Hans Brøns and Inger Harder Hansen

A GENERALIZATION OF THE CRAMÉR-RAO INEQUALITY

Preprint 1971 No. 6

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

September 1971
INTRODUCTION

The famous Cramér-Rao inequality (Rao [1945], Cramér [1946]) gives a lower bound for the variance of unbiased estimators. By generalizing the concept of a mean-value one is led to consider new concepts of unbiasedness. It is shown that in these cases an inequality similar to the inequality of Cramér-Rao holds, providing a lower bound to a quantity which can be interpreted as the measure of dispersion corresponding to the particular choice of mean-value.

The joint results of the authors were first collected in Harder Hansen [1961].

1. Generalized Mean-Values.

In this section we list the properties of generalized mean-values which are needed in the following. For proofs see Brøns [1967], comp. Brøns, Brunk, Franck, and Hanson [1969].

Let g be a convex function on the open interval J on \mathbb{R} (the set of real numbers), and consider the sets

$$
V_g = \{ \tau \in J | g(\tau') \geq g(\tau) \forall \tau' \leq \tau \}, \quad H_g = \{ \tau \in J | g(\tau') \geq g(\tau) \forall \tau' \geq \tau \}.
$$

V_g is empty or an interval with the same left endpoint as J, and H_g is empty or an interval with same right endpoint as J.

The set $V_g \cap H_g$ is either empty or an interval, and is the set of points in which g assumes its minimum. Its left endpoint is denoted $m_0 g$ and its right endpoint $m_1 g$. Both values can be infinite. If H_g is empty, $m_0 g$ is the right endpoint of J, and if V_g is empty $m_1 g$ is the left endpoint of J.

The identity

$$
\{ \tau \in J | m_0 g \leq \tau \} = \{ \tau \in J | D^+ g(\tau) \geq 0 \}
$$

and the similar one for m_1 and $D^- g$ characterize m_0 and m_1 in terms of g's left and right derivatives $D^- g$ and $D^+ g$.

Let \mathbf{A} be a σ-field on a set X. A C-function on X is a function $g: X \times J \rightarrow \mathbb{R}$ such that the partial function $x \mapsto g(x, \tau)$ is \mathbf{A}-measurable for all $\tau \in J$ and the partial function $\tau \mapsto g(x, \tau)$ is convex for all $x \in X$.

Let $D^- g(x, \tau)$ denote the left derivative and $D^+ g(x, \tau)$ the right derivative in τ of the convex function $\tau \mapsto g(x, \tau)$. Then the functions $x \mapsto D^- g(x, \tau)$ and $x \mapsto D^+ g(x, \tau)$ are \mathbf{A}-measurable functions for all $\tau \in J$, and the function $x \mapsto g(x, \tau) - g(x, \theta)$ is integrable with respect to a probability measure P on \mathbf{A} for all $(\tau, \theta) \in J^2$ if and only if $x \mapsto D^- g(x, \tau)$ (or $x \mapsto D^+ g(x, \tau)$) are P-integrable for all $\tau \in J$. When the integrals exist the function

$$h(\tau) = \int (g(x, \tau) - g(x, \theta)) P(dx)$$

is convex for all $\theta \in J$ and

$$D^- h(\tau) = \int D^- g(x, \tau) P(dx), \quad D^+ h(\tau) = \int D^+ g(x, \tau) P(dx).$$

m_0^h and m_1^h are independent of θ.

P is said to have unique g-mean-value θ if $m_0 h = m_1^h = 0$. P has regular g-mean-value, if h also is twice differentiable in θ with positive second derivative, and the function $x \mapsto D^+ g(x, \tau)$ further has positive second moment for all $\tau \in J$.

Let λ be a measure on \mathbf{A}, and $(P_\theta)_{\theta \in \Theta}$ a family of probability measures on \mathbf{A} with the open interval $\Theta \subseteq J$ as parameter space. P_θ is supposed to be absolutely continuous with respect to λ with finite density $x \mapsto f(x, \theta)$. We put $l(x, \theta) = - \log f(x, \theta)$.

The family $(P_\theta)_{\theta \in \Theta}$ is said to be smooth if

i) The function $\theta \mapsto l(x, \theta)$ is absolutely continuous with respect to
Lebesgue measure and has Radon-Nikodym derivative $D_1(x, \theta)$ for all $x \in X$

(ii) $0 < \int (D_1(x, \theta))^2 f(x, \theta) \lambda(dx) < +\infty$ for all $\theta \in \Theta$.

(iii) For τ tending decreasingly to θ

$$\frac{f(x, \theta) - f(x, \tau)}{(\tau - \theta)} f(x, \theta)$$

will tend to $D_1(x, \theta)$ in quadratic mean with respect to P_θ.

Theorem. Assume that P_θ has the regular g-mean-value γ for all $\theta \in \Theta$, and let $\gamma(\theta)$ denote the second derivative of the function $h_0: J \rightarrow \mathbb{R}$

$$\tau \mapsto \int (g(x, \tau) - g(x, \theta)) f(x, \theta) \lambda(dx)$$

taken in the point θ. If the family $(P_\theta)_\theta \in \Theta$ is smooth

$$\frac{\int (D_1^g(x, \theta))^2 f(x, \theta) \lambda(dx)}{\gamma^2(\theta)} \geq \frac{1}{\int (D_1^1(x, \theta))^2 f(x, \theta) \lambda(dx)}$$

for all $\theta \in \Theta$. Here the equality sign is valid if and only if there exists a function $k: \Theta \rightarrow \mathbb{R}$ such that $\tau \mapsto D_1^g(x, \tau)k(\tau)$ is locally integrable for all $x \in X$ and such that

$$\int_\Theta D_1^g(x, \xi) k(\xi) d\xi$$

for τ and θ in Θ.

Proof. Since $D^- h_\theta(\tau) > 0$ for $\tau < \theta$, $D_1^+ h_\theta(\tau) < 0$ for $\tau < \theta$, $D^- h_\theta(\theta) \leq D_1^+ h_\theta(\theta)$ and $D^- h_\theta$ and $D_1^+ h_\theta$ are continuous in the point θ it follows that $D^- h_\theta(\theta) = D_1^+ h_\theta(\theta) = 0$.

Therefore

$$\int D^- g(x, \theta) P_\theta(dx) = \int D_1^+ g(x, \theta) P_\theta(dx)$$
and so $D^-g(x,\theta) = D^+g(x,\theta)$ with P_θ-probability one.

Since $\tau \mapsto D^+g(x,\tau)$ is decreasing $(D^+g(x,\tau) - D^+g(x,\tau))^2$ will tend decreasingly to 0 for $\tau + \theta$, i.e. $D^+g(x,\tau)$ tends to $D^+g(x,\theta)$ in quadratic mean with respect to P_θ. Since

$$\frac{1}{\tau - \theta} \int D^+g(x,\tau) f(x,\theta) \lambda(dx) = \int D^+g(x,\tau) \frac{f(x,\theta) - f(x,\tau)}{(\tau - \theta) f(x,\theta)} f(x,\theta)\lambda(dx)$$

it follows that

$$\gamma(\theta) = \int D^+g(x,\theta) D1(x,\theta) f(x,\theta)\lambda(dx).$$

Applying Cauchy-Schwarz's inequality one finds that

$$(3) \quad \gamma^2(\theta) \leq \int (D^+g(x,\theta))^2 f(x,\theta)\lambda(dx) \int (D1(x,\theta))^2 f(x,\theta)\lambda(dx)$$

which proves (1).

Equality holds in (3) if and only if for each $\theta \in \Theta$ there exists a constant $k(\theta)$ such that $D1(x,\theta) = D^+g(x,\theta)k(\theta)$.

Since $\theta \mapsto 1(x,\theta)$ is absolutely continuous it follows that

$$1(x,\tau) - 1(x,\theta) = \int_\theta^\tau D^+g(x,\xi)k(\xi)\lambda(d\xi)$$

which is the same as (2).

Let g be a C-function on R and $t : X \rightarrow R$ an \mathcal{A}-measurable function. The function $g_t : (x,\theta) \mapsto g(t(x),\theta)$ is a C-function on X.

t is said to be a g-unbiased estimator if P_θ has the unique g_t-mean-value θ for all $\theta \in \Theta$.

t is a regular g-unbiased estimator if θ is a regular g_t-mean-value for all $\theta \in \Theta$.
The theorem shows that if t is a regular g-unbiased estimator and the family $(P_\theta \theta \in \Theta$ is smooth then

$$(4) \quad V_\theta(t) = \int \frac{(\phi_\theta'(t(x),\theta))^2 f(x,\theta) \lambda(dx)}{\gamma_\theta(\theta)^2} \geq \frac{1}{\int (D_1(x,\theta))^2 f(x,\theta) \lambda(dx)}$$

with equality if and only if

$$f(x,\tau) = f(x,\theta) e^{-\int_\Theta D^+ g(t(x),\xi) k(\xi) d\xi}.$$

Example 1. For

$$g(x,\theta) = \frac{(x - \theta)^2}{2}, \quad (x,\theta) \in \mathbb{R}^2$$

the probability P on \hat{A} has a unique g_t-mean-value θ if and only if $\int t(x)P(dx)$ exists, is finite and equal to θ. This meanvalue is regular when t has finite variance and

$$V_\theta(t) = \int (t(x) - \theta)^2 f(x,\theta) \lambda(dx).$$

(4) reduces in this way to the well-known Cramér-Rao inequality. Equality holds if and only if

$$f(x,\tau) = f(x,\theta) e^{-\int_\Theta k(\xi) d\xi + t(x) \int_\Theta k(\xi) d\xi},$$

in which case the family is exponential.

Example 2. For

$$g(x,\theta) = \begin{cases} \frac{1}{p}(\theta - x) & \text{for } x < \theta \\ \frac{1}{q}(x - \theta) & \text{for } x \geq \theta \end{cases}$$

where $0 < p = 1 - q < 1$, P has a unique g_t-mean-value if and only if
t has the unique p-quantile \(\theta \). This mean-value is regular when the distribution function for \(t \) is differentiable in \(\theta \) with positive derivative \(k(\theta) \) and

\[
V_{\theta}(t) = \frac{P_{\theta}}{k^2(\theta)}.
\]

(4) provides a lower bound for \(V_{\theta}(t) \) for p-quantile unbiased estimators. This bound is equivalent to an upper bound to the height \(k(\theta) \) of the density of \(t \) in \(\theta \). \(p = \frac{1}{2} \) corresponds to median-unbiasedness.

The examples illustrate how \(V(t) \) in general provides a natural measure of dispersion corresponding to a specific concept of unbiasedness. The theorem chap. IX, p.9-10 in Brøns [1967] shows that the asymptotic variance of empirical g-mean-values are proportional to \(V(t) \).

References.

