PREPRINT
 ОСт
 1972

Søren Johansen

The Imbedding Problem for Finite Markov Chains IV

UNIVERSITY OF COPENHAGEN INSTITUTE OF
 MATHEMATICAL STATISTICS

S申ren Johansen

THE BANG-BANG PROBLEM FOR STOCHASTIC MATRICES.

Preprint 1972 No. 10

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

October 1972

1. Introduction and Summary

We shall consider the imbedding problem for $n \times n$ stochastic matrices. Such a matrix is called imbeddable if it can occur as transition probability matrix for a time continuous Markov process with n states.

It is proved that any matrix which is in the interior of the set of imbeddable matrices admits a representation as a finite product of exponentials of extreme intensity matrices.

Let $\int \frac{\int}{}$ denote the set of stochastic $n \times n$ matrices and \mathbb{Q} the set of $n \times n$ intensity matrices normalized such that trQ= $-1, \quad Q \in Q$.

Let $P \in \mathcal{P}$, then P is imbeddable if there exist a null set N and a measurable function $Q^{\prime}(\circ):[0,1] \rightarrow Q$ such that the solution $P(\circ)$ of the equation
(I.I) $\quad \frac{d}{d t} P(t)=P(t) Q(t), \quad t \notin \mathbb{N}$
(1.2) $P(0)=I$
satisfies the condition
(1.3) $\quad P(1)=P$.

For a proof of this see [1] or [2].
Notice that Q is a convex compact set and that the extreme points of Q are characterized by the condition that exactly one off diagonal element is l.

We shall investigate the role of the extreme intensitymatrices. If $Q(t)=Q$, then the solution to (I.1) and (I.2) is

$$
P(t)=e^{t Q}
$$

which is called a Poisson matrix when Q is extreme, see [2]. Let \mathcal{A} denote the set of matrices which are finite products of Poisson matrices.

It was proved in [2] that \mathcal{A} is dense in \mathscr{N}. In this paper we shall investigate further proporties of \mathcal{A}. We can prove that exp tQE \mathcal{C}_{6} Q Q int Q (Corollary 22), that \mathcal{A} is starshaped (Corollary2,6), and that int $ク$ ($\subset \mathcal{A}$, (Theorem2.2).

The problem of representing an imbeddable matrix as a finite product of Poisson matrices is known as the Bang-Bang problem in control theory: one can reach P by switching abstrubtly between extreme controllers Q a finite number of times. We therefore say that P admits a Bang-Bang representation.

The problem is also related to the representation of infinitely divisible and infinitely factorizable probability measures on finite semigroups, see [2] and in this sense the Bang-Bang problem is a generalization of the Lêvy-Khinchin representation.

2. Main Results

The basic tool we shall use is a lemma which follows from the Browner fixed-point theorem, see Lee and Markup [1] p.251.
2.1 Lemma. Let f be a continuous map from a compact convex set Ω having interior points in $R^{\mathbb{N}}$, into the space $R^{\mathbb{N}}$. Let P_{0} be a point interior to 0 and assume
(2.1) $\left|\left|f(P)-P \|\left|<\left|\left|P-P_{0}\right|\right|\right.\right.\right.$
for all PEDB, then the image $f(B)$ covers P_{0}.
We shall apply this lemma to the compact convex set
(2.2) $\quad \beta_{\varepsilon}=\{P| ||P-I| \mid \leq 2 \varepsilon\}$,
where

$$
||P-I||=\sup _{i} \Sigma_{j}\left|p_{i j}-\delta_{i j}\right|=2 \sup _{i}\left(I-p_{i i}\right)
$$

Notice that

$$
\partial B_{\varepsilon}=B_{1} \cup B_{2}
$$

where
(2.3) $B_{I}=\left\{P \mid \exists(i, j): p_{i j}=0\right\}$,
(2.4) $\bigotimes_{2}=\left\{P \mid \exists \exists_{i}: p_{i i}=1-\varepsilon\right\}$.

The function f is defined by
(2.5) $\quad f(P)=\prod_{i \neq j} e^{p_{i j} Q_{i j}}$
where $Q_{i j}$ is the extreme intensity matrix with (i,j)'th ale-
ment equal to l. The order in which the multiplication is performed will be fixed throughout.
2.2 Lemma. For any $P \in B_{\varepsilon}$ we have
(2.6) $\quad||f(P)-P|| \leq 2(n \varepsilon)^{2} e^{2 n \varepsilon}$.

Proof. Since

$$
P=I+\sum_{i \neq j} p_{i j} Q_{i j}
$$

we get

$$
||f(P)-P||=\left|\left|\prod_{i \neq j} e^{p_{i j} Q_{i j}}-I-\sum_{i \neq j} p_{i j} Q_{i j}\right|\right|
$$

Using an elementary inequality for products of exponentials, see [2], we get that

$$
\begin{aligned}
& ||f(P)-P|| \leq \frac{1}{2}\left(\sum_{i \neq j} p_{i j}| | Q_{i j}| |\right)^{2} \exp \left(\sum_{i \neq j} p_{i j}| | Q_{i j}| |\right) \\
& \leq 2(n \varepsilon)^{2} e^{2 n \varepsilon},
\end{aligned}
$$

since

$$
\left\|Q_{i j}\right\|=2, i \neq j
$$

and

$$
\sum_{i \neq j} p_{i j}=\Sigma_{i}\left(I-p_{i i}\right) \leq n \sup _{i}\left(I-p_{i i}\right) \leq n \varepsilon
$$

The main idea in using Lemma 2.1 is now that from (2.6) it follows that the left-hand side of (2.l) decreases with ε^{2}, where as by keeping P_{0} in the interior of $\mathcal{B}_{\varepsilon}$ and restricting P to β_{1} or B_{2}, the right-hand side of (2.l) will decrease with ε and hence (2.l) will be satisfied for ε sufficiently small.

Let us define
(2.7) $\rho(p)=\left\{P \mid p_{i j} \geqq p\right\}, 0<p<\frac{1}{n}$.
2. 3 Proposition. Let p be fixed, then for ε sufficiently small, the matrix

$$
P_{0}=(I-\varepsilon) I+\varepsilon R, R \in \mathcal{P}(p)
$$

admits a representation of the form

$$
\prod_{i \neq j} e^{p_{i j} Q_{i j}}
$$

for some stochastic matrix $P=\left(p_{i j}\right)$ such that $\|I-P\| \leq 2 \varepsilon$.
Proof. Since

$$
\left\|P_{0}-I\right\|=\varepsilon\|R-I\| \leq 2 \varepsilon(I-p)<2 \varepsilon .
$$

and since P_{0} is interior to \oint we have that $P_{0} \in$ int $\mathcal{B}_{\varepsilon}$. Now let $P \in \mathbb{B}_{1}$, and let $p_{i j}=0$, then
(2.8) $\left|\left|P-P_{0}\right|\right| \geq\left|p_{i j}-p_{i j}(0)\right|=\varepsilon r_{i j} \geq \varepsilon p$.

If $p \in \beta_{2}$ and $p_{i i}=1-\varepsilon$, then we evaluate
(2.9) $\left|\left|P-P_{0}\right|\right| \geq\left|p_{i i}-p_{i i}(0)\right|$
$=\left|1-\varepsilon-(1-\varepsilon)-\varepsilon r_{i i}\right| \geq \varepsilon p$.

Let now ε be chosen so small that
(2.10) $2(n \varepsilon)^{2} e^{2 n \varepsilon}<\varepsilon p$
then we can combine (2.6), (2.8), (2.9), and (2.10) to see
that Lemma 2.1 can be applied and that we can represent P_{0} in the form $f(P)$ for some $P \in \mathcal{B}_{\varepsilon}$.
2. 4 Corollary.

$$
P=e^{t Q} \in A_{0} Q \in \operatorname{intQ}
$$

Proof. Let us define the stochastic matrix R by

$$
Q=R-I
$$

then

$$
P=\left(P_{k}\right)^{k}=\left(\exp \left(k^{-I} t(R-I)\right)\right)^{k}
$$

and

$$
P_{k}=I+t k^{-l}(R-I)+B
$$

where

$$
||B|| \leq \frac{1}{2} k^{-2}| | t Q| |^{2} \exp \left(k^{-1}| | t Q| |\right) .
$$

Rewriting this we obtain

$$
P_{k}=\left(l-t k^{-1}\right) I+t k^{-1}\left(R+k t^{-1} B\right) .
$$

Now fix $p=\frac{1}{2} \inf _{i, j} r_{i j}$ then $p>0$ and for k sufficiently large

$$
\left(R+k t^{-1} B\right) \in \rho(p)
$$

Now choose k so large that Proposition 2.3 can be applied with $\varepsilon=t^{-1}$. We then get the existence of a stochastic matrix $P^{(k)}$ such that

$$
P_{k}=\prod_{i \neq j} e^{p_{i j}{ }^{(k)} Q_{i j}}
$$

It follows that

$$
P=\left(P_{k}\right)^{k}=\left(\prod_{i \neq j} e^{\left.p_{i j}{ }^{(k)} Q_{i j}\right)^{k}}\right.
$$

which proves that $P \in f$

Let now M be the matrix with entries n^{-1}.
2. 5 Corollary.

$$
(1-\varepsilon) I+\varepsilon M \epsilon_{0} A_{0} 0 \leq \varepsilon<1
$$

Proof. We define

$$
Q=(M-I)(-\ln (I-\varepsilon))
$$

then $q_{i j}>0$ and

$$
e^{Q}=(1-\varepsilon) I+\varepsilon M
$$

and we can apply Corollary 2.4.
2. 6 Corollary. The set $\mathcal{A}_{\text {is }}$ starshaped around .

Proof. Let $P \in \notin$, then since \mathcal{A} is a semigroup we can apply corollary 2.5 and get that

$$
P e^{(M-I)(-\ln (1-\varepsilon))}=(1-\varepsilon) P+\varepsilon \mathcal{M E}_{A} 0 \leq \varepsilon<1 .
$$

We shall now prove that the interior of $\mathcal{W}_{\text {has }}$ a Bang-Bang representation. The idea here is that the Bang-Bang matrices are dense in \mathscr{N} and that each such matrix P is followed be a small "cone shaped" region $\operatorname{Pf}\left(\mathbb{C B}_{\varepsilon}\right)$ of Bang-Bang matrices which point towards M.

Hence any matrix P_{0} in the interior of $\prod_{\text {will }}$ be surrounded by Bang-Bang matrices and it is proved that one of these will be behind P_{0} (as viewed from M) in such a way that its "cone" covers P_{0}.
2. 7 Theorem. Any imbeddable matrix in the interior of MoChas a representation as a finite product of expotentials of extre-
me intensities or

(2.11) $=$ int $M C_{c} \notin$

Proof. From Proposition 2.3 it follows that for $0<p<n^{-1}$, the open set
(2.12) $\mathscr{H}=\left\{P \mid P=(1-\alpha) I+\alpha R, 0<\alpha \leq \varepsilon, r_{i j}>p\right\}$
is contained ind for ε sufficiently small.
Notice for $P \in \notin$ we have
哦 \mathcal{A}.
Now fix $P_{0} \in \operatorname{int} \mathbb{M}$ and consider the set of matrices in from which P_{0} can be reached by a matrix in \mathcal{K},

$$
\begin{equation*}
\theta=\left\{P \mid P \mathcal{H}_{0}\right\} \tag{2.12}
\end{equation*}
$$

It is easily seen that

$$
0 \subset\{P \mid \operatorname{Det} P>0\}
$$

and since the function $P \rightarrow P^{-1} P_{0}$ is continuous and is open it follows that

$$
\theta=\left\{P \mid P^{-1} P_{0} \in \mathcal{K}\right\}=P \mathcal{K}^{-1}
$$

is open.
Now let \mathcal{N} be a neighbourhood of P_{0} such that

$$
\mathcal{F}_{\mathrm{cint}} \mathrm{Mc}
$$

Let $\phi>0$ chosen so small that

$$
P_{-\phi}=(1+\phi) P_{0}-\phi M \in d P_{g}
$$

then P_{0} is on the line segment from M to $P_{-\phi}$. Since ${ }^{\text {K }}$ (tins
the open line segment
]I, (1- $\varepsilon) I+\varepsilon M[$
it follows that one can reach P_{0} from $_{-\phi}{ }_{-\phi}$ using a matrix in for ϕ sufficiently small. Hence

$P_{-\phi} \in \mathscr{O}$.

Now the set ch \cap is a nonempty open subset of int \mathscr{N} and hence contains a matrix P_{1} from A, which was dense in $\$ 1$. But then we can reach P_{1} using a Bang-Bang controller, since $P_{1} \in \mathscr{A}$ and we can reach P_{0} from P_{I} using a Bang-Bang matrix from, since $P_{1} \in \mathcal{O}$. Hence $P_{0} \in \mathscr{A}$ was to be proved.
3. Acknowledgements.

The author wishes to thank Steffen L. Lauritzen for helpfurl discussions.

3. References.

[I] Goodman, G.S.: An intrisic time for non-stationary finite Markov chains.
Z. Wahrscheinlichkeitstheorie verw. Gebiete 16 (1970), 165-180.
[2] Johansen, S.: A central limit theorem for finite semigroups and its application to the imbedding problem for finite state Markov chains. Preprint, University of Copenhagen and Imperial College (1972).
[3] Lee, E.B. and Markus, L.: Foundations of Optimal Control Theory. John Wiley: New York (1968).7

