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Introduction.

This note contains an attempt to provide a systematic account of some
basic facts concerning estimability of parameter functions and consistency

of the maximum likelihood estimators for statistical models on finite

sample spaces.

An exposition of the existing theory is found in Rao [1965] .

1. Probabilities on a finite set.

Definition 1.1

Let Q be a finite set.

P ={(x) oo € gﬂjxw >0 Vu, Ix=1}

is the set of probabilities on 2. A P € P(Q) is thus given by its values
P(w), w € Q .

The relative Euclidean topology on B(Q) is called the weak topology. The
on [0,1] is defined by letting O and 1 be isolated

strong topology
points whereas the relative topology on ]0,1[ is the usual Euclidean

topology. The strong topology on B(Q) is defined as the relative topology

of the strong product topology.

Remark 1.1 Pn + P in the strong topology if and only if Pn~+ P in the

weak topology and there exists a number N such that Pn<< P (Pn is absolu-

tely continuous with respect to P) for n > N.

Remark 1.2 f(ﬂ) is compact in the weak topology, but not compact in the

strong topology.

Definition 1.2 If AcQ , f:A~> R is a real function,the integral

JEdP = I f(w)P(w)
weEA
is defined for P € fA = {P € P(Q)|PA = 1}. (Geometrically speaking, Py

is a surface of P(Q).)

Remark 1.3 Pn + P in the weak topology if and only if ffdPn + [£dP for

all functions f:9 - R.



(If @ is considered in the discrete topology a11 f are bounded and continuous

so that the weak topology corresponds to ordinary weak convergence of

probabilities).

Definition 1.3 Let E* = R U {- «} U {=} be the extended real axis.

If f:A - R* is an extended real function and P € ﬁA n é%, where
§f = {P € P(Q)|P{f = - ©}+P{f = }= 0}, the integral

[fdP = £ f(w)P(w)
w e A

is well-defined.

2. The information func@iqn.

DefinitionﬁZ.l

Consider two probabilities P € ﬁ(Q) and Q € P(Q). The derivative dQ/dP
is given by Q(w)/P(w) when w € AP= {w]P(w) > 0}.

Assume log 0 = - o , The function

- log SS PAp R*

is then defined by

Q(w)
P(w)

w> - log

Il

Since P(AP) = 1 and P{- log gg > - =} 1 for all Q € P(w),the integral

49 4p

1(2,Q) = f- log 32 T (-logi@lp(y)

w € AP P(w)

is well-defined (see Definition 1.3). The information function I is thus

well-defined on B(Q) x B(Q).

Properties of the information function are given in the following propo-

sitions.

Proposition 2.1 1I3>0. I(P,Q) =0 <=> P Q.

Proof. The function - log: [0, e[+ R U{w} is convex. Hence by Jensen's



inequality
I(P,Q) = =  -P(w)log ggg;
P(w)>0
>-log T P@ H2--1log I qw) 20,
P (w)>0 ® P(w)>0
since ¥ Q(w) £ 1. The last inequality becomes an equality if and
P(w)>0

only if Q << P.
Under this assumption the first inequality is an equality if and only
if

log ggxg =c, i.e. Qlw) = kP(w)

when P(w) > 0. Since Q << P, k must be 1, so that Q = P.

Proposition 2.2 I(P,Q) < <=> P << Q.

Proof. I(P,Q) = o if and only if there exists an w with

- log ggg; =o and P(w) > 0.

This is equivalent to saying that Q(w) = 0 and P(w) > O.

Proposition 2.3 I is continuous in the topology on P(Q) X P() given

by the product topology of the strong topology on P(Q) and the weak

topology on 5(), respectively.

Proof. It is possible to choose a strong neighbourhood U of P such that

P' =P (i,g,P'<< P and P<< P') for P' € U and a weak neighbourhood V of Q
such that Q<< Q' for Q' € V. If I(P,Q)< o <=>P << Q we may then infer

that P'<< Q' <=> I(P',Q')< = for (P',Q') € U x V which is a neighbourhood
of (P,Q). The continuity at (P,Q) is then obvious from the definition of
I. If I(P,Q) = = , the set A = {w|P(w) > 0 and Q(w) = 0} * ¢. As

(P',Q") > (P,Q), Q'(w) > 0 for w € A. Hence since {w[P(w) > 0} =

{w|P"(w) > 0} ,

[ ’ [ ' Q'(w)
I(P',Q") = - X P'(w) log 3v+= + = = I(P,Q).
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The following result is well-known.
Lemma 2.1 If f: X x ¥ + K is continuous and K < { is compact then

fK: £ >R

given by fK(x) = inf f(x,y) is continuous.
y €K

Proposition 2.4 For all I ¢ P(R), inf I(e,m) is continuous in the strong
m€ I

topology.
Proof. The weak closure T of I is compact since P(Q) is compact in the
weak topology. As then

inf I(P,m) = inf I(P,m)

m €N mT€TI

the result is a corollary of Proposition 2.3 and Lemma 2.1.

Proposition 2.5 (Birch[1965])

L @Q - Pw)? < 21(2,Q).
weE Q

Proof. If P is not absolutely continuous with respect to Q, I(P,Q) = o

and the inequality is trivially satisfied.

Assume then P << Q. Taylor expansion of x log x around 1 yields

2
o wo1e L (x=1)
x log x x-1+ . 5 s

where y is between 1 and x.

If P(w) > 0 and hence Q(w) > 0, put x = Qg ; to get

“P(w) log ] = P()-Q() + yar== (P(@)-Qw))

P(w)-Q(w) + 3(P(0)-Q(w))”

v

since Q(w)y is between 1 and P(w), i.e. < 1.

By summation we obtain



IC,Q 21- 5 QW +3 ¥ (P~ o)’

P (1)>0 2 P ()50

=2 T EW-ew)P+ T (W= $(QW)]
w € Q P(w)=0

>3 I (@ - Q).
w€Q

3. Continuous maximum likelihood estimation.

© and a mapping Y: O - P?Q).

Let P; = {PIE 6: P << 9(8)} , let ©' be a topological space and ¢: © +~ ©'
a mapping. Define the function a: P(Q) x ©'> [0, by

a(P,8') = inf I(P,u(8)).
$(6)=6"

Note that

a(P;e') <o = (P,8') € P@ x $(0).

Definition 3.2 ¢ is said to be continuously estimable and f: f& - o'

a continuous maximum likelihood estimator of ¢ if

1) VPE ﬁ& ve' € 0': a(P,0') > a(P,£(P)).

2) veEeo: £(Y(o)) = $(0)

3) f is continuous in the strong topology on Pw at

each P € ¢(0).

Remark 3.1 From the remark above about o it follows that f(fw) c $(0).
But from 2), f(?ﬁ) > ¢(0). It is thus seen that f(f@) = ¢(0).

Remark 3.2 Since by Proposition 2.1 I(P,Q) =0 <=>P Q it follows that

for all 6 € ©

I
o

a(P(0),4(0)) = _dinf  I(y(8),y(8))
0:9(8)=¢(0)



and that the infimum is attained if and only if ¢(§) = y(8). From 1) we

have

a(w(e),£(w(e))) = inf oa(y(e),8') =0
6'€o’
since this value is attained if and only if o' = ¢(6) with w(E) = y(e8).
If ¢y is injective it follows that 9 = o and hence $(0) = £(p(6)). It is

concluded that if y is injective, 1) implies 2).

Remark 3.3 Let the mapping y: © - y(0) be defined by y(6)= ¥(6),6 € O.
If ¢ is continuously estimable, then there exists one and only one
mapping &: Y(0) - 0O', continuous in the relative strong topology on

P(0), so that ¢ = 6 o y. (Define 6 as the restriction of an arbitrary

continuous maximum likelihood estimator f.)

Theorem 3.1 Consider P(Q) in the weak topology. ¢: © — ﬁkQ) is

continuously estimable if and only if ¢(0) is compact.

Proof. Assume first that $(0) is weakly compact. It is seen that for

Q € y(o)

a(P,Q) = inf I(P,y(6)) = I(P,Q).
¥(6)=Q
Since I(P,+) is continuous in the weak topology by Proposition 2.3,

inf I(P,Q) is attained by some y(0) so that the set
Qey(e)

F(P) = {y(8)| I(P,¥(8)) = inf I(P,v(6))} #* 0.
' B €O

Define f: PW -+ P(R) by choosing for f(P) some value in F(P). Then for
all P € fw and all Q € ¥(0)

a(P,Q) = I(P,Q) > inf I(P,y(6)) = I(P,£(P)) = a(P,£(P))
6 €0

and for Q ¢ v(0), a(P,Q) = « as remarked above.
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a(P,£(P)) for all P € f; and all Q € P(Q) and 1) in

Hence o (P,Q) >
2

Definition 3.2 is verified.

To show 2), note that for all 6 € ©

{p(e® | T(y(e),p(6%)) = _inf I(y(8),¥(@))} = {u(e)}

F(y(8))
B €O

since I(P,Q) 0 <=>P = Q.

Hence f(y(6)) = y(p) for all 6 € @ .

Finally it is to be shown that f: ¥ - P(Q) considered in the strong

topology on P and the weak topology on P(Q) is continuous. Let then
P w(eo) strongly.

From Proposition 2.4 it follows that the function inf I(*,Q) is strong-

QEY(0)

1y continuous which implies

I(P_,£(P )) = inf I(P_,y(B8)) > inf I(Y(6,),¥(6)) =0
o 5ep T 6E O 0

and according to Proposition 2.5

2_1
T (P (w) - f(Pn)(w)) <3 I(Pn,f(Pn)) + 0.
w € Q
Since Pn - w(eo) in the strong topology,and hence in the weak topology,

it follows that in the weak topology

£ ) + ¥(8y) = £(4(0,))
as noted above. This completes the proof of the "if'"-part of the theorem.

Suppose, conversely, that P0 € ¥(0) , the weak closure of ¥(0). We shall
show that PO € Y(0), i.e. that y(0) is closed. Since P(Q) is compact in

the weak topology it will follow that ¥ (0) is compact.

If Q € y(9), u(PO,Q) = I(PO,Q) as noted above,and we therefore get

a(P.,£(P.)) = inf a(P.,Q) = inf a(P.,Q)
07 707 qepa)y O oepe)  °

= inf I(PO,Q) = inf I(PO,Q) =0
Q€Y () QEy (o)
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the infimum being attained if and only if Q = PO. Hence

a(PO,f(PO)) = I(Po,f(PO)) = 0 implying that PO = f(PO) € v(0).

Remark 3.4 To a givenmapping ¢: @ - 0' we define the mapping

v: 0 »¢(0) by v(8) = ¢(8), 8 € 0 . It is obvious that v is continuously

estimable if and only if ¢ is continuously estimable.

Theorem 3.2 Let ¢:0 > 0' be continuously estimable and f a continuous
maximum likelihood estimator of ¢ . Let A: 6' - 0" be continuous. Then

A o f is a continuous maximum likelihood estimator of X o ¢.

Proof. Fix an arbitrary P € fw and define B(P,6") = inf I(P,y(0)).

xod (8)=6"
It is seen that
B(P,6") = inf < inf I(P,w(e))\\= inf o (P,0")
A(e')=6" \og(0)=6' A(e')=0"
6'€4(0)

since a(P,0') = o for ' ¢ $(0).

Hence B(P,0") > inf a(P,06') = a(P,£(P)) and conversely
" 8'eo’

B(P, X o £(P)) = inf a(P,8") < a(P,£(P))
x(0")=Xof(P) B

so that for all 8"€ 0"

8(P,6™) 3 8(P, X o £(P))
showing that X o f meets 1) of Definition 3.2. 2) and 3) are trivially
satisfied.

Corollary. Let &: ¢(0) + @' be continuous in the relative weak topology

on P(0). If y(0) is compact then § o Yy 1is continuously estimable.

Proof. This is obvious from Theorems 3.1 and 3.2 and Remark 3.4.
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4. Independent identically distributed observations.

In the present section the theory of section 3 will be applied to the
simple statistical situation where the observations consist of independent
identically distributed replications. An observation is then a point

7™ = (n,...,n) € 0% for some n = 1,2,...

The product probabilities P" on Q" and PN on QN are defined in the usual

'Way. A statement valid with Pn(PN;-probability one is said to be true
a.s. [P].
= w}.

Definitibn 4,1 Let n € N’aﬁd let Nw(n(n% =4¥{i = 1,...,n]ni
n))(w) = Nw(n(n))/n is called

The mapping En: "~ P(Q) given by En(n

the empirical distribution (of order n).

Proposition 4.1 For all P € F(2) and n € N, En << P a.s. [P].

Proof. The statement is written out as

Pn{n(n)lﬂ w € Q: En(n(n))(m) > 0 and P(w) = 0} = 0.

This is; however, obvious from the fact that P(w) = 0 = Pn{Nw(n(n)) > 0}= 0.

Proposition 4.2 For all P € P(Q) E +P a.s. [P] as n + o 1in the

strong topology on Q).
rd

. N .
Proof. E 1is canonically thought of as a mapping on 2 depending only

on the first n coordinates. By the strong law of large numbers,
=

PN {n €@ [E (n) (w) ~ P(w)} =1, where the convergence is in the ordinary
n

Euclidean topology on [0,1]. By Proposition 4.1 P(w) = 0= P {En(n)(w)=0} =1
so that the convergence holds in fact in the strong topology on [0,1] (see
Remark 1.1). The result then follows from the definition of the strong

topology as the relative strong product topology on [0,1]9.

Definition 4.2 Assume that a statistical problem (Q,0,y) is given. Consider

a mapping ¢: O - 0' and a sequence F =£fo&E: Q"+0', where £: B(Q) + 0
is a mapping . Let f: F > 0' be the restriction of f£. If f is a continuous
maximum likelihood estimator in the sense of Definition 3.2, then ¢ is

called empirically estimable and Fn an empirical maximum likelihood

estimator.
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Remark 4.1  Proposition 4.1 implies that En3€ P¢ a.s. [Y(6)] for all 6 € O.

'ﬁemark 4.2
deduce that Fﬁ(Qn) c $(B) a.s. [v(e)] for all p€6 and n € N

From the properties of f noted in section 3 we immediately

) -
- L T T A S

\
Theorem 4.1 Fn + ¢(8) a.s. [P(6)] as n + =,0 € 0O, i,s; Fn is consistent.

Proof. From PropositionA4,2 it follows that En+ v(0) a.s. [p(8)] in the

strong topology as n -+ o . Since f is continuous in the strong topology

at Y(8), it follows that
F o= £(B) > £(¥(8)) = ¢(8) a.s.[¥(0)]

as n > o ,

The following properties of empirical maximum likelihood estimators are

easily deduced from the results of section 3.

Theorem 4.2 If ¢ is empirically estimable then there exists one and only

one mapping 6: (@) - 0', continuous in the relative strong topology on

Y(0), so that ¢ = 8§ o vy.

If f(Q) is considered in the weak topology y: 0 - ﬁ(Q) is empirically

estimable if and only if ¥(©) is compact.

If ¢ is empirically estimable, if A: @'+ @" is continuous, and if F
is an empirical maximum likelihood estimator of ¢, then A o Fn is an

empirical maximum likelihood estimator of XA o §¢.
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