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Introduction. 

In the statistical theory of the one-dimensional normal distribution the 

linear hypothesis is canonical in the sense that it is the only kind of 

hypothesis which gives tractable statistical models and makes it possible 

to answer all statistical questions concerning the models in a satis­

factory way. In geometric or invariant formulation the theory has reached 

a high degree of perfection. For the problems allowing unknown multi­

dimensional covariances a similar technique does not exist. The literature 

lists a great number of special cases, but a general theory is lacking 

completely. 

We define a general canonical hypothesis which includes most if not all 

of the well-behaved normal models. The usefulness of the model lies ~n 

its invariant formulation. We therefore begin with a careful exposition 

of the necessary algebra and then give an invariant treatment of the 

distributional theory of the normal distribution, which makes it possible 

to derive the distributions of the maximum likelihood estimators under 

the canonical hypotheses. 

The ma~n algebraic tool ~s the tensor product which was introduced into 

statistics by Stein [9] . We use the whole algebraic machinery of 

Bourbaki [8] and some technique from category theory see e.g. MacLane 

and Birkhoff [7] 

The present work ~s an outcome of research done at the Institute of 

Mathematical Statistics, University of Copenhagen, during the last four 

years. The aim is an algebraic analysis of the normal models, but the 

work is not finished and several of the present formulations are tentative. 

The authors want to thank Susanne MI;H1er whose work [12] on the Wishart 

distribution formed the basis of the research.presented here. 
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1. Positive tensors. 

Let S denote the category of sets, V the category of vectorspaces over 
"'''' R, and SV the category of semi-vectorspaces over R+. Here R+ denotes the 

semiring of non-negative real numbers. Let 

W ----;.) 81 

U s1--~ 

U' UW 

be forgetful functors and F[F'] the left adjoint functor for U[U']. 

i 
SV and 1 have tensorproducts which give them the structure of symmetric 

. monoidal closed categories. 

Let E E V. The isomorphism homS(U'E,UW(E ® E)) -+homSV(FU'E, W(E® E)) 

takes 

°E U' E ) UW(E ® E) 

xl ) x®x 

into 0' E : FU'E -4 WeE ® E). 

sE 
U' E ) UFU' E FU' E 

~ loo~ 
UW(E ® E) WeE ® E). 

Let (PE,PE) be the image of 0Eo The elements of UPE will be called the 

positive tensors over E. 
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P is the object function of a functor V ~ sf, and P' is a natural 

transformation: 

E PE 

e 1 p(e)l 

E' PE' 

P~ 
E 

, 
PE' 

> WeE 0 E) 

1 Wee ® e) 

)0 WeE' ® E' ). 

This follows immediately from the definition of (PE,PE) and the fact that 

F is a free object functor. 

It is, moreover, immediate that DE has a unique factorization through 

U(PE ), 

U' E 
PE 

----------------~) UPE 

lu(~) 

UW(E ® E). 

Hence, P is a natural transformation U~ --7 UP. 

Note that peR) = R+ and P(O) = O. 

In V let (E ffi G, (u,v)) be the direct sum of E and G with projections r 

and s, 

u v 
E oE-<----~ E ffi G _( ___ -;., G • 

r s 

Since P is a functor the diagram 

p(u) p(v) 
P(E) --------7'> P (E ffi G) ~<------- peG) 

PE ffi PG 



- 4 -

defines amorphism 

J, P(E) EB peG) ~ P(E EB G). 
E, G 

J, is a natural transformation 

J, EB 0 (p X p) ~ P " EB. 

J, is called the direct orthogonal sum transformation. For ~ E UPE and 

~ E UPG we shall call J,E G(~ EB ~) the direct orthogonal sum of ~ and ~ , 
and usually write ~ J, ~ instead of ~ G(~ EB ~). , 
A positive tensor H E UP(E EB G) is the direct ."orthogonal sum of a posi­

tive tensor from 1JPll: anda;pDsitive tensor friDm UPG if and odly if 

H = p(u 0 r)(H) + p(v 0 s)(H). 

This follows immediately from the fact that P is a functor. 

From associativity and commutativity of the tensor product it follows 

that the diagram 

U' E X U' G --------~> U' (E ® G) 

BE X B G i 1 BE 0 G 

UW(E ® E) X UW(G ® G) ~ UW«E ® E) ® (G ® G»= UW(E ® G)®(E ® G» 

is commutative. 

From this it follows that the diagram 

UPE X UPG -------~) UP (E ® G) 

1 1 U(~ 0 Gl 

UW(E ® E) X UW(G ® G) ---? UW«E ® E) ® (G ® G» = UW«E ® G)®(E ® G» 

is commutative. 
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To show this, first use the factorization 5 = U(5') " £: and then the na­

tural transformation property of £:: U' ----7 UFU' .,The proof is completed 

by using the fact that F is a free object functor and the definition of 

p' and P. 

The function UPE X UPG --7 I1P(E ® G) is bilinear. This gives a factori-

zation 

UPE X UPG ) U(PE ® PG) 

1 U('E, G) 

PE ® PG 

1 'E, G 

UP(E ® G) P(E ® G). 

For L: E UPE and cIJ E UPG 'rE G(L: ® w) is called the tensor product of , 
the positive tensors L: and cIJ. We will usually writeL: ® cIJ for 'rE G(L: ® cIJ). , 
Note that 1 E peR) = R+ is unit for 

PE ® PR --7' P(E ® R) = PE. 

By arguments analogous to those for the direct orthogona1 sum it can be 

shown that 'r is a natural transformation from ® .. (p X p) ~ P b ®, and 

the distributive law for direct orthogonal sum and tensor product of po­

sitive tensors obtain~ 

P(d) (,$ 'r 0,(1 ®.1) =.1" ('I EB 'I) Cl d'. 

H':J:",:d[d'J is the distributive law for direct sum and tensor product in 
-'[ '/J 
V SV '" 

2. Regular positive tensors. 

In this section all vector spaces will have finite dimension. 

, * For E E V let E denote the dual space 

* E = Homv(E, R). 
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Ham (El' G1) ® Hom(E2, G2) ~ Hom(E1 ® E2, G1 ® G2 ), 

* * * El ® E2 ~ (El ® E2) , 

* * * * * El EB E2 --7 El X E2 (~(E1 EB E2) ), 

defines all natural transformations between functors, and the trans-

formations being isomorphisms we shall identify the spaces in question. 

The sequence of morphisms 

PE~ 

WeE ®E) ~ 
** WeE ®E) ~ 

* W(Hom(E ,R) ®lIom(R, E» ~ 

* W(Hom(E ® R, R ® E») ~ 
* W(Hom(E ,E») 

* determines amorphism p : PE ----7 W(Hom(E ,E». 

Definition: A positive tensor ~ E UPE is regular, if p(~) is an isomorphism. 

Definition: For ~ E UPE regular, 

~-1 = P(p(~)-l)(~) 

-1 * is called the inverse positive tensor. ~ E UP(E ). 

The proof of the following theorem is not hard. 

-1 * Theorem: If ~ E UPE is regular, then ~ E UP(E ) is regular, and 

Theorem: If ~ E UPE and ~ E UPG are regular then ~ 1 ~ and ~ ® ~ are re­

gular and 
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Cz: J. <D) -1 z: -1 J. <D -1 

Cz: ® <D)-l = z:-l ® <D- l • 

Proof: Since the diagrams 

PE Et! PG -----------------~~ P(E Et! G) 

1 
* * * * * Hom(E ,E) Et! Hom(G ,G) --7 Hom(E Et! G ,E Et! G) ~ Hom( (E Et! G) , (E Et! G» 

and 

PE ® PG > P(E ® G) 

1 1 
* * * * * Hom(E ,E) ® Hom(G ,G) ----7>'Hom(E ® G ,E ® G) - Hom((E ® G) ,(E ® G» 

are commutative the assertions follow from J. and" being natural trans­

formations. 

We shall need the following readily seen result. 

Lemma: Let z: E UPE be regular and f E GL(E), then P(f)(Z:) is regular and 
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3. The normal distribution. 

Let E E V, let ~ (E) be the positive Radon measures with norm 1, and let 

f-L E ~ (E). 

If the integral J xdf-L(x) exists we shall say that f-L has a mean. The mean 

is defined by E 

(1 ) 

Note that m(f-L) E E. 

If f-L has a mean and the integral J PE(x-m(f-L))df-L(x) exists we shall say 

that f-L has a variance. The varia~ce is defined by 

var(f-L) ~ J PE(x-m(f-L»df-L(X). 
E 

(2) 

var (f-L) E PE. 

Note that 

varCf-L) ~ J PE (x)d(5 (m(f-L) )f-L) (x). 
E 

Here 5 is translation to the left. 

From this and the definition of P(E) it follows that the function 

uMl (E) ----?o) U' E X UPE 
(4) 

f-L I----~> (m(f-L), var (f-L» 

is a surjection. 

For f E EndE we have 

(5) 

and by (3) 

(6) 
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since p is a natural transformation. 

Let El' E2 E V, "Ill E 111 (El) and 112 E 111 (E2), then III ® 112 E ~ (El EB E2 )· 

If m(ll l ) and m(1l2 ) exist we have 

If var(lll) and var(1l2) exist it follows from (3), (6), and remark p.4 

that 

n 
F d to. EBnE h' h' or a pro uct measure ~ Il on t e ~somorp ~sms 

i=l 

EB~ = EBn (E ® R) = E ® EBn R 

gives 

n n n n 
var ( ® Il) = J. var Il = J. var Il ® 1 = var Il ® ( J. 1) • 

i=l i=l i=l i=l 

Here 1 is the unit in peR). 

(7) 

(8) 

Let dim E = k and let (e. )'-1 .kbe a basis for E. Hence, (e.® e')'-l k 
~ ~- •• ~ J ~- ••• 

j=l. •• k 
is a basis for E ® E. For Il E Ml (E) the mean can be expressed in terms of 

(e ) and the variance in terms of (e, ® e')'-l k" 
i i=l ... "k ~ J ~- ••• 

j=l. •• k 

For a finite dimensional vectorspace with a basis the normal distribu­

tion cp~, z: with mean ~ and variance z: is defined in Brq;ns [1] chap. 6. 

Since the transformation (4) is a surjection we have a distribution cp~,z: 

on E with basis (e')'-l k' for every choice of ~ E E, z: E P(E) and 
]. J.- e.e 

(e·).-l k" 1 1- ese 

For f E EndE Brq;ns [lJ gives 

(9 ) 
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and using (5) and (6) we see that ~~,~ is independent of the basis 

(e. ).-1 k" 
1 1.- ••• 

Moreover, for E = El EEl E2 and ~l EEl.' s2 E E2, ~l E peEl)' ~2 E P(E2 ) we 

get 

(10) 

When ~ is regular ~~,~ has a density 

1 -1 -- ~ «x-~) ®(x-~» 1 2 
a(~) e (ll) 

-1 
with respect to Lebesgue measure ~ on E. (~ (x ® x) is defined by the 

contraction 

* * E ® E ® E ® E -----7 R ® R = R. ) 

The constant a(~) depends on~. From lemma p. 7 it follows that· 

(12) 

f E GLE. 

obtains. 
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4. Canonical Hypotheses. 

The normal distributions on the finite dimensional vector space E is 

parametrized by U~E) X UP(E). 

A canonical hypothesis is a decomposition 

E = El? (E. 0(L. El? 1'.») 
iEI ~ ~ ~ 

of E together with a parametrization 

El? (E. 0 L'.) --t 
iEI ~ ~ 

El? (E. 0(L. El? L'.») 
iEI ~ ~ ~ 

determined by the injections 

E. 0 1'. ---]> E. 0(L. El? L'.) 
~ ~ ~ ~ ~ 

and 

El? P(E.) --7 P(E). 
iEI ~ 

The injection (3) is defined by 

(l:')'EI it----? 1 (l:i 0(<D.j 1 ~», 
~ ~ iEI •• 

where <D. E P(L.) and <D~ E P(L'.) are known regular positive tensors. 
~ ~ ~ ~ 

(l) 

(2 ) 

(3 ) 

Sometimes we restrict our attention to regular distributions. The canoni­
sqme 

cal hypothesis is the! except that (3) is restricted to regular positive 

tensors. P (E) shall denote the set of regular positive tensors on E. 
r 

Under a canonical hypothesis the variance is a direct orthogonal sum of 

positive tensors, each of which is a tensorproduct of a completely unknown 

positiv tensor and a known positive tensor. The mean-value structure is 

similar to the variance structure. The hypothesis on the mean-value is 

given as a subspace which is a direct sum of canonical subspaces i.e. sub­

spaces of the form E. 0 L~ where the variance on E. is completely unknown. 
~ ~ ~ 
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At first sight the hypothesis seems rather restrictive but because of its 

invariant formulation it actually comprises all well-behaved hypotheses 

known to the authors. It includes all hypotheses treated in Anderson [2J, 

and all variance component models are canonical corresponding to I-dimen­

sional E.'s. Also tractable symmetry hypotheses are special cases. They 
1. 

are usually defined by symmetry conditions for the variance matrix in a 

fixed basis. The conditions are equivalent to requiring that the hypothe-

sis is invariant under a finite group of isomorphisms of E, and it follows in 

a rather straight forward way from the representation theory for finite 

groups that these hypotheses are canonical. In literature the statistical 

problems connected with these hypothe~.s are treated individually see e.g. 

Consul [ 3'J, 01kin and Press [ 4 J, Votaw [ 5 'J, and Wilks [ 6 J. 

We shall not deal with problems of testing statistical hypotheses, but 

only mention that there seems to be four types of tests. Test for mean­

value zero, test for identity of variances (Bart1ett's test), test for 

orthogona1 decomposition of the variance (test of independence), and test 

for the decomposition of the variance in a tensor product of an unknown 

and a known positive tensor. The first three types are well-known while 

the last test is not treated in the literature. 

5. Estimation. 

From the relation 

CP.L "fV\( .L ') = . ®EI (cp" . tVI.... ® cp". to> ffi'.) .EI 6.'CI w. w. 6 ~ 6 'Cl w 
1. 1. 1. 1. 1. 1. 1. 1. 1. 

it follows _tllat the canonic:a1 estimation-problem decomposes into a pro­

duct of estimationproblems. ' 

Therefor~ we can restrict ourselves to the simple canonical hypothesis 

(E- ® L) Efl (E ® L' ) with w E P(L), cIi' E P(L' ) regular, 

without loss of generality. 
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Since we are only interested in the maximum likelihood estimator, we shall 

further restrict the hypothesis to distributions with regular variance. 

We have the distribution 

having densi ty 

~ E (E ® L') and ~ E P (E) 
r 

with respect to Lebesgue measure ~l ®~2' ~1[~2J being Lebesgue measure 

on E ® L [E ® L'J. 

Since 

we can define the function 

s E®L----7-E®E 

s(Xl ) is the unnormeci empirical variance. 

Remark: (s(xl ),x2 ) is a sufficient statistic for (~,~). 

We have ,p(<;Ii-l) E Hom(L, L*) and 

** * xl E E ® L == E ® L == Hom(R, E) ® Hom(L ,R) 

* == Hom(L ,E). 

Contraction corresponds to composition of morphisms, hence we have 
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This shows that the empirical variance is an element in P(E). 

* Suppose dim E ~ dim L. The elements of E 0 L = Hom(L ,E) of full rank 

constitutes an open, overall dense subset (E ® L)r" Hence, s(xl ) is re­

gular with probability 1. If we restrict s to (E 0 L) , 
r 

s s (E 0 L) --7 P (E) 
r r 

is a surjection. 

GLeE) acts on (E 0 L)r and PreE) by (f,xl ) ~ (f ® l)(xl ) and 

(f,y) ----+P(f)(y), respectively. 

s commutes with these actions, since 

Let JJ. be image by s of 1\1' 

Lemma: The measure v on P (E) defined by 
r 

dv(y) 

is the measure on P (E) invariant under the action of GL(E). See e.g. 
r 

Bourbaki [llJ. 

Proof: For f E GL(E) we have 5 (f)l\l = Idet f 01 11\10 Since s commutes 

with the action of GL(E) it follows that 5 (f)JJ. = Idet f ® llJJ. and we have 

1 
a(P(f)(y) 0 ~) d(5(f)JJ.)(y) 

1 
= -a--( y--::::®-~-;)"I-::-de-'t"--::f-0:::--:-l"'l 
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The following argument gives the distribution of s(xl ). 

1.. -1 ( ) 1 -- L: Y 
a(L: Q9 <D) e 2' d(sA. l ) (y) 

1 
= -a =(L::-=Q9-::::--<D"7") e 

1 -1 -- L: (y) 
2 

The distribution 

dW(y) 

e 

1 -le -- L: y) 
2 

1 -1 
-2L: (y) 

e dv(y) 

is the Wishart-distribution with parameters (L:,<D). 

dv (y). 

Theorem: The maximum likelihood estimator for (L:,~) is 

( 1 

Proof: The density of the sufficient statistic (s(xl ),x2 ) is 

a(s(x1 ) Q9 <D) 

a(L: ® <D) 

It is evident that t = x2 and it only remains to maximize 

= 

1 

1 1 -1 ( -2 L: (s xl» a(s(xl ) ® <D) 

a(L: ® <D) a (L: ® <D') e 

a ( S (xl). Q9 (<D .L <D'» 

a(L: Q9 (<D J, <D'» e 

1 -1 -2 L: (s (xl» 1 

does not depend on L:, so the problem is reduced to the 

problem of maximizing the density of the Wishart distribution with para­

meters (L:, <D J. <D'). 
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We consider therefore the canonical hypothesis 

E 0 (L ® L' ) 

for (1) J. ql) E P (L EEl L' ). 

The sufficient statistic y = sex) will have a Wishart distribution 

dw(y) = a (y 0 (1) J. 1>'» 
a(l: ® (1) J.1>'» 

e 

1 -1 
-~ (y) 

dv(y). 

This is an exponential family and the maximum likelihood estimator is de­

fined by 

mew) y. (l) 

Now 

mew) = f ydw(y) = f s(x)d~(x) 

For g, h E Horn (E ® (L EEl L' ), E ) 

f (g ® h)(x 0 x) d~(x) = (g ® h) f (x ® x) d~(x) 

= (g ® h) var(~) = (g ® h)(l: 0 (1) J. 1>' ». 

This relation can be extended by linearity and 

Hom(E 0 (L EEl L' ), E) ® Hom(E 0 (L EEl L' ), E) ~Hom(E 0(L EEl U )0 E 0(LEBL' ), Et2E) 

being an isomorphism we get 
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From this it follows that the equation (1) has the solution 

Hence, 

L =--------~y-------­
-1 

(ill.Lill') (ill.Lill') 

We have proved that for the canonical hypothesis the maximum likelihood 

estimator exists and is sufficient. In Henningsen [10] it is shown that 

if we have a problem 

S ---~) W(E ® F) 

P(E) ------"» P (E ® F) 

where ill is known and S is an arbitrary subset, then existence and suffi­

ciency of the maximum likelihood estimator under very mild conditions im­

ply that the hypothesis is canonical. 
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