{-1}P_0$ is continuous and \mathscr{K} is open it follows that

$$\mathcal{O} = \{P | P^{-1}P_0 \in \mathcal{K}\} = P_0 \mathcal{K}^{-1}$$

is open.

Now let \mathcal{N} be a neighbourhood of P₀ such that

No int M

Let $\phi > O$ chosen so small that

$$P_{-\phi} = (1+\phi)P_{0} - \phi M \epsilon \delta_{0}$$

then P_0 is on the line segment from M to $P_{-\phi}$. Since \mathcal{K} contains

the open line segment

]I,
$$(1-\varepsilon)$$
I + ε M[

it follows that one can reach P from P using a matrix in \mathcal{K}_0 for ϕ sufficiently small. Hence

P_oC

Now the set $\mathcal{N} \cap \mathcal{O}$ is a non-empty open subset of int \mathcal{M} and hence contains a matrix P_1 from \mathcal{A} , which was dense in \mathcal{M} . But then we can reach P_1 using a Bang-Bang controller, since $P_1 \in \mathcal{A}$ and we can reach P_0 from P_1 using a Bang-Bang matrix from \mathcal{K} , since $P_1 \in \mathcal{O}$. Hence $P_0 \in \mathcal{A}$ as was to be proved.

3. Acknowledgements.

The author wishes to thank Steffen L. Lauritzen for helpful discussions.

- 3. References.
- [1] Goodman, G.S.: An intrisic time for non-stationary finite Markov chains.

Z. Wahrscheinlichkeitstheorie verw. Gebiete16 (1970), 165-180.

- [2] Johansen, S.: A central limit theorem for finite semigroups and its application to the imbedding problem for finite state Markov chains. Preprint, University of Copenhagen and Imperial College (1972).
- [3] Lee, E.B. and Markus, L.: Foundations of Optimal Control Theory. John Wiley: New York (1968).7