Seren Johansen

The Imbedding Problem
for Finite Markov Chains [V




Sgren Johansen

THE BANG-BANG PROBLEM FOR STOCHASTIC MATRICES.

Preprint 1972 No. 10

INSTITUTE OF MATHEMATICAL STATISTICS

UNIVERSITY OF COPENHAGEN

October 1972



1. Introduction and Summary

We shall consider the imbedding problem for n X n stocha-
stic matrices. Such a matrix is called imbeddable if it can
occur as transition probability matrix for a time continuous

Markov process with n states.

It 1is proved that any matrix which is in the interior of
the set of imbeddable matrices admits a representation as a
finite product of exponentials of extreme intensity matrices.

Let@ denote the set of stochastic n X n matrices and G
the set of n X n intensity matrices normalized such that trQ=
-1, QEQ

Let PGGE then P i1s imbeddable if there exist a null set
N and a measurable function Q(.) : [o,l]-eélsuch that the so-

lution Pe) of the equation

d -
(1.1) 2P (t) = P(e)alt), téN
(1.2) P(O0) =1

satisfies the condition

(1.3) P(1) = P.

For a proof of this see [1] or [2].

Notice thaté@ is a convex compact set and that the extre-
me points Of‘GZare characterized by the condition that exactly
one off diagonal element is 1.

We shall investigate the role of the extreme intensity-

matrices. If Q(t) = Q, then the solution to (1.1) and (1.2)

is



P(t) = 0"

which 1s called a Poisson matrix when Q is extreme, see [2].
Let@@Ldenote the set of matrices which are finite products of
Poisson matrices.

It was proved in [2] thatdﬁis dense in.zq; . In this pa-
per we shall investigate further proporties of#ﬂa We can pro-
ve that exp tQEﬁ% QEintGQ (Corollary;?), that%ﬂ.is starshaped

(Corollary6), and that int?ﬂiééél, (Theorele);

The problem of representing an imbeddable matrix as a
finite product of Poisson matrices is known as the Bang-Bang
problem in control theory: one can reach P by switching ab-
strubtly between extreme controllers Q a finite number of ti-
mes. We therefore say that P admits a Bang-Bang representati-
on.

The problem is also related to the representation of in-

finitely divisible and infinitely factorizable probability

measures on finite semigroups, see [2] and in this sense the

Bang-Bang problem is a generalization of the LEvy-Khinchin re-

presentation.



2. Main Results

The basic tool we shall use 1s a lemma which follows from

the Brouwer fixed-point theorem, see Lee and Markus [1] p.251.

2.1 Lemma. Let f be a continuous map from a compact convex

setab having interior points in RN, into the space RN. Let

Py be a point interior t003 and assume
(2.1) I£(P) - PIl < 1IP-P Il

for all Péafl then the image () covers PO.

We shall apply this lemma to the compact convex set
(2.2) ®€ = {p|llP-IIl < 2g},

where

[IP-I|| = supiZjlpij—Sijl = 25upi(1—pii)c
Notice that
Bﬁé = @l u032
where
(2.3) 631 = {Pl3(i,]) : P ; = 0},

(2.1) @

L {PIEli S PR 1-¢}.

The function f is defined by

p..Q..
(2.5) F(P) = T e ¥ 1

1%]

where Qij is the extreme intensity matrix with (i,j)'th ele-



ment equal to 1. The order in which the multiplication is

performed will be fixed throughout.

2.2 Lemma. For any PQE% we have

(2.6) [1£(P)-PI| < 2(ne)?e?"E,
Proof. Since

P=T1T+ X p..q..

iy 9O
we get
p..Q. .
[1£(P)=PI| = || MTe "9 * 1 - = .. .11,
i%j : ixj 90t

Using an elementary inequality for products of exponentials,

see [2],we get that

[12(R)-P11 < %(iijpijllQijll)Zexp(iszijlIQijII)
< 2(n€)2e2n€,
since
Q511 =2, & % §
and
L Py T £,(1-p,.) < n sup,(1-p..) < ne.

i%J

The main idea in using Lemma 2.1 is now that from (2.6)
it follows that the left-hand side of (2.1) decreases with &2
where as by keeping P0 in the interior ofdz€ and restricting

P't0631 orébg, the right-hand side of (2.1) will decrease with

€ and hence (2.1) will be satisfied for € sufficiently small.



Let us define
(2.7) ﬁ?(p) = {P|p,. > p}, 0 < p < L,
ig = ? n

2.3 Proposition. Let p be fixed, then for ¢ sufficiently

small, the matrix

P, = (1-€)I + €R, Rég%p)

admits a representation of the form

P. Q..
me *Jd 1J

i

for some stochastic matrix P = (pij) such that |[|I-P|| < 2e.

Proof. Since

I1P-IIl = elIR-IIl < 2e(1-p) < 2e.

and since PO is interior to@?'we have that PO € inﬂﬁ%.

Now let PE&a, and let p;. = 0, then

(o), _ _.
(2.8) [1P-P 11 > Ipij-pij | = er; s > €p.

If PE&% and P.; = 1l - €, then we evaluate

(0)
(2.9) 11P=P 11 > Ip, -p,; 0

= ll—e—(l-e)—eriil > €p.

Let now € be chosen so small that

2 2ne
e

(2.10) 2(ne) < €D

then we can combine (2.6), (2.8), (2.9), and (2.10) to see

that Lemma 2.1 can be applied and that we can represent PO in

the form f(P) for some P€&%.



2.4 Corollary.

P = etQE‘% Q€intQ.

Proof. Let us define the stochastic matrix R by

Q =R -1I
then

P = (P)" = (exp(k-lt(R—I)))k
and

P, = I+ tk T (R-T) + B
where

1 - -
11BI1 < 35720 1sall Zexp(x 1 15al 1),

Rewriting this we obtain

1

P. = (1-tk )T + tk T(R+kt 1B).

k

Now fix p = %infi ; then p > 0 and for k sufficiently large
H

(R+kt_lB)é§%P).

Now choose k so large that Proposition 2.3 can be appli-

ed with € = tk—l We then get the existence of a stochastic

matrix P(k) such that

(k)
P. . Q. .
- ('H.e 1] 1J)k
1%

which proves that Pget



Let now M be the matrix with entries n-l.

2.5 Corollary.

(1-e)I + eMEA& 0 < e < 1.
Proof. We define
Q = (M-I)(-1n(1-g))
then q.. > 0 and
1J v
e? = (1-€)I + eM
and we can apply Corollary 2.L.

2.6 Corollary. The setbézié starshaped around M.

Proof. Let PQ@% then sincegéiis a semigroup we can apply Co-

rollary 2.5 and get that
pe (M-T)(-10(1-8)) _ (1 c)p +oemeh 0 < & < 1.

We shall now proverthat‘the interior of?ﬁéhas a Bang-Bang
representation. The idea here is that the Bang-Bang matrices
are dense'in?ﬂ%and'that each such matrix P is followed be a

small "cone shaped" region Pfaﬁg) of Bang-Bang matrices which

point towards M.

Hence any matrix P, in the interior of?ﬁ;will be surroun-

ded by Bang-Bang matrices and it is proved that one of these

will be behind P, (as viewed from M) in such a way that its

0

"cone" covers Po.

2.7 Theorem. Any imbeddable matrix in the interior of‘%ﬂ%as

a representation as a finite product of expotentials of extre-



me intensities or

(2.11)+=  int m(,éz,

Proof. From Proposition 2.3 it follows that for 0 < p < n-l,

the open set

(2.12) K = {P|P = (1-0)I + oR, 0 < a < €, r.; > o}
1

is contained ingéifor € sufficiently small.

Notice for PEfwe have

Fe A |

Now fix PO € int?ﬁ;and consider the set of matrices inﬁ?

from which PO can be reached by a matrix iﬁ?(,

(2.12) @:‘{P[%PO}.

It is easily seen that

§c‘{P|Det P> 0}

and since the funection P - P_lPo is continuous andz%fis open

it follows that

§ = {PIP'lPOqK} = PKl

is open.

Now letgﬁ?%e a neighbourhood of PO such that

e int W

Let ¢ > O chosen so small that

P_¢ = ('1+<1>)PO - ¢M€gf;‘

then PO is on the line segment from M to P 6 Sincelecontains



the open line segment

1T, (1-€)I + eM[

it follows that one can reach P0 from P ¢ using a matrix injki

for ¢ sufficiently small. Hence

{
V54
P-¢€ e

Now the setg'/r-n is a non-empty open subset of intmand

hence contains a mawix‘Pl fromaéé whieh was dense iﬂ)ﬁ. But

then we can reach Pl using a Bang-Bang controller, since Pl€@4i

¢

and we can reach P, from Pl using a Bang-Bang matrix fromj{,

. 0
since Pled! Hence POG&éas was to be proved.
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