Hans Brøns and Inger Harder Hansen

A GENERALIZATION OF THE CRAMER-RAO INEQUALITY

Preprint 1971 No. 6

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

September 1971

INTRODUCTION

The famous Cramér-Rao inequality (Rao [1945], Cramér [1946]) gives a lower bound for the variance of unbiased estimators. By generalizing the concept of a mean-value one is led to consider new concepts of unbiasedness. It is shown that in these cases an inequality similar to the inequality of Cramér-Rao holds, providing a lower bound to a quantity which can be interpreted as the measure of dispersion corresponding to the particular choice of meanvalue.

The joint results of the authors were first collected in Harder Hansen[1961].

1. Generalized Mean-Values.

In this section we list the properties of generalized mean-values which are needed in the following. For proofs see Brøns [1967], comp. Brøns, Brunk, Franck, and Hanson [1969].

Let g be a convex function on the <u>open</u> interval J on R (the set of real numbers), and consider the sets

 $\mathbb{V}_{g} = \{ \tau \in J \mid g(\tau') \ge g(\tau) \forall \tau' \le \tau \}, \quad \mathbb{H}_{g} = \{ \tau \in J \mid g(\tau') \ge g(\tau) \forall \tau' \ge \tau \}$

V is empty or an interval with the same left endpoint as J, and H is empty or an interval with same right endpoint as J.

The set $V_g \cap H_g$ is either empty or an interval, and is the set of points in which g assumes its minimum. Its left endpoint is denoted m_0^g and its right endpoint m_1^g . Both values can be infinite. If H_g is empty, m_0^g is the right endpoint of J, and if V_g is empty m_1^g is the left endpoint of J. The identity

$$\{\tau \in J \mid m_0 g \leq \tau\} = \{\tau \in J \mid D^{\dagger}g(\tau) \geq 0\}$$

and the similar one for m_1 and D g characterize m_0 and m_1 in terms of g's left and right derivatives D g and D g.

Let A be a σ -field on a set X. A <u>C-function</u> on X is a function g: X x J \rightarrow R such that the partial function $x \mapsto g(x,\tau)$ is A-measurable for all $\tau \in J$ and the partial function $\tau \mapsto g(x,\tau)$ is convex for all x $\in X$.

Let $D^{-}g(x,\tau)$ denote the left derivative and $D^{+}g(x,\tau)$ the right derivative in τ of the convex function $\tau \mapsto (g(x,\tau)$. Then the functions $x \mapsto D^{-}g(x,\tau)$ and $x \mapsto D^{+}g(x,\tau)$ are A-measurable functions for all $\tau \in J$, and the function $x \mapsto g(x,\tau) - g(x,\theta)$ is integrable with respect to a probability measure P on A for all $(\tau,\theta) \in J^{2}$ if and only if $x \mapsto D^{-}g(x,\tau)$ (or $x \mapsto D^{+}g(x,\tau)$) are P-integrable for all $\tau \in J$. When the integrals exist the function

$$h(\tau) = \int (g(x,\tau) - g(x,\theta))P(dx)$$

is convex for all $\theta \in J$ and

$$D^{-}h(\tau) = \int \overline{D} g(x,\tau) P(dx), \quad D^{+}h(\tau) = \int \overline{D} g(x,\tau) P(dx).$$

 m_0h and m_1h are independent of θ .

P is said to have <u>unique g-mean-value</u>^{θ} if m₀h = m₁h = θ . P has <u>regular</u> g-mean-value , if h also is twice differentiable in θ with positive second derivative , and the function x \mapsto D⁺g(x, τ) further has positive second moment for all $\tau \in J$.

2. The Generalized Cramér-Rao Inequality.

Let λ be a measure on A, and $(P_{\theta})_{\theta \in \Theta}$ a family of probability measures on Awith the open interval $\Theta \subset J$ as parameter space. P_{θ} is supposed to be absolutely continuous with respect to λ with finite density $x \mapsto f(x, \theta)$. We put $l(x, \theta) = -\log f(x, \theta)$. The family $(P_{\theta})_{\theta \in \Theta}$ is said to be smooth if

i) The function $\theta \nleftrightarrow 1(x, \theta)$ is absolutely continuous with respect to

Lebesgue measure and has Radon-Nikodym derivative $D1(x, \theta)$ for all $x \in X$

ii)
$$0 < \int (D \ 1(x,\theta))^2 \ f(x,\theta) \ \lambda(dx) < + \infty \text{ for all } \theta \in \Theta$$
.

iii) For τ tending decreasingly to θ

$$\frac{f(x,\theta) - f(x,\tau)}{(\tau-\theta) f(x,\theta)}$$

will tend to D 1(x, $\theta)$ in quadratic mean with respect to P $_{\!\!\!\!\!A}$.

Theorem. Assume that P_{θ} has the regular g-mean-value θ for all $\theta \in \Theta$, and let $\gamma(\theta)$ denote the second derivative of the function $h_{\theta}: J \rightarrow R$ $\tau \mapsto \int (g(x, \tau) - g(x, \theta)) f(x, \theta)_{\lambda} (dx)$ taken in the point θ . If the family $(P_{\theta})_{\theta} \in \Theta$ is smooth

(1)
$$\frac{\int (D^{+}g(x,\theta))^{2} f(x,\theta) \lambda(dx)}{\gamma^{2}(\theta)} \stackrel{\geq}{=} \frac{1}{\int (D^{+}I(x,\theta))^{2} f(x,\theta)\lambda(dx)}$$

for all $\theta \in \Theta$. Here the equality sign is valid if and only if there exists a function k: $\Theta \rightarrow R$ such that $\tau \mapsto D^{+}g(x,\tau)k(\tau)$ is locally integrable for all $x \in X$ and such that

(2)
$$f(x,\tau) = f(x,\theta)e^{-\int_{\theta}^{\tau} D^{+}g(x,\xi) k(\xi) d\xi}$$

for τ and θ in Θ .

Proof. Since $D^{-}h_{\theta}(\tau) > 0$ for $\tau < \theta$, $D^{+}h_{\theta}(\tau) < 0$ for $\tau < \theta$, $D^{-}h_{\theta}(\theta) \leq D^{+}h_{\theta}(\theta)$ and $D^{-}h_{\theta}$ and $D^{+}h_{\theta}$ are continuous in the point θ it follows that $D^{-}h_{\theta}(\theta) = D^{+}h_{\theta}(\theta) = 0$.

Therefore

$$\int \overline{D} g(x,\theta) P_{\theta}(dx) = \int \overline{D} g(x,\theta) P_{\theta}(dx)$$

POLYTEKNISK FORLAG OG TEYKKERI SØLYGADE 83. 1307 K. TLE. 11 98 22.

and so $D^{-}g(x,\theta) = D^{+}g(x,\theta)$ with P_{θ} -probability one. Since $\tau \mapsto D^{+}g(x,\tau)$ is decreasing $(D^{+}g(x,\tau) - D^{+}g(x,\tau))^{2}$ will tend decreasingly to 0 for $\tau \neq \theta$, i.e. $D^{+}g(x,\tau)$ tends to $D^{+}g(x,\theta)$ in quadratic mean with respect to P_{θ} . Since

$$\frac{1}{\tau - \theta} \int D^{+}g(x,\tau) f(x,\theta) \lambda (dx) = \int D^{+}g(x,\tau) \frac{f(x,\theta) - f(x,\tau)}{(\tau - \theta) f(x,\theta)} f(x,\theta)\lambda(dx)$$

it follows that

$$\gamma (\theta) = \int D^{\dagger}g(x,\theta) D 1(x,\theta) f (x,\theta)\lambda(dx)$$

Applying Cauchy-Schwarz's inequality one finds that

(3)
$$\gamma^{2}(\theta) \leq \int (D^{+}g(x,\theta))^{2}f(x,\theta)\lambda(dx) \int (D^{-}1(x,\theta))^{2}f(x,\theta)\lambda(dx)$$

which proves (1),

Equality holds in (3) if and only if for each $\theta \in \Theta$ there exists a constant $\mathbb{R}(\theta)$ such that $D = D^+g(x,\theta)k(\theta)$.

Since $\theta \mapsto 1(x, \theta)$ is absolutely continuous it follows that

$$1(x,\tau) - 1(x,\theta) = \int_{\theta}^{\tau} D^{+}g(x,\xi)k(\xi)\lambda(d\xi)$$

which is the same as (2).

3. Unbiased Estimation.

Let g be a C-function on R and t : $X \rightarrow R$ an A-measurable function. The function g_t : $(x,\theta) \mapsto g(t(x),\theta)$ is a C-function on X.

t is said to be a <u>g-unbiased estimator</u> if P_{θ} has the unique g_t -meanvalue θ for all $\theta \in \Theta \cdot t$ is a <u>regular g-unbiased estimator</u> if θ is a regular g_t - mean - value for all $\theta \in \Theta$. The theorem shows that if t is a regular g-unbiased estimator and the family $(P_{\theta})_{\theta} \in \Theta^{is}$ smooth then

(4)
$$V_{\theta}(t) = \frac{\int (D^{\dagger}g(t(x),\theta))^{2}f(x,\theta)\lambda(dx)}{\gamma_{g_{t}}(\theta)^{2}} \ge \frac{1}{\int (D1(x,\theta))^{2}f(x,\theta)\lambda(dx)}$$

with equality if and only if

$$-\int_{\theta}^{\tau} D^{+}g(t(x),\xi)k(\xi) d\xi$$

f(x,\tau) = f(x,\theta)e

Example 1. For

$$g(x,\theta) = \frac{(x - \theta)^2}{2}$$
, $(x,\theta) \in \mathbb{R}^2$

the probability P on \acute{A} has a unique g_t-mean-value θ if and only if $\int t(x)P(dx)$ exsists, is finite and equal to θ . This meanvalue is regular when t has finite variance and

$$V_{\theta}(t) = \int (t(x) - \theta)^2 f(x,\theta)\lambda(dx).$$

(4) reduces in this way to the well-known Cramér-Rao inequality. Equality holds if and only if

$$f(x,\tau) = f(x,\theta)e^{-\int_{\theta}^{\tau} k(\xi)d\xi + t(x)\int_{\theta}^{\tau} k(\xi)d\xi}$$

in which case the family is exponential.

Example 2. For

$$g(x,\theta) = \begin{cases} \frac{1}{p}(\theta - x) \text{ for } x \leq \theta\\ \frac{1}{q}(x - \theta) \text{ for } x \geq \theta \end{cases}$$

where $0 , P has a unique <math>g_{+}$ -mean-value if and only if

POLYTEKNISK FORLAG OG TRYKKERI, SØLYGADE 33. 1307 K. THE I 98-22

t has the unique p-quantile θ . This mean-value is regular when the distribution function for t is differentiable in θ with positive derivative k(θ) and

$$V_{\theta}(t) = \frac{\mathbf{p}q}{k^2(\theta)}$$

(4) provides a lower bound for $V_{\theta}(t)$ for p-quantile unbiased estimators. This bound is equivalent to an upper bound to the height $k(\theta)$ of the density of t in θ . $p = \frac{1}{2}$ corresponds to median-unbiasedness. The examples illustrate how V(t) in general provides a natural measure

of dispersion corresponding to a specific concept of unbiasedness. The theorem chap. IX, p.9-10 in Brøns [1967] shows that the asymptotic variance of empirical g-mean-values are proportional to V(t).

References.

- Hans Brøns [1967] : Forelæsningsnoter i matematisk statistik og sandsynlighedsregning 9-15. Institut for matematisk statistik, Københavns universitet.
- H.K. Brøns, H.D. Brunk, W.E. Franck, And D.L. Hanson [1969]: Generalized means and associated families of distributions. Ann. Math. Statist. 40, 339-355.

H. Cramér [1946] : Mathematical Methods of Statistics. Princeton.

C.R. Rao [1945] : Information and Accuracy attainable in Estimation of Statistical Parameters, Bull. Cal. Math. Soc 37, 81-91.