

Jørgen Larsen Estimation in Exponential Families

Jørgen Larsen

ESTIMATION IN EXPONENTIAL FAMILIES

Preprint 1971 No. 3

Preprint

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

September 1971

- 1 -

1. Introduction and summary.

In this paper the existence and uniqueness of maximum likelihood estimators in exponential families is discussed, and an example demonstrates a method of extending discrete models so that maximum likelihood estimation always is possible.

The maximization of the likelihood function $L(\cdot,t_0)$ is equivalent to the minimization of $-\log L(\cdot,t_0)$ which is convex. Therefore a result about minimization of l.s.c. quasi-convex functions is presented in section 2, using some elementary results from the theory of convex sets. In section 3 concepts as polar cone and the support of a measure are presented. Section 4 contains the main result: a necessary and sufficient condition for t_0 so that the maximum likelihood estimator $\hat{\theta}(t_0)$ exists. - Barndorff-Nielsen (1970) has given a comprehensive discussion of estimation in exponential families using convex duality theory.

In section 5 the logistic dose-response model is considered as an example, and we deduce how to extend the model so that estimation always is possible. - Barndorff-Nielsen (1970) discusses the same example (and the problem in general), and explains the extension in a different way.

M Davis (1970) has dealt with the estimation problems in the logistic model in a way that has given some of the inspiration to this paper.

2. Convex sets. Recession cone.

Quasi-convex functions.

In this section E denotes a finite dimensional real Banach space.

<u>2.1 Definition</u>: For any subset $M \subseteq E$,

affM

denotes the smallest affine subspace in E containing M, i.e. the affine hull of M.

2.2 Definition: For any convex subset $A \subseteq E$ we define the relative interior of A,

riA,

as the interior of A considered as a subset of affA, which should be endowed with the subspace topology. (Since affA is a closed subset of E, the closure \overline{A} of A in E coincides with the closure of A in the subspace topology in affA).

The convex subsets of E have the following important property.

<u>2.3</u> Proposition: Let A be a convex subset of E. If $x \in riA$ and $y \in \overline{A}$, then

 $\{x + \lambda(y-x) \mid \lambda \in [0,1]\} \subseteq riA.$

The <u>proof</u> will not be given here; see e.g. Bourbaki((1966), ch. II, Rocka-fellar (1970), Stoer and Witzgall (1970).

2.4 Definition: Let x,y \in E. The ray from the point x in direction y is the set ray(x,y) := {x + λ y | $\lambda \in [0, + \infty[$ }.

2.5 Definition: Let A be a convex subset of E. The recession cone of A is the set

 $O^{+}A := \{y \in E \mid \forall x \in A : ray(x,y) \subseteq A\}.$

<u>2.6 Proposition</u>: Let A be a convex subset of E. Then the following properties hold:

(i). O⁺A is a convex cone. If A is closed then O⁺A is closed.

- 2 -

$$\{y \in E \mid ray(x,y) \subseteq A\} = O^{\dagger}\overline{A} = O^{\dagger}riA.$$

(iii). Suppose also B is a convex subset of E.

 $x \in riA$ then

If $\overline{A} \subseteq \overline{B}$ then $0^{+}\overline{A} \subseteq 0^{+}\overline{B}$. If $riA \subseteq riB$ then $0^{+}riA \subseteq 0^{+}riB$.

<u>Proof</u>: It is easy to verify (i), and the first statement of (ii) follows from 2.5. Since (iii) follows from (ii) choosing an x from $ri\overline{A} \subseteq ri\overline{B}$ or from $riA \subseteq riB$, it therefore remains to show that

 $\{y \in E \mid ray(x,y) \subseteq A\} = 0^+\overline{A} = 0^+riA$

for any convex subset $A\subseteq E$ and any $x\in {\tt riA}.$ First we shall show that

(*) $\{y \in E \mid ray(x,y) \subseteq \overline{A}\} \subseteq O^{\dagger}riA.$

Let $y \in \{y \in E \mid ray(x,y) \subseteq \overline{A}\}$, $z \in riA$; since \overline{A} is convex and $ray(x,y) \subseteq \overline{A}$,

$$z + \frac{1}{n} (x-z) + \lambda y = (1 - \frac{1}{n}) z + \frac{1}{n} (x + n\lambda y) \in \overline{A}$$

for every $n \in [N \text{ and } \lambda \in [0, +\infty[$. Letting $n \to \infty$ we see that $z + \lambda y \in \overline{A}$ for every $\lambda \in [0, +\infty[$, and hence $ray(z, y) \subseteq \overline{A}$. As $z \in riA$, 2.3 shows that $ray(z, y) \subseteq riA$, and (*) is thus established.

Next we show that

$$(**) 0+riA \subseteq 0+\overline{A}.$$

To this end, we consider $\mathbf{y} \in 0^+$ riA and $\mathbf{w} \in \overline{A}$. Choosing $\mathbf{x} \in riA$ and putting $\mathbf{x}_n = \mathbf{x} + \frac{n-1}{n}$ (w-x), (n $\in |\mathbb{N}\rangle$, $(\mathbf{x}_n)_n \in |\mathbb{N}$ is a sequence on riA (prop. 2.3) converging to w. Therefore $ray(\mathbf{x}_n, \mathbf{y}) \subseteq riA \subseteq A$ and hence $\mathbf{x}_n + \lambda \mathbf{y} \in \overline{A}$ for every $n \in |\mathbb{N}|$ and $\lambda \in [0, +\infty[$. Letting $n \to \infty$ we see that $\mathbf{w} + \lambda \mathbf{y} \in \overline{A}$ for every $\lambda \in [0, +\infty[$, so that $ray(\mathbf{w}, \mathbf{y}) \subseteq \overline{A}$. Since this holds for every $\mathbf{w} \in \overline{A}$, (**) is proved.

Using (**), the first statement of (ii), and (*), we obtain for any $x \in riA$

$$0^{\dagger} r i A \subseteq 0^{\dagger} \overline{A}$$
$$\subseteq \{ y \in E \mid ray(x,y) \subseteq \overline{A} \},\$$

- 3 -

and and

 $O^{\dagger}riA \subseteq \{y \in E \mid ray(x,y) \subseteq riA\}$ $\subseteq \{y \in E \mid ray(x,y) \subseteq A\}$ $\subseteq \{y \in E \mid ray(x,y) \subseteq \overline{A}\}$ $\subseteq O^{\dagger}riA,$

which gives the desired results.

The following two propositions show how some topological properties of convex sets can be described by means of rays.

<u>2.7 Proposition</u>: Let A be a convex subset of E, and let $x \in riA$. Then A is closed, if (and only if) all the sets

 $A \cap ray(x,y)$, $y \in affA - affA$,

are closed.

Proof (of "if"): Applying 2.3 we have for $z \in \overline{A}$:

$$z \in \overline{\{x + \lambda(z-x) \mid \lambda \in [0, l[\}\}}$$

$$\subseteq \overline{riA \cap ray(x, z-x)}$$

$$\subseteq \overline{AA \cap ray(x, z-x)}$$

$$= A \cap ray(x, z-x) \subseteq A.$$

<u>2.8</u> Proposition: Let A be a convex subset of E, and let $x \in riA$. Then the following three statements are equivalent:

(i). A is bounded (i.e. $A \subseteq \{w \in E \mid ||w|| \leq \lambda\}$ for some $\lambda \in |\mathbb{R}_+$). (ii). $0^+\overline{A} = \{\underline{0}\}$.

(iii). All the sets

 $A \cap ray(x,y)$, $y \in affA - affA$,

are bounded.

<u>Proof</u>: The equivalence (ii) \Leftrightarrow (iii) is a consequence of 2.6 (ii). Since (i) \Rightarrow (iii) is obvious, it remains to show that (iii) \Rightarrow (i).

Suppose that A is unbounded. Then there exists a sequence $(y_n)_n \in \mathbb{N}$ of unit vectors with x + n $y_n \in A$, $\forall n \in \mathbb{N}$. As the unit ball (in affA - affA) is com-

- 4 -

2.9 Example, demonstrating the importance in 2.7 and 2.8 for x to be a point from riA.

Suppose that $E = |\mathbb{R}^2$, $A = ([0,+\infty[\times[0,l[) \cup ([0,l] \times \{l\}):$

Choosing

$$x = (0,1) \in A \setminus riA$$

we have that all the sets

 $A \cap ray(x,y)$, $y \in \mathbb{R}^2$

are closed and bounded, although A is neither closed nor bounded. It is seen that

$$O^{+}\overline{A} = [O, +\infty[\times \{O\}].$$

If $B = [O, +\infty[\times [O, 1]], \text{ we have } B \subset A,$
$$O^{+}B = O^{+}\overline{B} = [O, +\infty[\times \{O\}],$$

 $O^{+}A = \{O\},\$

that is $0^{+}A \subset 0^{+}B$.

<u>2.10 Lemma</u>: Let \tilde{F} be a filterbase of closed path-connected subsets of E, and let M be the set of clusterpoints of \tilde{F} :

$$M = \bigcap_{F \in F} F.$$

Then M is bounded and $\neq \emptyset$, if and only if \tilde{F} contains a bounded set F_0 . <u>Proof</u>: If $F_0 \in \tilde{F}$ is bounded, $\{F_0 \cap F \mid F \in \tilde{F}\}$ is a filterbase on the compact set F_0 and hence

$$\emptyset \neq \bigcap_{F \in F} (F_0 \cap F) \subseteq M \subseteq F_0,$$

that is, M is bounded and $\neq \emptyset$.

Suppose next that M is bounded and $\neq \emptyset$:

$$\emptyset \neq \mathbb{M} \subseteq \{ \mathbf{x} \in \mathbb{E} \mid ||\mathbf{x}|| < \lambda \}.$$

The set K := { $x \in E | ||x|| = \lambda$ } is compact, and to each $x \in K$ we can find $F_x \in \tilde{F}$ so that $x \in F_x^c$. Since $(F_x^c, x \in K)$ constitutes an open covering of K, there exists a finite subset K_0 of K with

$$\bigcap_{\mathbf{x}\in\mathbf{K}_{0}}\mathbf{F}_{\mathbf{x}}\subseteq\mathbf{K}^{\mathbf{c}},$$

and the filterbase axioms give the existence of $\mathbf{F}_{0} \in \dot{\mathbf{F}}$ so that

 $\mathbf{F}_{0} \subseteq \bigcap_{\mathbf{x} \in \mathbf{K}_{0}} \mathbf{F}_{\mathbf{x}} \subseteq \mathbf{K}^{c};$

the set ${\rm F}_{\rm O}$ being path-connected, this implies that

$$\mathbf{F}_{\mathsf{O}} \subseteq \{\mathbf{x} \in \mathbf{E} \mid ||\mathbf{x}|| < \lambda\},\$$

so F_0 is bounded.

We shall now introduce the quasi-convex functions, and using the preceeding results it is possible to prove a result concerning minimization of quasi-convex lower semicontinuos functions.

2.11 Definition: A function $f : E \rightarrow \mathbb{R} \cup \{+\infty\}$ is called <u>quasi-convex</u> if all the

sets

$$f^{-\perp}(]-\infty,a]) = \{x \in E \mid f(x) \leq a\}, a \in |R|$$

are convex.

A function f : D \rightarrow IR, D \subseteq E, is called quasi-convex if the function \tilde{f} : E \rightarrow IR \cup {+ ∞ } defined by

$$f(x) = \begin{cases} f(x) & \text{if } x \in D \\ \\ +\infty & \text{if } x \notin D \end{cases}$$

is quasi-convex.

<u>2.12 Examples</u>: Every convex function $f : D \rightarrow \mathbb{R}$, where $D \subseteq E$ is convex, is quasiconvex on E.

For any quasi-convex function $f : \mathbb{R} \to \mathbb{R}$ there exists $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$, $a \leq b$, so that f is decreasing on $\{x \in \mathbb{R} \mid x \leq b\}$ and increasing on

 $\{x \in |\mathbb{R} | a \leq x\}$. Furthermore, if $f : |\mathbb{R} \rightarrow |\mathbb{R}$ satisfies the latter conditions, f is quasi-convex.

Recall that a function $f : E \rightarrow |R \cup \{-\infty, +\infty\}$ is called <u>lower semi-continuous</u> (l.s.c.) if and only if all the sets

$$f^{-\perp}(] -\infty, a]) = \{x \in E \mid f(x) \leq a\}, a \in \mathbb{R}, d$$

are closed.

<u>2.13 Proposition</u>: Sufficient for a quasi-convex function $f : E \rightarrow \mathbb{R} \cup \{+\infty\}$ to be l.s.c. is that for every $a \in \mathbb{R}$ and every pair $(x,y) \in E^2$ the following holds:

if $f(x + \lambda y) \leq a$ for every $\lambda \in [0,1[$, then $f(x+y) \leq a$.

<u>Proof</u>: This is an immediate consequence of proposition 2.7 with $A := f^{-1}(] -\infty, a]$).

2.14 Proposition: For a quasi-convex l.s.c. function $f : E \rightarrow IR \cup \{+\infty\}$ the following three statements are equivalent:

(i): The minimum set

$$M := \{x \in E \mid f(x) = \inf_{y \in E} f(y)\}$$

is compact and $\neq \emptyset$.

- (ii): There exists an $a \in \mathbb{R}$ so that to every $y \in \mathbb{E} \setminus \{\underline{0}\}$ there exists an $x \in f^{-1}(] -\infty, a]$) with lim $f(x + \rho y) > a$, $\rho \to +\infty$ **9:** $\exists a \in \mathbb{R} \forall y \in \mathbb{E} \setminus \{\underline{0}\} \exists x \in f^{-1}(] -\infty, a]$): lim $f(x + \rho y) > a$.
- (iii): There exists an $a \in \mathbb{R}$ so that for some (and then for any) $x \in \operatorname{ri} f^{-1}(]-\infty,a]$) $\lim_{\rho \to +\infty} f(x + \rho y) > a$ for every $y \in \mathbb{E} \setminus \{\underline{0}\}, g$: $\exists a \in \mathbb{R} \exists (\forall) x \in \operatorname{rif}^{-1}(]-\infty,a]) \forall y \in \mathbb{E} \setminus \{\underline{0}\}$: $\lim_{\rho \to +\infty} f(x + \rho y) > a$.

Proof: We shall apply lemma 2.10 to the filterbase

$$\tilde{F} := \{f^{-1}(] - \infty, a]\} \mid a \in f(E) \setminus \{+\infty\}\},$$

which consists of closed convex sets, and it is seen that (i) is equivalent to the existence of an $a \in \mathbb{R}$ so that $f^{-1}(]-\infty,a]$) is bounded and $\neq \emptyset$. According to 2.8 ((i) \Leftrightarrow (ii)), this can be expressed by saying that $f^{-1}(]-\infty,a]$) $\neq \emptyset$ and $O^+f^{-1}(]-\infty,a]$) = {<u>0</u>}, i.e. (cfr. 2.5)

$$\exists a \in [\mathbb{R} \forall y \in \mathbb{E} \setminus \{\underline{0}\} \exists x \in f^{-1}(] - \infty, a]) : ray(x, y) \notin f^{-1}(] - \infty, a])$$

The equivalence (i) \Leftrightarrow (ii) is thus established by remarking, that if $f(x) \leq a$ and f(x + ry) > a (r > 0) then $f(x + \rho y) > a$ for $\rho \geq r$ since $f^{-1}(] -\infty, a]$) is convex.

In a completely analogous way (i) \Leftrightarrow (iii) is proved, using 2.8 ((i) \Leftrightarrow (iii)).

3. Dual space. Polar cone.

The support of a measure.

We are still considering a finite dimensional real Banach space E. The totality of all (continuous) linear forms on E is E^* , the dual space of E, and constitutes a Banach space itself with the norm

 $x^* \mapsto ||x^*|| := \sup \{ ||x^*(x)|| | ||x|| \leq 1 \}, x^* \in E^*.$

Furthermore E and E * have the same dimension. Now, consider the natural embedding ψ : E \rightarrow E ** = (E *)*, where

 $\psi x : x^{\times} \mapsto (\psi x)(x^{\times}) = x^{\times}(x), (x^{\times} \in \mathbb{E}^{\times}, x \in \mathbb{E}).$

In our case ψ is an isometric isomorphism of E onto E^{**} .

In the sequel we shall use some well known results *):

- <u>3.1 The Hahn-Banach Theorem</u> in its geometric formulation: Let A be an open convex subset of E and let M be an affine subspace of E, M \cap A = Ø. Then there exists a closed hyperplane H in E so that M \subseteq H and H \cap A = Ø.
- <u>3.2 Separation Theorem</u>: Let A be a closed convex subset of E and let B be a compact convex subset of E, A \cap B = Ø. Then there exists a closed hyperplane $H = (x^*)^{-1}(\gamma)$ in E $(x^* \in E^*, \gamma \in \mathbb{R})$ which separates A and B strictly, i.e. $x^*(A) \subseteq] -\infty, \gamma[$ and $x^*(B) \subseteq] \gamma, +\infty[$.
- <u>3.3</u> Corollary: Let C be a convex cone with vertex \underline{O} , C \subset E. Then C is the intersection of all closed halfspaces containing C whose boundary hyperplane contains \underline{O} .
- <u>3.4</u> Definition: Let A be a convex subset of F, F = E or E^* . The <u>polar cone</u> of A is the set

 $A^{O} := \{y^{\times} \in F^{\times} \mid \forall y \in A : y^{\times}(y) \leq 0\}.$

In the case $F = E^{*}$ we shall use the notation

 $A^{p} := \psi^{-1}(A^{o}) = \{x \in E \mid \forall x^{*} \in A : x^{*}(x) \leq 0\}.$

If M is a subset of E then cone M denotes the smallest cone with vertex \underline{O} containing M: cone M = { $\lambda x \mid x \in M, \lambda \in \mathbb{R}_+$ }. If M is convex, then cone M is convex.

[^]) see e.g. Bourbaki (1966).

<u>3.5 Proposition</u>: Let A be a convex subset of F = E or E^* . If F = E, then $A^{\circ} = (\text{cone } A)^{\circ}$ is a closed convex cone, and $\overline{\text{cone } A} = \psi^{-1}(A^{\circ \circ}) = A^{\circ p}$. If $F = E^{**}$, then $A^{\circ} = (\text{cone } A)^{\circ}$ and $A^{p} = (\text{cone } A)^{p}$ are closed convex cones, and $\overline{\text{cone } A} = [\psi^{-1}(A^{\circ})]^{\circ} = A^{p \circ}$.

<u>Proof</u>: It is rather trivial that $A^{\circ} = (\text{cone } A)^{\circ}$ and $A^{p} = (\text{cone } A)^{p}$ are closed convex cones. The assertions about cone A are obvious if C := cone A = F, and if C \subseteq F they are simply reformulations of corollary 3.3; note however the importance in the case F = E^{*} of ψ being surjective.

Let \hat{X} be a locally compact space (e.g. $\hat{X} = E$). The <u>Borel- σ -algebra</u> on \hat{X} , $\hat{B}(\hat{X})$, is the σ -algebra generated by the open sets in \hat{X} .

<u>3.6 Definition</u>: Given a positive σ -finite measure m on $(\hat{X}, \hat{B}(\hat{X}))$. The support of m is the set

 $supp(m) := \{x \in X \mid m(U) > 0 \text{ for every open neighbourhood } U \text{ of } x\}.$

If $\hat{X} = E$ we define the <u>affine support</u> of m as the set

S(m) := aff(supp(m)).

We note that $\operatorname{supp}(m)^{c}$ is open. If $\hat{X} = E$ it follows from 3.7 that $\operatorname{supp}(m)$ is the largest set $M \subseteq \hat{X}$ so that m(U) > 0 for every non empty relative open subset U of M, and $\operatorname{supp}(m)^{c}$ is the largest open set $\mathbb{N} \subseteq \hat{X}$ so that $m(\mathbb{N}) = 0$.

<u>3.7</u> Proposition: Let m be as in 3.6 with $\tilde{X} = E$. For every $B \in \tilde{B}(E)$ we have

 $B \cap supp(m) = \emptyset \Rightarrow m(B) = 0.$

 $\begin{array}{ccc} \mathbf{U} & \mathbf{U}_{\mathbf{x}} &=& \mathbf{U} & \mathbf{U}_{\mathbf{x}} \supseteq \mathbf{B}; \\ \mathbf{x} \in \mathbf{B} & & \mathbf{x} \in \mathbf{B}_{\mathbf{0}} \end{array}$

 $m(B) \leq \sum_{x \in B_{\alpha}} m(U_x) = 0.$

<u>Proof</u>: Choose open sets U_x , $x \in B$, so that $x \in U_x$ and $m(U_x) = 0$. Since E is a Lindelöf space one can find a countable subset B_0 of B with

hence

3.8 Theorem: Given a positive
$$\sigma$$
-finite measure m on (E, B(E)), and a closed convex cone K \subseteq (S(m) - S(m))^{*} with vertex O. Then we have the identity

$$ri(conv(supp(m))) + K^{p}$$
$$= \{x \in S(m) \mid \forall x \in \mathbb{K} \{ \underline{0} \} : m\{y \in S(m) \mid x^{*}(y-x) > 0\} > 0\},\$$

where K is considered as a subset of $F = (S(m) - S(m))^{*}$ and thus

$$\mathbf{K}^{\mathbf{p}} = \{ \mathbf{z} \in \mathbf{S}(\mathbf{m}) - \mathbf{S}(\mathbf{m}) \mid \forall \mathbf{x}^{*} \in \mathbf{K} : \mathbf{x}^{*}(\mathbf{z}) \leq \mathbf{0} \}.$$

Proof: For shortness we put

$$A := ri(conv(supp(m))) + K^{p}$$

$$B := \{x \in S(m) \mid \forall x \in K \setminus \{\underline{0}\} : m\{y \in S(m)\} \mid x^*(y-x) > 0\} > 0\}.$$

First we show that $A^{c} \subseteq B^{c}$: The set A is convex and open (relative to S(m)), so according to the Hahn-Banach theorem we can to $x \in A^{c}$ find $x \in (S(m) - S(m))$ $x \stackrel{*}{\longrightarrow} \in (S(m) - S(m))^{*}$ with

(1)
$$A \subseteq \{y \in S(m) \mid x^*(y-x) < 0\}$$

Using proposition 2.6, (iii), we obtain

$$K^{p} = O^{+}(K^{p}) \subseteq O^{+}A$$

$$\subseteq O^{+}\{y \in S(m) | x^{*}(y-x) < 0\}$$

$$= O^{+}\{z \in S(m) - S(m) | x^{*}(z) < 0\}$$

$$\subseteq \{z \in S(m) - S(m) | x^{*}(z) \leq 0\},$$

which shows that

$$x \in K^{po} = \overline{K} = K$$

(proposition 3.5). Inclusion (1) implies that

$$\operatorname{conv}(\operatorname{supp}(\operatorname{m})) \subseteq \{ y \in S(\operatorname{m}) \mid x^*(y-x) \leq 0 \},\$$

SO

$$supp(m) \cap \{y \in S(m) \mid x^*(y-x) > 0\} = \emptyset,$$

that is,

$$m\{y \in S(m) | x^*(y-x) > 0\} = 0$$

(proposition 3.7), and hence $x \notin B$.

To see that $B^{C} \subseteq A^{C}$ it sufficies to show that

$$x - z \notin ri(conv(supp(m)))$$

for all $x \in B^{c}$, $z \in K^{p}$. If $x \in B^{c}$ then

 $m\{y \in S(m) | x^{*}(y-x) > 0\} = 0$

for some x ${}^{\star} \in$ K, and hence for z \in $\textbf{K}^{\textbf{P}}$

$$0 = m\{y \in S(m) | x^{*}(y-x) > 0\}$$

= m{y \in S(m) | x^{*}(y-(x-z)) > x^{*}(z)}
> m{y \in S(m) | x^{*}(y-(x-z)) > 0}

since $x^*(z) \leq 0$. It follows from 3.6 that

$$supp(m) \cap \{y \in S(m) | x^*(y-(x-z)) > 0\}$$

is empty, since it is a relative open subset of supp(m) with m-measure O. This implies that

$$ri(conv(supp(m)))$$

$$\subseteq ri(conv\{y \in S(m) | x^{*}(y-(x-z)) \leq 0\})$$

$$= \{y \in S(m) | x^{*}(y-(x-z)) < 0\}$$

so

$$x-z \in ri(conv(supp(m))).$$

Sometimes the following concept may be usefull:

<u>3.9 Definition</u>: Let A be convex subset of F = E or E^* . The <u>normal cone</u> of A at $x \in A$ is

 $(A-x)^{\circ} = \{y^{*} \in F^{*} \mid \forall y \in A : y^{*}(y-x) \leq 0\}.$

We shall use normal cones in section 5.

4. Maximum likelihood estimation in exponential families.

In this section we consider

V, a finite dimensional real Banach space with the Borel- σ -algebra $\hat{B}(V)$, (\hat{X}, \hat{A}) , an arbitrary measurable space,

T, a measurable mapping $\hat{X} \rightarrow V$,

 μ , a σ -finite positive measure on (\dot{X}, \dot{A}) ,

S is the affine support of the measure $B \mapsto \mu(\mathbb{T}^{-1}B)$, $B \in \tilde{B}(V)$, and $\tilde{B}(S)$ is the Borel- σ -algebra on S,

 μ_{T} is the measure on (S, $\hat{B}(S)$) given by $\mu_{T}(B) = \mu(T^{-1}B)$.

s₀ = s-s

 T_{0} is an arbitrary fixed point i S.

We suppose, that the set

$$\Theta := \{ \theta \in S_0^{*} | \int \exp(\theta(\mathbb{T}_x - \mathbb{T}_0)) \mu(dx) < + \infty \}$$

is non empty. (0 does not depend on the choice of $T_{0}^{}).$ In this case the measure μ_{T} is σ -finite.

Consider the exponential family

$$\hat{P} = \{P_{\theta} \mid \theta \in \Theta\}$$

of probability measures on (\hat{X}, \hat{A}) defined by

$$\frac{\mathrm{dP}_{\theta}}{\mathrm{d}\mu}(\mathbf{x}) = \frac{\exp(\theta(\mathrm{T}\mathbf{x} - \mathrm{T}_{0}))}{\int \exp(\theta(\mathrm{T}\mathbf{y} - \mathrm{T}_{0})) \ \mu(\mathrm{d}\mathbf{y})}$$

(not depending on ${\rm T}_{0}).$ Corresponding to $\tilde{\rm P}$ we have the family

$$\hat{P}_{T} = \{P_{\theta,T} \mid \theta \in \Theta\}$$

of probability measures on $(S, \tilde{B}(S))$ defined by

$$\frac{\mathrm{d}P_{\theta,T}}{\mathrm{d}\mu_{T}}(t) = \frac{\exp(\theta(t - T_{0}))}{\int \exp(\theta(s - T_{0})) \mu_{T}(\mathrm{d}s)}$$

(The measure $P_{\theta,T}$ is obtained from P_{θ} in the same way as μ_T from μ).

MANUSERIPTEAPIR A4

- 14 -

The likelihood function is

$$L : \Theta \times S \rightarrow [0, +\infty[$$

$$(\theta, t) \mapsto \frac{\exp(\theta(t - T_0))}{\int \exp(\theta(s - T_0)) \mu_T(ds)},$$

Now, suppose we have an observation $t_0 = Tx_0 \in S$ and that we want to estimate the parameter θ under the hypothesis $\theta \in H$, where H should be a closed convex subset of S_0^* and $H \cap \Theta \neq \emptyset$. The principle of maximum likelihood estimation then tells us to maximize $L(\theta, t_0)$ with respect to $\theta \in \Theta$, subject to the constraint $\theta \in H$, and if there exists a unique value $\hat{\theta}_H(t_0) \in \Theta \cap H$ with

$$L(\hat{\theta}_{H}(t_{0}),t_{0}) = \sup_{\substack{\theta \in \Theta \cap H}} L(\theta,t_{0})$$

then to use $\hat{\theta}_{H}(t_{0})$ as an estimator for θ .

<u>4.1</u> Theorem: Under the above conditions, it is necessary and sufficient for the existence of $\hat{\theta}_{H}(t_{0})$ that

$$t_{0} \in ri(conv(supp(\mu_{T}))) + (0^{+} \overline{0 \cap H})^{p_{0}},$$

(where the polar cone operation goes from S_0^* to S_0^* , cf. 3.4). In any case $-L(\cdot,t_0)$ attains its supremum at at most one point in $\Theta \cap H$. Moreover, the equation

 $E_{\theta}T = t_{0}$

has at most one solution $\tilde{\theta} \in \Theta$, and if $\hat{\theta}_{H}(t_{0}) \in ri(\Theta \cap H)$ then $\tilde{\theta} = \hat{\theta}_{H}(t_{0})$. <u>Proof</u>: For the sake of simplification we choose $T_{0} = t_{0}$, so that

$$\begin{split} & L(\theta, t_0) = \Phi(\theta)^{-1}, \\ & \Phi(\theta) := \Phi(\theta, t_0) := \int \exp(\theta(t - t_0)) \mu_{\mathrm{T}}(\mathrm{d}t) , \quad \theta \in \Theta. \end{split}$$

It is a convenient trick to introduce the function

$$f_{H} : S_{0}^{*} \to |\mathbb{R} \cup \{+\infty\}$$

$$f_{H}(\theta) := \begin{cases} \log \Phi(\theta) & \text{for } \theta \in \Theta \cap H \\ +\infty & \text{for } \theta \in S_{0}^{*} \setminus (\Theta \cap H). \end{cases}$$

POLYTEKNISK FORLAG OG TRYKKERI, SØLVGADE 83, 1307 K. TLF. 11 98 22

- 15 -

Obviously, every minimum point for f_H will be a maximum point for $L(\cdot,t_0)$ restricted to $0 \cap H$, and vice versa. It is well known (see e.g. Barndorff-Nielsen (1970) or Johansen (1970)) that 0 is convex and log Φ is strictly convex on 0. Hence we conclude that f_H is quasi-convex and that f_H attains its infimum at at most one point (which will be $\hat{\theta}_H(t_0)$). The idea is now to show that f_H is l.s.c. using 2.13, and then to apply 2.14. First we shall find $\lim_{H \to 0} f_H(\theta + \rho\xi), \ \theta, \xi \in S_0^*, \ r \in]0, +\infty]$.

Given $\theta \in \Theta \cap H$, $\xi \in S_0^* \setminus \{\underline{0}\}$, $r \in]0, +\infty]$, each of the following statements is either true or false:

(st 1): $r = + \infty$ (st 2): $\{\theta + \rho\xi \mid \rho \in [0,r[]\} \subseteq \Theta \cap H$ (st 3): $\mu_{T}\{\xi(t - t_{0}) > 0\} > 0$ (st 4): $\mu_{T}\{\xi(t - t_{0}) = 0\} > 0$.

If the logical values of the statements are known we can find the desired limit:

(t = true, f = false)

These results are, of course, obtained by rewriting log $\Phi(\theta)$ as

$$\log\left(\int_{\{\xi(t-t_0)>0\}} + \int_{\{\xi(t-t_0)\leq 0\}} \exp(\theta(t-t_0))\mu_{\mathrm{T}}(\mathrm{d}t)\right)$$

and using the monotone convergence theorem. Case (2) needs a little more attention: The limit is

- 16 -

$$\log \int \exp((\theta + r\xi)(t - t_0))\mu_{\mathrm{T}}(\mathrm{d}t) = \log \Phi(\theta + r\xi)$$

if t if the expression under the integral sign is integrable, and + ∞ otherwise. In the non-integrable case θ + $r\xi \notin \Theta$ and hence $f_H(\theta + r\xi) = +\infty$. If the expression in fact is integrable, θ + $r\xi \in \Theta$, and since $\{\theta + \rho\xi | \rho \in [0,r[\} \subseteq H \text{ and } H \text{ is closed}, \theta + r\xi \in H$, and so $f_H(\theta + r\xi) = \log \Phi(\theta + r\xi)$.

In case (4) $L(\cdot, \cdot | \xi(T - t_0) = 0)$ is the likelihood function in the distribution of T conditional on $\xi(T - t_0) = 0$,

$$L(\omega, t_{1} | \xi(T - t_{0}) = 0) := \frac{\exp(\omega(t_{1} - T_{0}))}{\int \exp(\omega(t - T_{0})) \mu_{T}(dt)}$$

$$\{\xi(t - t_{0}) = 0\}$$

for $t_1 \in \{t | \xi(t - t_0) = 0\}, \omega \in 0$. For every $\theta \in 0 \cap H$ and $\xi \in S_0^*$ we have

$$f_{H}(\theta + \xi) = \lim_{\lambda \uparrow 1} f_{H}(\theta + \lambda \xi)$$

(case (1) or case (2)), so proposition 2.13 gives that f_H is l.s.c. We can now examine for which t_0 's the condition 2.14 (iii) is fulfilled. Choose $a \in [R, \theta \in \operatorname{rif}_H^{-1}(] -\infty, a]$), $\xi \in \operatorname{S}_0^* \setminus \{\underline{0}\}$. Then

$$\lim_{\rho \uparrow +\infty} f(\theta + \rho\xi) > a,$$

if and only if we are in case (1) or case (3) (in case (4)

$$\log \int \exp(\theta(t - t_0)\mu_{\mathrm{T}}(\mathrm{d}t) \leq \log(\Phi(\theta) \leq a).$$

$$\{\xi(t - t_0) = 0\}$$

The following bi-implications hold (since $r = + \infty$):

 $\begin{bmatrix} \text{we are in case (1) or case (3)} \end{bmatrix} \\ \Leftrightarrow \\ [((\text{st 1}) \land (\text{st 2}) \land (\text{st 3})) \lor \text{non (st 2)}] \\ \Leftrightarrow \\ [((\text{st 22}) \Rightarrow (\text{st 3})] \\ \Leftrightarrow \\ [\text{ray}(\theta, \xi) \subseteq \Theta \cap H \Rightarrow \mu_{\mathrm{T}} \{\xi(t - t_{0}) > 0\} > 0] \\ \Leftrightarrow \\ [\xi \in O^{+} \Theta \cap H \Rightarrow \mu_{\mathrm{T}} \{\xi(t - t_{0}) > 0\} > 0] \\ \Rightarrow \end{bmatrix}$

according to 2.6 (ii). (Note the independence on a!)

- 17 -

We have thus found that condition 2.14 (iii) is fullfilled if and only if

$$\forall \, \xi \, \in \, \mathrm{S}^{*}_{\mathrm{O}} \{ \underline{\mathrm{O}} \} \, [\underline{\xi} \, \in \, \mathrm{O}^{+} \overline{\mathrm{O} \, \cap \, \mathrm{H}} \quad \Rightarrow \quad \mu_{\mathrm{T}} \{ \, \xi (\mathrm{t} \, - \, \mathrm{t}_{\mathrm{O}}) \, > \, \mathrm{O} \} \, > \, \mathrm{O}] \, .$$

Applying 3.8 it is seen to be equivalent to

$$t_{0} \in ri(conv(supp(\mu_{m}))) + (0^{+} \overline{\Theta \cap H})^{p}.$$

This finishes the deduction of the criterion for existence of maximum likelihood estimators.

It is known (see e.g. Barndorff-Nielsen (1970) or Johansen (1970)) that the mapping $\theta \mapsto E_{\theta}T$ is injective and that

$$E_{A}T = t_{O} + D \log \Phi(\theta)$$

for $\theta \in ri\theta$. If $\hat{\theta}_{H}(t_{0}) \in ri(\Theta \cap H)$, it is a stationary point, i.e. D log $\Phi(\hat{\theta}_{H}(t_{0})) = 0$, and therefore solution to

$$E_{\theta}T = t_0.$$

This completes the proof of 4.1.

<u>4.2 Corollary</u>: The functions Φ and $\log \Phi = S_0^* \rightarrow |\mathbb{R} \cup \{+\infty\}$ defined by

$$(\theta) = \begin{cases} \int \exp(\theta(t - T_0)) \mu_T(dt) , & \theta \in \Theta \\ + \infty , & \theta \in S_0^* \setminus \Theta, \end{cases}$$

are l.s.c.

<u>Proof</u>: $\Phi = f_H$, $H = S_0^*$, with f_H as in the proof of 4.1.

<u>4.3</u> Corollary: The level sets

$$\{\theta \in S_0^* \mid -\log L(\theta, t_0) \leq a\}, \quad a > \inf(-\log L(\cdot, t_0)),$$

are all bounded or all unbounded.

<u>Proof</u>: In the proof of 4.1 we found a criterion for $\lim_{\rho \uparrow +\infty} f(\theta + \rho\xi)$ to be >a for every $\xi \in S_0^* \setminus \{\underline{0}\}$, and this criterion did not depend on a. The result then follows from 2.8 (i, iii). - 18 -

<u>4.4</u> Corollary: Suppose \hat{X} is a locally compact vector space and \hat{A} the Borel- σ -algebra on \hat{X} , and suppose μ is discrete (i.e. $supp(\mu)$ is discrete in the subspace-topologi). If $t_0 \in conv(supp(\mu_{\pi}))$ and $\xi \in 0^+ ri(\Theta \cap H)$ so that

$$\mu_{\mathrm{T}} \{ \mathbf{t} | \boldsymbol{\xi} (\mathbf{t} (\div \mathbf{t}_{0}) \geq 0) \Rightarrow 0 \}$$

$$\mu_{\mathrm{T}} \{ \mathbf{t} | \boldsymbol{\xi} (\mathbf{t} (\div \mathbf{t}_{0}) \geq 0) > 0, \circ,$$

then for $\theta_0 \in ri(\Theta \cap H)$

$$P_{\theta_0} + \rho \xi \xrightarrow{\tilde{W}} P_{\theta_0}(\cdot | \xi(T - t_0) = 0)$$

for $\rho \rightarrow + \infty$. Since $P_{\theta_0, T} \{t_0\} \leq P_{\theta_0, T} (\{t_0\} | \xi(T - t_0) = 0)$, this implies that

$$\sup_{\theta \in \Theta \cap H} P_{\theta,T} \{t_0\} = \sup_{\theta \in \Theta \cap H} P_{\theta,T} (\{t_0\} | \xi(T - t_0) = 0).$$

<u>Proof</u>: This is an immediate consequence of the examinations of $\lim f(\theta + \rho\xi)$ in the proof of 4.1, since

$$P_{\Theta}\{x\} = \exp(-f(\theta)) \ \mu\{x\}, \ f(\theta) = \log\Phi(\theta, Tx),$$

so that it is seen that

$$\lim_{\rho \to +\infty} \mathbb{P}_{\substack{\theta \\ 0}} + \rho \xi^{\{x\}} = \mathbb{P}_{\substack{\theta \\ 0}}(\{x\} | \xi(\mathbb{T} - t_0) = 0)$$

for all $x \in supp(\mu)$.

- 19 -

5. The dose-response model.

In this section we shall - as an example - discuss the estimation problems in the dose-response model.

5.1

Consider mutually independent random variables X_1, \ldots, X_k , so that X_i is binominally distributed with known number parameter $n_i \in \mathbb{N}$ and unknown probability parameter $p^{(i)} \in [0,1]$, $i = 1, \ldots, k$. Furthermore, $z_1 < \ldots < z_k$ are given real numbers. Now the statistical problem is obtained assuming that for some $\theta = (\alpha, \beta) \in \mathbb{R}^2$

$$p^{(i)} = p_{\theta}(z_i) := \frac{1}{1 + \exp(-\alpha - \beta z_i)}$$
, $i = 1, \dots, k$.

Note, that the logistic function

$$p_{\theta} = p_{\alpha,\beta} : z \mapsto \frac{1}{1 + \exp(-\alpha - \beta z)} = \frac{\exp(\alpha + \beta z)}{1 + \exp(\alpha + \beta z)}, z \in \mathbb{R},$$

for $\beta > 0$ is increasing, for $\beta = 0$ constant, and for $\beta < 0$ decreasing. For $\beta \neq 0$ $p_{\alpha,\beta}$ is a bijection from [R to]0,1[; the inverse mapping of $p_{0,1}$ is

$$\lambda : u \mapsto \log \frac{u}{1-u}$$
, $u \in]0,1[.$

 $(\lambda(u) \text{ is sometimes called the logistic transform of u}).$ Finally, $\{p_{\theta}(z) | \theta \in |\mathbb{R}^2\} =]0,1[$ for every $z \in |\mathbb{R}.$

<u>5.2</u>

The distribution of X = (X_1, \ldots, X_k) when $p_{\theta}(z_1), \ldots, p_{\theta}(z_k)$ are the parameters is P_{θ} given by

$$P_{\theta}\{(x_1,\ldots,x_k)\} := P\{X_1 = x_1,\ldots,X_k = x_k\}$$

$$= \begin{cases} \frac{\exp(\alpha \sum x_{i} + \beta \sum z_{i} x_{i})}{k} & \prod_{i=1}^{n} {n_{i} \choose x_{i}}, \text{ for } (x_{1}, \dots, x_{k}) \in \prod_{i=1}^{k} \{0, 1, \dots, n_{i}\} \\ i = 1 \\ 0 & \text{, for } (x_{1}, \dots, x_{k}) \notin \prod_{i=1}^{k} \{0, 1, \dots, n_{i}\} \\ i = 1 \end{cases}$$

so we are concerned with an exponential family of order 2. Introducing the measure μ on ($IR^k, \tilde{B}^k)$ with

- 20 -

$$\mu(\{\mathbf{x}\}) = \begin{cases} \begin{pmatrix} k & n_i \\ \Pi & n_i \\ i=1 & x_i \end{pmatrix} & \text{for } \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_k) \in \begin{array}{c} H & \{0, 1, \dots, n_i\} \\ I & i=1 \\ 0 & \text{else} \end{array}$$

and the functions T : $|\mathbb{R}^k \rightarrow |\mathbb{R}^2$ and Φ : $|\mathbb{R}^2 \rightarrow |\mathbb{R}$:

$$T : x \mapsto (T_{1}x, T_{2}x) := (\Sigma x_{i}, \Sigma z_{i}x_{i}) = \Sigma x_{i}(1, z_{i})$$

$$\Phi : \theta = (\alpha, \beta) \mapsto \int \exp(\alpha T_{1}x + \beta T_{2}x) \mu(dx)$$

$$= \prod_{i=1}^{k} [1 + \exp(\alpha + \beta z_{i})]^{n_{i}},$$

we have

$$\frac{dP_{\theta}}{d\mu}(x) = \frac{\exp(\theta \cdot Tx)}{\Phi(\theta)} , \quad \theta \in \mathbb{R}^{2},$$

(where \cdot denotes the ordinary inner product in (\mathbb{R}^2) , to be compared with the family of section 4.

The support of the transformed measure μ_{η} is

$$supp(\mu_{T}) = T(supp(\mu))$$
$$= \{\Sigma x_{i}(l,z_{i}) \mid x_{i} \in \{0,l,\ldots,n_{i}\}, i=l,\ldots,k\},\$$

and the convex hull of $\text{supp}(\mu_{\mathrm{T}})$ is a (convex) polygon with 2k sides and the corners

$$(0,0)$$
, $\sum_{i=j}^{k} n_i(1,z_i)$, $\sum_{i=1}^{j} n_i(1,z_i)$, $j=1,2,\ldots,k$.

Since $(0^+ | \mathbb{R}^2)^p = (| \mathbb{R}^2)^p = \{(0,0)\}$, it follows from theorem 4.1 that the maksimum likelihood estimator $\hat{\theta}(t_0)$, $t_0 = Tx_0$, exists if and only if t_0 belongs to the interior of the polygon conv(supp(μ_{p})).

<u>5.3</u>

Example: The case
$$k = 3$$
; $n_1 = 2$, $n_2 = 1$, $n_3 = 3$; $z_1 = -1$, $z_2 = 0$, $z_3 = 1$.

 $\{x_1(1,-1) | x_1 = 0,1,2\}$

 $\{x_1(1,-1) | x_1 = 0,1,2\}$ + { $x_2(1,0)$ | $x_2 = 0,1$ }

A:
$$n_3(1,z_3)$$

B: $n_3(1,z_3) + n_2(1,z_2)$
C: $n_3(1,z_3) + n_2(1,z_2) + n_1(1,z_1)$
D: $n_1(1,z_1) + n_2(1,z_2)$
E: $n_1(1,z_1)$.

5.4

or

It is possible in an explicit manner to describe the observations \mathbf{x}_0 leading to a $t_0 = Tx_0$ on the boundary of conv(supp(μ_T)), since the corners are known; $t_0 = Tx_0$ is a boundary point if and only if x_0 is of the form

$$(0,...,0, x_{0j}, n_{j+1},...,n_k)$$

 $(n_1,...,n_{j-1}, x_{0j}, 0,...,0),$

- 22 -

where $x_{0j} \in \{0,1,\ldots,n_j\}$, $j \in \{1,\ldots,k\}$, and t_0 is a corner point if and only if also $x_{0j} \in \{0,n_j\}$.

5 - 5

Indeed, it is quiet an inconsistent behavior to want to estimate the parameter θ by the maximum likelihood method when it is possible to get observations x_0 with $P_{\theta}(\{x_0\}) > 0, \forall \theta \in \mathbb{R}^2$, so that no maximum likelihood estimator exists. Therefore an extension of the model is needed.

In the case of $t_0 = Tx_0 \in supp(\mu_T)$ on the boundary, it turns out that for some sequences $(\theta_n)_{n \in \mathbb{N}}$ so that the likelihood function converges to its supremum (and therefore (θ_n) converges to infinity), the corresponding sequence of logistic functions (p_{θ_n}) converges to a kind of a degenerate logistic function which fits the observed x_{0i} -values perfectly; this has been discussed by Silverstone (1957). One might then use the family of degenerate and ordinary logistic functions as a parametrization of an extended model.

Passing to polar coordinates for θ and allowing the module to be + ∞ is another convenient method, which has been used by Davis (1970), who also notices that the t₀'s giving rise to nonsolvable maximum likelihood equations are those on the boundary of conv(supp(μ_{m})).

A different approach has been made by Barndorff-Nielsen (1970), who proves a general result about extending certain types of exponential families; Barndorff uses the mean value parametrization, which makes many things very nice.

Here we shall proceed in the following way. Since a parametrization of our family $\tilde{P} := \{P_{\theta} | \theta \in |\mathbb{R}^2\}$ - from a mathematical point of view - just serves to define the subset \tilde{P} of the set of all probability measures on $|\mathbb{R}^k$, let us for a while reformulate our problem of estimating θ to a problem of estimating a probability measure from \tilde{P} . If we want to extend \tilde{P} in order to make maximum likelihood estimation, it is good to have a non parametric definition of "likelihood function". Obviously we can use the function

$$Q \mapsto Q\{T = t_0\} = Q_{T}\{t_0\}.$$

We are now able to find the smallest family of probability measures on \mathbb{R}^k containing \hat{P} , so that maximum likelihood estimation always is possible.

MANUSKRIPTPAPIR A4

- 23 -

<u>5.6</u>

If t_0 is a boundary point of $conv(supp(\mu_T))$ let $E(t_0)$ denote the normal cone of $conv(supp(\mu_T))$ at t_0 , i.e.

$$\mathsf{E}(\mathsf{t}_0) := \{ \boldsymbol{\xi} = (\boldsymbol{\xi}_1, \boldsymbol{\xi}_2) \in |\mathbb{R}^2 \mid \forall \mathsf{t} \in \operatorname{supp}(\boldsymbol{\mu}_{\mathrm{T}}) : \boldsymbol{\xi} \cdot (\mathsf{t} - \mathsf{t}_0) \leq 0 \}.$$

 $E(t_0)$ is a closed convex cone with vertex <u>O</u>.

Let x_0 be an observed value, $t_0 = Tx_0$. If t_0 belongs to the relative interior of $\operatorname{conv}(\operatorname{supp}(\mu_T))$ we can (as already mentioned) solve the estimation problem. If t_0 is a boundary point then choose $\xi \in E(t_0) \setminus \{\underline{0}\}$; from 4.4 we know that for $\theta \in \mathbb{R}^2$ the conditional distribution $P_{\theta}(\cdot | \xi \cdot (T - t_0) = 0)$ belongs to the closure \overline{P} of \widehat{P} and that

$$\sup_{Q \in \tilde{P}} Q_{T} \{t_{0}\} = \sup_{Q \in \tilde{P}} Q_{T} (\{t_{0}\} | \xi \cdot (T - t_{0}) = 0)$$

Since the family

$$\hat{P}^{\xi} := \{ Q(\cdot | \xi \cdot (T - t_0) = 0) | Q \in \hat{P} \}$$

of conditional distributions can be written in the same way as in section 4, with the same statistic T and another measure μ^{ξ} , $\mu^{\xi}\{x\} = \mu\{x\} \cdot l_{\{\xi}(Tx - t_0) = 0\}$, - we are in a similar situation as before: given $t_0 \in \operatorname{supp}(\mu_T^{\xi})$ we seek the $Q \in \tilde{P}^{\xi}$ that maximizes the likelihood function $Q_{T}\{t_0\}$; and again this problem is solvable if and only if t_0 is a point of the relative interior of $\operatorname{conv}(\operatorname{supp}(\mu_T^{\xi}))$. If MANUSKRIPTPAPIR A4

- 24 -

 $t_0 \notin ri(conv(supp(\mu_T^{\xi})))$ we choose an η from the normal cone of $conv(supp(\mu_T^{\xi}))$ at t_0 so that ξ and η are linearly independent, and form the conditional distributions

$$\tilde{P}^{\xi,\eta} := \{ Q(\cdot | \eta \cdot (\mathbb{T} - t_0) = 0) \mid Q \in \tilde{P}^{\xi} \}.$$

From 4.4 we know that $\tilde{P}^{\xi,\eta} \subseteq \tilde{P}$ and that

$$\sup_{Q \in \tilde{P}} Q_{T} \{t_{0}\} = \sup_{Q \in \tilde{P}^{\xi}} Q_{T} \{t_{0}\} = \sup_{Q \in \tilde{P}^{\xi,\eta}} Q_{T} \{t_{0}\}.$$

The sequence $(\tilde{P}, \tilde{P}^{\xi}, \tilde{P}^{\xi,\eta})$ is a sequence of families of decreasing order, and because \tilde{P} is of order 2 $\tilde{P}^{\xi,\eta}$ will contain only one element so that estimation is trivial. This means that it is always possible to find $\hat{Q} \in \tilde{P}$ so that

$$\hat{Q}_{\mathrm{T}}\{\mathsf{t}_{0}\} = \sup_{Q \in \tilde{P}} Q_{\mathrm{T}}\{\mathsf{t}_{0}\}.$$

It is a reasonable demand to \hat{Q} that it does not depend on our choise of ξ 's and n's, and it is seen from the following investigation that this demand indeed is fulfilled.

<u>5.7</u>

Consider an observation x_0 with $t_0 = Tx_0$ on the boundary of $conv(supp(\mu_T))$. We will confine ourselves to the case

$$\begin{aligned} \mathbf{x}_{0} &= (0, \dots, 0, \mathbf{x}_{0, k \pm 1}, \mathbf{n}_{k}), \mathbf{x}_{0, k - 1} \in \{1, 2, \dots, \mathbf{n}_{k - 1}\}, \\ \mathbf{t}_{0} &= \mathbf{n}_{k} \cdot (1, \mathbf{z}_{k}) + \mathbf{x}_{0, k - 1} \cdot (1, \mathbf{z}_{k - 1}), \end{aligned}$$

but the results are generalized in an obvious way.

If $x_{0,k-1} \in \{1,\ldots,n_{k-1} - 1\}$, t_0 is not corner point (cf. 5.4), and the normal cone is

$$E(t_0) = \{\sigma \cdot (-z_{k-1}, 1) \mid \sigma \in [0, +\infty[\}.$$

If $x_{0,k-1} = n_{k-1}$, t_0 is a corner point, and the normal cone is

$$E(t_0) = \{\sigma \cdot (-z_{k-1}, 1) + \tau \cdot (-z_k, 1) \mid \sigma, \tau \in [0, +\infty[\}.$$

The distribution of X = (X_1, \ldots, X_k) conditionally on $\xi \cdot (T-t_0) = 0$, $\xi \in \Xi(t_0) \setminus \{\underline{0}\}$, is easily found; there are two cases:

- 25 - $\operatorname{supp}(\mu_{\mathfrak{m}}) \cap \{t | \xi \cdot (t - t_{0}) = 0\} = \operatorname{supp}(\mu_{\mathfrak{m}}^{\xi}) = \{t_{0}\}.$ Α: This happens if and only if t_0 is a corner point $(x_{0,k-1} = n_{k-1})$ and $\xi = \sigma \cdot (-z_{k-1}, 1) + \tau \cdot (-z_k, 1)$ for $\sigma, \tau \in \mathbb{R}_+$. For every $\theta = (\alpha, \beta) \in \mathbb{R}^2$ $\hat{\mathbf{Q}} = \mathbf{P}_{\theta}(\cdot | \boldsymbol{\xi} (\mathbf{T} - \mathbf{t}_{0}) = \mathbf{0}) = \frac{\mathbf{h} \mathbf{e}}{\mathbf{h} \mathbf{e}} \quad \text{one-point distribution on } |\mathbf{R}^{2}$ at $\mathbf{x}_{0} = (0, \dots, 0, n_{k-1}, n_{k}).$ $\operatorname{supp}(\mu_{\mathrm{T}}) \cap \{t | \xi \cdot (t - t_{0}) = 0\} = \operatorname{supp}(\mu_{\mathrm{T}}^{\xi}) \supset \{t_{0}\}.$ B: Here we must distinguish between two cases: $\xi \xi = \sigma \cdot (-z_{\nu-1}, 1)$, $\sigma \in \mathbb{R}_+$. Bl: $\xi = \tau \cdot (-z_{r}, 1)$, $\tau \in \mathbb{R}_{\perp}$. B2: We shall only discuss Bl; B2 can be treated in a completely analogous way. For every $\theta = (\alpha, \beta) \in \mathbb{R}^2$ and $x_{k-1} \in \{0, 1, \dots, n_{k-1}\}$ we find Bl: $\mathbb{P}_{\theta}(\{(0,\ldots,0, \mathbf{x}_{k-1}, \mathbf{n}_{k})\}|\xi \cdot (\mathbb{T} - \mathbf{t}_{0}) = 0)$ $= \binom{n_{k-1}}{x_{k-1}} p_{\theta}(z_{k-1})^{x_{k-1}} (1 - p_{\theta}(z_{k-1}))^{n_{k-1} - x_{k-1}}$ and $\frac{\mathrm{d}P_{\theta}(\cdot | \xi \cdot (\mathbb{T} - t_{0}) = 0)}{\mathrm{d}\mu^{\xi}} (\mathbf{x}) = \frac{\exp(\omega \cdot (\mathbb{T}\mathbf{x} - \mathbb{T}_{0}))}{\int \exp(\omega \cdot (\mathbb{T}\mathbf{y} - \mathbb{T}_{0}))\mu^{\xi}(\mathrm{d}\mathbf{y})} , \mathbf{x} \in \mathbb{R}^{k},$ where $\mu^{\xi} \{x\} = \mu\{x\} \cdot l_{\{\xi \cdot (Tx - t_0) = 0\}}$, $x \in \mathbb{R}^k$. $T_0 = n_k(l,z_k)$ (so that $Tx - T_0 = x_{k-1} \cdot (l,z_{k-1}), x \in supp(\mu^{\xi})$) $\omega_{\theta} = \lambda(p_{\theta}(z_{k-1})) \cdot (1,0) = (\alpha + \beta z_{k-1}) \cdot (1,0),$ $\omega = \gamma \cdot (1,0), \quad \gamma \in \mathbb{R} = \{\lambda(p_{\theta}(z_{k-1})) \mid \theta \in \mathbb{R}^2\}$ $(\lambda \text{ is the logistic transformation, see 5.1});$ thus

 $\frac{\exp(\omega \cdot (\mathrm{Tx} - \mathrm{T}_{0}))}{\int \exp(\omega \cdot (\mathrm{Ty} - \mathrm{T}_{0}))\mu^{\xi}(\mathrm{dy})} \mu^{\xi}(\mathrm{dy})} = {n_{k-1} \choose x_{k-1}} \frac{e^{\gamma x_{k-1}}}{(1 + e^{\gamma})^{n_{k-1}}}$

POLYTEKNISK FORLAG OG TRYKKER

- 26 -

for $x \in \text{supp}(\mu^{\xi})$, i.e. X_{k-1} is binomially distributed with parameters n_{k-1} and $e^{\gamma}/1+e^{\gamma}$.

Now $t_0 \in ri(conv(supp(\mu_T^{\xi})))$ if and only if $x_{0,k-1} \in \{1,\ldots,n_{k-1} - 1\}$, and in this case the maximum likelihood estimator $\hat{\omega} = \hat{\gamma} \cdot (1,0)$ is of course given by

$$\hat{\gamma} = \lambda(\hat{p}), \quad \hat{p} = \frac{x_{0,k-l}}{n_{k-l}},$$

obtained from the relation

$$\mathbb{E}_{\hat{\omega}}(\mathbb{T} | \xi(\mathbb{T} - t_0) = 0) = t_0,$$

that is,

$$n_{k} \cdot (1, z_{k}) + n_{k-1} \frac{e^{\hat{\gamma}}}{1+e^{\hat{\gamma}}} \cdot (1, z_{k-1}) = n_{k} \cdot (1, z_{k}) + x_{0, k-1} \cdot (1, z_{k-1});$$

consequently

$$\hat{Q}\{x\} = \frac{d\hat{Q}}{d\mu^{\xi}} (x)\mu^{\xi}\{x\} = \frac{\exp(\hat{\omega} \cdot (Tx - T_0))}{\int \exp(\hat{\omega} \cdot Ty - T_0)\mu^{\xi}(dy)} \mu^{\xi}\{\bar{x}\}$$

$$= \begin{cases} \binom{n_{k-1}}{x_{k-1}} \hat{p}^{k-1} (1-\hat{p})^{n_{k-1}} - x_{k-1} & \text{if } \begin{cases} x_1 = \dots = x_{k-2} = 0, \\ x_{k-1} \in \{0, 1, \dots, n_{k-1}\} \\ x_k = n_k \end{cases}$$
else.

If $x_{0,k-1} = n_{k-1}$ no $\hat{\omega}$ exists. In this case we shall choose an η from the normal cone of conv(supp(μ_{η}^{ξ})) so that ξ and η are linearly independent:

$$n \in \{n = (n_1, n_2) \in \mathbb{R}^2 \mid n_1 + n_2 z_{k-1} < 0\}$$

For any such η

$$supp(\mu_{\mathbb{T}}^{\xi}) \cap \{t | \eta \cdot (\mathbb{T} - t_0) = 0\} = \{t_0\},$$

so we are in a situation similar to A; we find

$$\hat{Q} = P_{\theta}(\cdot | \xi(T - t_0) = 0, \eta(T - t_0) = 0)$$

= the one-point distribution on \mathbb{R}^k at $x_0 = (0, \dots, n_{k-1}, n_k)$

for all $\theta \in \mathbb{R}^2$.

- 27 -

5.8

The distribution of X = (X_1, \ldots, X_k) is estimated as follows:

 X_1, \ldots, X_k are independent binomially distributed with parameters $n_1, \ldots, n_k \in \mathbb{N}^k$ (known) and $p^{(1)}, \ldots, p^{(k)} \in [0,1]$. The observation is x_0 . If $t_0 = Tx_0 \in ri(conv(supp(\mu_T)))$, then $p^{(i)} = p_{\hat{\theta}}(z_i)$, $i=1,\ldots,k$; if t_0 is on the boundary of $conv(supp(\mu_T))$, then $p^{(i)} = \frac{x_0}{n_i}$, $i=1,\ldots,k$, (see 5.4). Thus if we put

$$P_{p}\{(x_{1},\ldots,x_{k})\} := \prod_{i=1}^{k} p_{i}^{x_{i}}(1-p_{i})^{n_{i}^{-x_{i}}} \cdot \mu\{x\}, x \in \mathbb{R}^{k},$$
$$p \in [0,1]^{k}$$

the smallest extension \hat{P}_1 of $\hat{P} = \{P_p \mid p_i = p_{\theta}(z_i), i=1,...,k\}$ so that maximum likelihood estimation always is possible (and unique) is

$$\hat{P}_{1} = \hat{P} \cup \{P_{p} \mid p = (0, \dots, 0, \frac{x_{i}}{n_{i}}, 1, \dots, 1), x_{i} = 1, \dots, n_{i}; i = 1, \dots, k\}$$

$$\bigcup \{ P_{p} \mid p = (1, ..., 1, \frac{x_{i}}{n_{i}}, 0, ..., 0), x_{i} = 1, ..., n_{i}; i = 1, ..., k \}.$$

It seems, however, more natural to consider the extension

$$\dot{P}_{2} = \dot{P} \cup \{P_{p} \mid p = (0, \dots, 0, p_{i}, 1, \dots, 1), p_{i} \in [0, 1]; i=1, \dots, k\}$$
$$\cup \{P_{p} \mid p = (1, \dots, 1, p_{i}, 0, \dots, 0), p_{i} \in [0, 1]; i=1, \dots, k\},\$$

since

$$\{p = (p_1, \dots, p_k) \in [0, 1]^k \mid P_p \in \tilde{P}_2\}$$

is independent of n₁,...,n_k.

With each element P_{θ} , $\theta = (\alpha, \beta) \in \mathbb{R}^2$, of P we can associate the logistic function

$$\begin{array}{ccc} & & & & \\ & & & \\ & z & \mapsto & & p_{\theta}(z) \end{array}$$

If $P_p \in \hat{P}_2 \setminus \hat{P}$ we may associate with P_p the degenerate logistic function which is the pointwise limit of $p_{\theta+\rho\xi+\rho'\eta}$ for any θ,ξ,η so that $P_{\theta+\rho\xi+\rho'\eta} \rightarrow P_p$ for $\rho,\rho' \rightarrow + \infty$. This leads to the following functions: if $p = (0,...,0, p_i, 1,...,1)$, $p_i \in]0,1[$, $i \in \{1,...,k\}$: $\begin{array}{c} -28 - \\ & \mathbb{R} \rightarrow [0,1] \\ & z \mapsto \begin{cases} 0 & \text{for } z \in]-\infty, z_i [\\ p_i & \text{for } z = z_i \\ 1 & \text{for } z \in]z_i, +\infty[; \end{cases} \\ \text{if } p = (0, \dots, 0, 1, \dots, 1) , \quad i \in \{2, 3, \dots, k\} : \\ & \stackrel{\uparrow_i \text{'th}}{\text{place}} \\ & \mathbb{R} \setminus]z_{i-1}, z_i[\rightarrow [0,1] \\ & z \mapsto \begin{cases} 0 & \text{if } z \in]-\infty, z_{i-1}] \\ 1 & \text{if } z \in [z_i, +\infty[;] \end{cases} \\ \text{if } p = (0, \dots, 0): \\ & [z_1, z_k] \rightarrow [0,1] \\ & z \mapsto 0; \\ \text{if } p = (1, 111, 1): \end{cases}$

$$\begin{bmatrix} z \\ z \end{bmatrix} \xrightarrow{k} \begin{bmatrix} 0, 1 \end{bmatrix}$$

(plus some analogous functions for the p-sequence decreasing).

The reason why some of the functions are undefined for some $z \in \mathbb{R}$ is that for these $z \lim_{\rho,\rho'} p_{\theta+\rho\xi+\rho'\eta}(z)$ is a non-constant function of (θ,ξ,η) on the set of all applicable (θ,ξ,η) 's. Thinking of the information contained in the observations (x_{01},\ldots,x_{0k}) about the graph of the logistic function, it is indeed very reasonable that the function is indetermined in some intervals.

<u>5.9</u>

The dose-response model is often applicated when describing experiments where a number of animals are treated with different doses of a certain drug - n_i animals are treated with the i-th dose; z_i is most commonly the logarithme of the dose - and one observes the number X_i of animals that die in group i, i=1,...,k. It is often assumed that the probability of dying is an increasing function of the dose, leading to the consideration of the family

$$\hat{P}_{0} := \{P_{A} \mid \theta = (\alpha, \beta) \in \{\mathbb{R} \times [0, +\infty[\}\}.$$

- 29 -

Here the parameter set thus is $\mathbb{IR}^2 \cap \mathbb{H}$, where

$$H = \{\theta = (\alpha, \beta) \in |\mathbb{R}^2 \mid \beta \ge 0\}$$

is closed and convex. Moreover

$$\left[\mathsf{O}^+(|\mathbb{R}^2 \cap \mathbb{H})\right]^p = \{(\mathsf{O}, \delta) \mid \delta \in] -\infty, \mathsf{O}\}.$$

On applying Theorem 4.1 it is seen that the existence of a maximum likelihood estimator $\hat{\theta}_{H}(t_{0}) \in \mathbb{R}^{2} \cap \mathbb{H}$ is equivalent to the existence of a maximum likelihood $s_{0} \in \operatorname{ri}(\operatorname{conv}(\operatorname{supp}(\mu_{T}))), \delta \in]-\infty, 0]$, so that $t_{0} = s_{0} + (0, \delta)$.

We shall now discuss the t_0 's giving rise to a $\hat{\theta}_H(t_0) = (\hat{\alpha}, \hat{\beta})$ in the interior of $|\mathbb{R}^2 \cap H$, i.e. $\hat{\beta} > 0$; in this case $\hat{\theta}_H(t_0)$ is the solution $\tilde{\theta}$ to

$$E_{A}^{\sim} T = t_{O}$$
.

According to 4.1 the mapping

$$\tau : \mathbb{R}^2 \to \operatorname{ri}(\operatorname{conv}(\operatorname{supp}(\mu_{\mathrm{T}})))$$
$$\theta \mapsto \mathbb{E}_{\mathsf{A}}^{\mathrm{T}}$$

is a bijection (as a matter of fact a homeomorphism) with the inverse mapping

MANUSKRIPTPAPIR A4

- 30 -

 $\hat{\theta} : ri(conv(supp(\mu_{T}))) \rightarrow \mathbb{R}^{2}$ $t_{0} \qquad \mapsto \hat{\theta}(t_{0})$

Since

$$\tau : \theta = (\alpha, \beta) \mapsto \sum_{i=1}^{k} \frac{n_i}{1 + \exp(-\alpha - \beta z_i)} (1, z_i) ,$$

the image of the α -axis is

$$\Delta := \{\sigma \cdot \sum_{i=1}^{k} n_i(l,z_i) \mid \sigma \in] 0, l[\}.$$

The set $ri(conv(supp(\mu_T))) \land consists of two path-connected components, as does$ $<math>|\mathbb{R}^2 \setminus \{(\alpha, \beta) | \beta=0\}$, and as τ is continuous and bijective, the image by τ of $ri(|\mathbb{R}^2 \cap H) = \{(\alpha, \beta) \in |\mathbb{R}^2 | \beta>0\}$ is one of the two components of $ri(conv(supp(\mu_T))) \land \lambda$; it is seen that it is the upper one:

If t_0 belongs to the interior of the upper sub-polygon we can find $\hat{\theta}_H(t_0)$ as the solution $\widetilde{\theta}$ to

 $E_{A}T = t_{0}$.

For any other t_0 for which $\hat{\theta}_H(t_0)$ exists, $\hat{\theta}_H(t_0)$ must be a point on the α -axis; because if $\hat{\theta}_H(t_0) \in ri(\mathbb{R}^2 \cap H)$ then $t_0 = E_{\hat{\theta}_H}(t_0)^T$ was an interior point of the upper sub-polygon!

- 31 -

For $\theta = (\alpha, 0), \alpha \in \mathbb{R}$,

$$\frac{\mathrm{d}P_{\theta}}{\mathrm{d}\mu}(\mathbf{x}) = \frac{\exp(\alpha \cdot \mathbb{T}_{\mathbf{l}}\mathbf{x})}{(\mathbf{l} + e^{\alpha})^{n}} , \quad \mathbf{x} \in \mathbb{R}^{k} ,$$

where $n = \sum_{i=1}^{k} n_i$, $T_1 x = \sum_{i=1}^{k} x_i$, that is, X_1, \dots, X_k are independent, binominally isl distributed with the same probability parameter $e^{\alpha}/1 + e^{\alpha}$. The maximum likelihood estimator $\hat{\alpha}$ thus exists if and only if

$$t_{0l} = T_{l}x_{0} \in ri(conv(supp(\mu_{T_{l}}))) =] 0, n[,$$

but this is implied by the assumption that $\hat{\theta}_{H}(t_{0})$ exists, i.e. that $t_{0} \in ri(conv(supp(\mu_{T}))) + [O^{+}(|R^{2} \cap H)]^{p}$.

We have, of course, that

$$\hat{\alpha} = \lambda(\frac{t_{Ol}}{n}).$$

In cases where $\hat{\theta}_{H}(t_{0})$ does not exists, one should proceed in a similar way to 5.6, although for example the ξ 's now should be chosen from $0^{+}(|\mathbb{R}^{2} \cap H) = H$. The results are not surprising. One should however be aware of the cases $t_{0} = 0$ and $t_{0} = \sum_{i=1}^{k} n_{i}(1,z_{i})$; in the former case the degenerate logistic function is i=1 $]-\infty, z_{k}] \rightarrow [0,1]$ $z \Rightarrow 0$

and in the latter case

$$[z_1, +\infty[\rightarrow [0, 1]]$$

z \mapsto 1.

- 32 -

6. References

- O. Barndorff-Nielsen (1970): Exponential Families. Exact Theory. Various Publication Series No. 191. Aarhus Universitet.
- N. Bourbaki (1966): Espaces Vectorielles Topologiques, Ch. I et II. 2^e ed. Hermann.
- M. Davis (1970): Geometric Representation of Designs for Biological Assay. International Biometric Conference 1970. Hannover, W. Germany.
- S. Johansen (1970): Exponential Models. Institute of Mathematical Statistics. University of Copenhagen.
- R. Tyrrell Rockafellar (1970): Convex Analysis. Princeton University Press.
- H. Silverstone (1957): Estimating the Logistic Curve. J. Amer. Stat. Assoc. <u>52</u>, 567-577.
- J. Stoer, Chr. Witzgall (1970): Convexity and Optimization in Finite Dimensions I. Springer Verlag.

POLYTEKNISK FORLAG OG TRYKKERI