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1. Introduction and summary. 

In this paper the existence and uniqueness of maxlmum likelihood estimators 

In exponential families is discussed, and an example demonstrates a method 

of extending discrete models so that maximum likelihood estimation always 

lS possible. 

The maximization of the likelihood function L(·,t o ) is equivalent to the 

minimization of -log L( .,t o ) which is convex. Therefore a result about 

minimization of l.s.c. quasi-convex functions lS presented in section 2, 

using some elementary results from the theory of convex sets. In section 

3 concepts as polar cone and the support of a measure are presented. Section 

4 contains the main result: a necessary and sufficient condition for to so 

that the maximum likelihood estimator i8(tO) exists. - Barndorff-Nielsen 

(1970) has given a comprehensive discussion of estimation in exponential 

families using convex duality theory. 

In section 5 the logistic dose-response model lS considered as an example, 

and we deduce how to extend the model so that estimation always is possible. 

- Barndorff-Nielsen (1970) discusses the same example (and the problem in 

general), and explains the extension in a different way. 

M Davis (1970) has dealt with the estimation problems in the logistic model 

in a way that has given some of the inspiration to this paper. 
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2. Convex sets. Recession cone. 

Quasi-convex functions. 

In this section E denotes a finite dimensional real Banach space. 

2.1 Definition: For any subset M = E, 

affM 

denotes the smallest affine subspace In E containing M, l.e. the affine 

hull of M. 

2.2 Definition: For any convex subset A SE we define the relative interior of A, 

riA, 

as the interior of A considered as a subset of affA,.which should be 

endowed with the subspace topology. (SinceaffA is a closed subset of E, 

the closure A of A in E coincides with the closure of A in the subspace 

topology in affA). 

The convex subsets of E have the following important property. 

2.3 Proposition: Let A be a convex s~bset of E. If x E riA and yEA, then 

{x + A(Y-X) I A E[O,l[} E,riA. 

The proof will not be given here; see e.g. Bourbaki (1966), ch. 11, Rocka

fellar (1970), Stoer and Witzgall (1970). 

2.4 Definition: Let x,y E E. The ray from the point x in direction y lS the set 

ray(x,y) := {x + Ay I A E [0, + (x{}. 

2.5 Definition: Let A be a convex subset of E. The receSSlon cone of A lS the set 

0+ A : = {y EEl r; x EA: ray (x, y) CA}. 

2.6 Proposition: Let A be a convex subset of E. Then the following properties 

hold: 

( i ) . + o A lS a convex cone. 
. + 

If A lS closed then 0 A lS closed. 
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(ii). For any x E A we have O+A S {y EEl ray(x,y) S A}. Furthermore, if 

x E riA then 

(iii). Suppose also B is a convex subset of E. 

If A '=- B then 

If riA S riB then 

Proof: It lS easy to verify (i), and the first statement of (ii) follows 

from 2.5. Since (iii) follows from (ii) choosing an x from riA S riB or 

from riA S riB, it therefore remains to show that 

{y EEl ray(x,y) SA} 
+- + = 0 A = 0 riA 

for any convex subset A S E and any x E riA. First we shall show that 

Let yE {y E E ray(x,y) SA}, z E riA; since A lS convex and ray(x,y) SA, 

1 1 1 -
z + - (x-z) + Ay = (1 - -) z + - (x + nAY) E A n n n 

for every n E !IN and A E [0,+00[. Letting n -+ 00 we see that z + Ay E A for 

every A E [O,+oo{, and hence ray(z,y) SA. As z E riA, 2.3 shows that 

ray(z,y) S riA, and (*) is thus established. 

Next we show that 

+ +-o riA So A. 

. . + . -
To thls end, we conslder y E 0 rlA and w E A. Choosing x E riA and putting 

x = x + n-l (w-x), (n EIN), (x) r IN is a sequence on riA (prop. 2.3) n n 'nne 
converging to w. Therefore ray(xn,y) SriA SA and hence xn + Ay E A for 

every n ElN and A E [0,+00 [, Letting n -+ 00 we see that w + Ay E A for every 

A E [0,+00[, so that ray(w,y) ~A. Since this holds for every w EA, (**) is 

proved. 

Using (**), the first statement of (ii),and (*), we obtain for any x E riA 

O+riA S O+A 

C {y EEl ray(x,y) SA}, 
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and 

O+riA S {y E E ray(x ,y) S riA} 

S {y E E ray(x,y) C A} 

= {y EE ray(x,y) C A} 

c + . 
= 0 rlA, 

which gives the desired results,; 

The following two propositions show how some topological properties of convex 

sets can be described by means of rays. 

2.7 Proposition: Let A be a convex subset of E, and let x E riA. Then A lS 

closed, if (and only if) all the sets 

A n ray(x ,y), y E affA - affA, 

are closed. 

Proof (of "if"): Applying 2.3 we have for z EA: 

z E {x + A ( z-x) I A E [0, if} 

S riA n ray(x,z-x) 

CAn ray (x , z -x ) 

= A n ray(x,z-x) C A. 

2.8 Proposition: Let A be a convex subset of E, and let xiE riA. Then the follow

ing three statements are equivalent: 

(i). A is bounded (i.e. A ~ {w EEl Ilwll ~ A} for some A Em). 

(ii) . 
+-o A = {Q}. 

( iii ). All the set s 

A n ray(x,y) y E affA - affA, 

are bounded. 

Proof: The equivalence (ii) ~ (iii) is a consequence of 2.6 (ii). Since 

(i) ~ (iii) is obvious, it remains to show that (iii) ~ (i). 

Suppose that A is unbounded. Then there exists a sequence (Yn)n EIN of unit 

vectors with x + n yEA, 'in EIN. As the unit ball (in affA - affA): is com-
n ! 
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pact it contains a clusterpoint y for (y ). It is easily seen that 
n 

ray(x,y) SA and, by 2.3, that ray(x,y) ~ riA SA. Thus the set A n ray(x,y) 

is unbounded. 

2.9 Example, demonstrating the importance In 2.7 and 2.8 for x to be a point 

from riA. 

Suppose that E ([o,+oo[ x [O,l[) U ([0,1] x {l}): 

Choosing 

x = (0,1) E A\riA 

x 
we have that all the sets 

A n ray(x,y) 

1 are closed and bounded, although A lS 

neither closed nor bounded. It is seen 

that 

+-° A = [O,+oo[ x {O}. 

If B = [ 0, +00 [ x [ ° ,1[, we have B CA, 

+ +-o B = 0 B = [0, +00 [ x {O}, 

+ + 
that is ° A cOB. 

, 
2.10 Lemma: Let F be a filterbase of closed path-connected subsets of E, and let 

, 
M be the set of clusterpoints of F: 

M = n, F. 
FEF 

Then M is bounded and ~ 0, if and only if F contains a bounded set FO' 

Proof: If FO E F is bounded, {F O n F I F E F} is a filterbase on the compact 

set FO and hence 

o ~ n, ( F ° n F) ~ M S F ° ' 
FEF 

that is, M is bounded and ~ 0. 

Suppose next that M is bounded and ~ 0: 
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o :f MS {x EEl Ilxll < A}. 

The set K . - {x EEl Ilx 11 = A} is compact, and to each x E K we can find 

F E F so that x E F c, Since 
x x 

(F c x E K) constitutes an open covering of 
x ' 

K, there exists a finite subset 

c 
F S K , x 

KO of K with 

, 
and the filterbase aXloms glve the existence of FO E F so that 

F x 

the set FO being path-connected, this implies that 

so FO is bounded. 

We shall now introduce the quasi-convex functions, and using the preceeding results 

it is possible to prove a result concerning minimization of quasi-convex lower se

micontinuos functions. 

2.11 Definition: A function f E -+ IR U {+ oo} lS called quasi-convex if all the 

sets 

f-l(]-oo,a]) = {x EEl f(x) ~ a}, a EIR, 

are convex. 

A function f : D -+ IR, D SE, lS called quasi-convex if the function 
';'; 

f : E -+ IR U {+ oo} defined by 

N { f(x) if 
f(x) = 

+ 00 if 

lS quasl-convex. 

2.12 Examples: Every convex function f 

convex on E. 

x E D 

x ~D 

D -+ .IR, where D eElS convex, lS quasl-

For any quasi-convex function f : IR -+ IR there exists a,b E 1R U {-oo,+oo}, 

a ~ b, so that f is decreasing on {x E IR I x ~ b} and increasing on 
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~ {x E 4R I a ~ x}. Furthermore, if f IR + lR satisfies the latter 

conditions, f is quasi-convex. 

Recall that a function f : E +IR U {-oo,+oo} lS called lower semi-continuous 

(l.s.c.) if and only if all the sets 

-1 I f (] -00, a ]) = {x E E f ( x) ~ a}, a E lR, 

are closed. 

2.13 Proposition: Sufficient for a <luasi-convex function f : E + IR U {+oo} to be 

1. s. c. is that for every a E m and every pair (x ,y) E E2 the following 

holds: 

if f(x + AY) ~ a for every A E [0,1[, 

then f(x+y) ~ a. 

Proof: This is an immediate conse<luence of proposition 2.7 with 

A : = f-l(] -oo,a] ). 

2.14 Proposition: For a <luasi-convex l.s.c.function f 

lowing three statements are e<luivalent: 

( i ) : The minimum set 

M := {x EEl f(x) = inf f(y)} 
yEE 

lS compact and ~ 0. 

E +JR U {+oo} the fol-

(ii): There exists an a E IR so that to every yE E\{Q} there exists an 

x E f -1 (] -00, a] ) wi t h 1 im f (x + p y) > a, 
p++oo 

,: .. -1 
'3a EIR'v'y E E\{Q}"3x E f (]-oo,a]): lim f(x + py) > a. 

p++oo 

( iii ): There exists an a E1R so that for some (and then for any) 

x E ri f-l(]-oo,a]) lim f(x + py) > a for every y E E\{Q} , ,: 
p++oo 

'3 a E IR '3 ('v')x E rif-l (] -oo,a] ) \i y E E\{Q} :lim f(x + py) > a. 
p++oo 

Proof: We shall apply lemma 2.10 to the filterbase 

F := {f-l (] -oo,a]) I a E f(E)\{+oo}}, 
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which consists of closed convex sets, and it is seen that (i) is equivalent 

to the existence of an a E IR so that f-l(] -oo,a]) is bounded and f:. 0. Ac

cording to 2.8 ((i) ~ (ii)), this can be expressed by saying that f-l(]_oo,~ ) 

f:. 0 and O+f-l(] -oo,a]) = (Q), l.e. (cfr. 2.5) 

3a E IR'v'y E E\{Q)3x E f-l(]-oo,a]) : ray(x,y) et f-l(] -oo,a]) 

The equivalence (i) ~ (ii) lS thus established by remarking, that if 

f(x) ~ a and f(x + ry) > a (r > 0) then f(x + py) > a for p ~ r since 

f-l(] -oo,a]) is convex. 

In a completely analogous way (i) ~ (iii) is proved, using 2.8 ((i) ~ (iii)). 
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3. Dual space. Polar cone. 

The support of a measure. 

We are still considering a finite dimensional real Banach space E. The totality 

of all (continuous) linear forms on E is E*, the dual space of E, and constitutes 

a Banach space itself with the norm 

x * 1+ 11 x* 11 : = sup {II x"*( x) 11 1 11 x 11 ~ I}, x * E E *. 

Furthermore E and E * have the same dimension. Now, consider the natural embedding 

1jJ : E -+ E**= (E *)'*,where 

1jJx : x*f+ (1jJx)(x*) = x*(x), (x* E E*, x E E). 

In our case 1jJ lS an isometric isomorphism of E onto E~*. 

In the seQuel we shall use some well known results*): 

3.1 The Hahn-Banach Theorem in its geometric formulation: Let A be an open convex 

subset of E and let M be an affine subspace of E, M n A = 0. Then there exists 

a closed hyperplane H ln E so that M C Hand H n A = 0. 

3.2 Separation Theorem: Let A be a closed convex subset of E and let B be a com

pact convex subset of E, A n B = 0. Then there exists a closed hyperplane 

H = (x*)-l(y) in E (x* E E*, Y E !IR) which separates A and B strictly, i.e. 

x*(A) ~] -oo,y[ and x*(B) ~] y,+oo[. 

-
3.3 Corollary: Let C be a convex cone with vertex Q, C C E. Then C lS the intersec-

tion of all closed halfspaces containing C whose boundary hyperplane contains O. 

3.4 Definition: Let A be a convex subset of F, F = E or E*. The polar cone of A 

is the set 

Ab := {y* EF* 1 'r/y EA: y*(y) ~ a}. 

In the case F = E * we shall use the notation 

p -1 0 * * A := 1jJ (A) = {x E E IVx EA: x (x) ~O}. 

If M is a subset of E then cone M denotes the smallest cone with vertex 0 con

taining M: cone M = {;\x 1 x E M, A E IR+}. If M is convex, then cone M is convex. 

*) 
see e.g. Bourbaki (1966). 
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3.5 Proposition: Let A be a convex subset of F = E or E*. If F = E, then 

AO = (cone A)o is a closed convex cone, and cone A = ~-l(Aoo) = AOP . 

If F = E**, then AO = (cone A)o and AP = (cone A)P are closed convex cones, 

and cone A = [ ~-l(AO)] 0 = APo . 

Proof: It is rather trivial that AO = (cone A)o and AP = (cone A)P are closed 

convex cones. The assertions about cone A are obvious if C := cone A = F, and 

if C C F they are simply reformulations of corollary 3.3; note however the 

importance in the case F = E * of ~ being sur jective. 

Let X be a locally compact space (e.g. X = E). The Borel-a-algebra on X, B(X), lS 

the a-algebra generated by the open sets in X. 

3.6 Definition: Given a positive a-finite measure m on (X, B(X)). The support 

of m is the set 

supp(m) := {x E X I m(U) > 0 for every open neighbourhood U of x}. 

If X = E we define the affine support .of m as the set 

S(m) .- aff( supp(m)). 

We note that supp(m)c lS open. If X = E it follows from 3.7 that supp(m) lS 
, 

the largest set M SX so that m(U) > 0 for every non empty relative open subset 

U of M, and supp(m)c is the largest open set N SX so that meN) = O. 

3.7 Proposition: Let m be as in 3.6 with X = E. For every B E B(E) we have 

B n supp(m) = 0 => m(B) = O. 

Proof: Choose open sets U , x E B, so that x E U and m(U ) = O. Since E lS x X x 
a Lindelof space one can find a countable subset BO of B with 

u U = 0 U ::;l B' 
x x = , 

xEB xEBO 

hence m(B) ~ l m(U ) = O. 
xEBO 

x 

3.8 Theorem: Given a positive a-finite measure m on (E, B(E)), and a closed con

vex cone K ~ (S(m) - S(m))* with vertex O. Then we have the identity 

ri (conv( supp(m) )) + KP 

= {x E S(m) I \ix~\[Q};m{yES(m) I x*(y-x) > O} > O}, 
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where K lS considered as a subset of F = (S(m) - S(m)) * and thus 

KP={z ES(m) -S(m) l'Vx*EK x*(z).:s...O}. 

Proof: For shortness we put 

A := ri(conv(supp(m))) + KP 

B := {x E S(m) I 'V x1=K\{Q) :m{yE sem) I x*(y-x) > O} > a}. 

First we show that AC ~ BC: The set A is convex and open (relative to S(m)), 

so according to the Hahn-Banach theorem we can to x E AC find 

x * ,EcCS(m) - S(m)) * with 

A S {y E S (m) I x * ( y-x) < O}. 

Using proposition 2.6, (iii), we obtain 

+ 
s:;;;, 0 {y E S (m ) x *( y-x) < O} 

= 0+ {z E S (m) - S (m) I x *( z) < O} 

So {z E S (m) - S (m) I x *( z) ~ O}, 

which shows that 

X * E Kno -
.l;' = K = K 

(proposition 3.5). Inclusion (1) implies that 

conv(supp(m)) c{y E S(m) I x*(y-x) .:s...O}, 

so 

supp(m) n {y E S(m) I x*(y-x) > O} = 0, 

that is, 

m{y E S(m) I x*(y-x) > O} = 0 

(proposition 3.7), and hence x f B. 

To see that BC SAc it sufficies to show that 

x - z f ri(conv(supp(m))) 

for all x E BC, z E KP. If x E BC then 

m {y E S ( m ) I x *( y-x) > O} = 0 

for some x * E K, and hence for z E KP 
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a = m{y E S(m) x*(y-x) > a} 

= m{y E S(m) x*(y-(x-z)) > x*(z)} 

~ m {y E S (m ) x * ( y- ( x-z )) > a} 

slDce x*(z) ~ a.It follows from 3.6 that 

supp(m) n {y E S(m) I x*(y-(x-z)) > a} 

lS empty, since it is a relative open subset of supp(m) with m-measure a. 
This implies that 

ri(conv(supp(m)) ) 

S ri(conv{y E S(m) I x*(y-(x-z)) ~ a}) 

= {y E S(m) I x*(y-(x-z)) < a} 

so 

x-z f ri( conv( supp(m) ) ). 

Sometimes the following concept may be usefull: 

3.9 Definition: Let A be convex subset of F = E or E*. The normal cone of A at 

x E A is 

(A-x)o = {y * E F * I "iy EA y*(y-x) < a}. 

We shall use normal cones in section 5. 
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4. Maximum likelihood estimation In exponential families. 

In this section we consider 

V, a finite dimensional real Banach space with the Borel-a-algebra B(V), 

(X,A), an arbitrary measurable space, 

"-

T, a measurable mapping X + V, 

].l, a a-finite positive measure on (X,A), 

S is the affine support of the measure B ~ ].1(T-1B), B E B(V), 

and B(S) is the Borel-a-algebra on S, 

].1T is the measure on (S, B(S)) given by ].1T(B) = ].1(T-1B). 

So = S-S 

TO is an arbitrary fixed point l S. 

We suppose, that the set 

e {e E So * I·~· exp ( e (Tx - TO)) ].1 ( dx) < + oo} 

lS non empty. (e does not depend on the choice of TO)' In this case the measure 

].1T is a-finite. 

Consider the exponential family 

"-

P = {Pe leE e} 

of probability measures on (X,A) defined by 

dPe exp(e(Tx. - T )) 
(x) 0 = 

~exp( e (Ty 
d].1 - T )) ].1(dy) 

0 

(not depending on TO) . Corresponding to 
"-

P we have the family 

"-

= {p I e E e} PT e ,T 

of probability measures on (S,B(S)) defined by 

dPe,T exp(e(t - TO)) 
- (t) = -:::-------"----

d].1T ~exp(e(s - TO)) ].1T(ds) 

(The measure Pe,T lS obtained from Pe In the same way as ].1T from ].1). 
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The likelihood function lS 

L : 8 x S + [ 0, +00 [ 

(8, t ) 
exp( 8 (t - TO)) 

~ ------------~--------

jexp(e(s - TO)) ~T(ds) 

Now, suppose we have an observation to = TxO E S and that we want to estimate the 

parameter 8 under the hypothesis 8 E H, where H should be a closed convex subset 

* of So and H n 8 ~ 0. The principle of maximum likelihood estimation then tells us 

to maximize L(8,t o ) with respect to 8 E 8, subject to the constraint 8 E H, and 

if there exists a unlque value 8H(t O) E 8 n H with 

sup L(8,t O) 
8 E 8 n H 

then to use 8H(t O) as an estimator for 8. 

4.1 Theorem: Under the above conditions, it is necessary and sufficient for the 

exi st ence of 8H( to) that 

+--p 
to E ri(conv(supp(~T))) + (0 8 n H1, 

(where the polar cone operation goes from So*to SO' cf. 3.4). In any case 

L(',tO) attains its supremum at at most one point in 8 n H. 

Moreover, the equation 

E8 T = to 

has at most one solution '8 E 8, and if 8H(t O) E ri(8 n H) then '8 = 8H(t O)' 

Proof: For the sake of simplification we choose TO = to' so that 

-1 
L(8,t O) = ~(8) , 

~(8) := ~(8,tO) := IexP(8(t - to)) ]JT(dt) 

It lS a convenient trick to introduce the function 

. fH : S*+ 
0 

IRU{+oo} 

f log ~(8) for 8 E e n H 
f H( 8) := 

l + 00 for 8 E S~\( 8 n H). 

8 E 8. 
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Obviously, every minimum point for fH will be a maximum point for L(·,tO) 

restricted to 8 n H, and vice versa. It lS well known (see e.g. Barndorff

Nielsen (1970) or Johansen (1970)) that 8 is convex and log ~ is strictly 

convex on 8. Hence we conclude that fH is quasi-convex and that fH attains 

its infimum at at most one point (which will be 8H(t O))' The idea is now to 

show that fH is l.s.c. using 2.13, and then to apply 2.14. First we shall 

find lim f H(8 + Pt;), 8,t; E S;, r E ]0,+00]. 
pir 

Given 8 E 8 n H, t; E S;\{Q}, r E] 0,+00], each of the following statements is 

either true or false: 

( st 1) : r = + 00 

( st 2) : {s + pt; I p E [O,r[} S 8 nH 

( st 3) : flT{t;(t - t ) 
0 

> O} > 0 

( st 4) : flT{t;(t - t ) = O} > o. 
0 

If the logical values of the statements are known we can find the desired 

limit: 

case Il( st 1) . (st 2) ( st 3) l( st 4)! 
I I 

(1) i 
I f 1 

~l i 
(2 ) 

!i I 
~I f t f 11 

I1 I 
!! i 

(3) 1I t t I t 

t ~ I 
( 4) t t 1 

l' !, t Ii I 

11 .. 
~ 
;i 
1I 

(5) !! t t f jl f 

(t = true, f = false) 

log !exp(s(t-to) )J-lT(dt) 

{t;(t-tO) = O} 

These results are, of course, obtained by rewriting log ~(8) as 

and using the monotone convergence theorem. Case (2) needs a little more 

attention: The limit is 
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if the expression under the integral sign is integrable, and + 00 otherwise. 

In the non-integrable case e + rl; $ 8 and hence fHee + rl;) = + 00. If the ex

pression in fact is integrable, e + rl; E 8, and since {e + pI; / p E [0 ,r [} S H 

and H is closed, e + rl; EH, and so fH(e + rl;) = log cp(e + rl;). 

In case (4) L('" /I;(T - to) = 0) is the likelihood function in the distri

bution of T conditional on I;(T - to) = 0, 

exp ( w ( t 1 - TO)) 
L (w, t l / I; (T - to) = 0) . - ------,.,~-----.::=----=-----

J exp(w(t - TO)) ~T(dt) 

for tl E {t/I;(t - to) = O} , w E 8. 

For every e E 8 n Hand I; E * So we have 

fH(e + 1;) = lim fH(e + AI;) 
Hl 

{case (1) or case (2)), so proposition 2.13 glves that fH is los.c. 

We can now examine for which to's the condition 2.14 (iii) is fulfilled. 
-1 * Choose a E JR, e E rifH (] -co,a] ), I; E So \{Q). Then 

lim f(e + pi;) > ~, 
pt+oo 

if and only if we are ln case (1) or case (3) (in case (4) 

exp(e(t - to)~T(dt) ~ log cp(e) ~ a). 

O} 

The following bi-implications hold (since r = + 00): 

[we are in case (1) or case (3)] 

[ ( (st 1) 1\ (st 2) 1\ (st 3)) V non (st 2)] 

[ Cst2) :::; ( st 3) ] 
(:;> 

[ray(e,l;) S8 nH :::; ~T { I; (t - t ) 
0 

> O} > 0] 

(:;> +--
~T { I; ( t - t ) [ I; f 0 8 nH :::; > O} > 0] 

0 

according to 2.6 (ii). (Note the independence on a!) 
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We have thus found that condition 2.14 (iii) lS fullfilled if and only if 

Applying 3.8 it is seen to be equivalent to 

.( ( ())) (0+ e nH)P. to E rl conv supp ~T + 

This finishes the deduction of the criterion for existence of maximum like

lihood estimators. 

It is known (see e.g. Barndorff-Nielsen (1970) or Johansen (1970)) that the 

mapping S ~ EST is injective and that 

for S Erie. If 8H(t O) E ri(e nH), it lS a stationary point, l.e. 

D log ~(§ (t )) - 0 and therefore solution to H 0 --' 

EST = to' 

This completes the proof of 4.1. 

4.2 Corollary: The functions ~ and log~ S; + JR U {+oo} defined by 

are 1. s. c. 

{ 
!exp(S(t 

~(S) = 
~ + 00 

sEe 

Proof: ~ = f H, H = S;, with fH as In the proof of 4.1. 

4.3 Corollary: The level sets 

a > inf(-log L(',t O))' 

are all bounded or all unbounded. 

Proof: In the proof of 4.1 we found a criterion for lim f(S + p~) to be >a 
pt+oo 

for every ~ E S~\{Q}, and this criterion did not depend on a. The result then 

follows from 2.8 (i, iii). 
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~ ~ 

Corollary: Suppose X lS a locally compact vector space and A the Borel-o-alge-
~ 

bra on X, and suppose W is discrete (i.e. supp(w) is discrete In the subspace-

topologi). If to E conv( supp( WT)) and i; E 0+ ri (e n H) so that 

wT{tli;(t - to) > O}- 0 

WT {t I i; (t - to) = O} > 0, 

then for eO E ri(e n H) 

Pe ~w..~ P (., i;. (T - t ) = 0) 
o + pi; 9 0 0 

for p + + 00 Since Pe T{t O} ~ Pe T({to}Ii;(T - to) = 0), this implies that 
0' 0' 

Proof: This is an immediate conseQuence of the examinations of lim f(e + pi;) 

in the proof of 4.1, Slnce 

Pe{x} = exp(-f(e)) W{X}, f(e) = 10g<I>(e,Tx), 

so .that it lS seen that 

for all x E supp( W) . 

= Pe ({x}Ii;(T - to) = 0) 
o 
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5. The dose-response model. 

In this section we shall - as an example - discuss the estimation problems In the 

dose-response model. 

Consider mutually independent random variables Xl, ... ,Xk , so that Xi is binominal

ly distributed with known number parameter n. EIN and unknown probability para..1ll.e
l 

ter p(i} E[O,l], i = l, ... ,k. Furthermore, zl < ••• < zk are given real numbers. 

Now the statistical problem lS obtained assumlng that for some e = (a,S) E IR2 

p ( i) = p (z.) : = __ --..:l(i'--_---;-) 
ell + exp -a-Bz. 

l 

Note, that the logistic function 

i = 1, ... ,k. 

1 = exp(a+Bz) 
Pe = P a , S : z r7- -l-+-e-x';:'p'(---a---S-z"') 1 + exp ( a + S z) , z E IR, 

for B > 0 lS increasing, for S = 0 constant, and for B < 0 decreasing. For S # o· 

p B is a bijection from IR to ]0,1[; the inverse mapping of PO Ils a, . , 

A:u>+-l u og l-u uE]O,l[. 

(A(U) is sometimes called the logistic transform of u). Finally, 

{Pe(z)!e EIR2} = ]O,l[ for every z E JR. 

The distribution of X = (xl, ... ,Xk ) when Pe(zl), ... ,Pe(zk) are the parameters lS 

Pe given by 

= 

exp(a Z x. + B Z z.x.) l l l 
k n· 

- l 
IT [1 + exp(a+Bz.)J 

i=l l 

o 

k 
for (xl"" ,xk ) E IT {O,l, ... ,n.} 

i=l l 

k 
for (xl' ... ,xk ) ~ IT {O,l, ... ,n.} 

i=l l 
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so we are concerned with an exponential family of order 2. Introducing the 

measure )l on ( IRk ,Bk) with 

)l ( {x}) = 

and the functions T 

we have 

k (n.) 
i~l x~ for x = (xl"'" ~) E 

k 
IT {O,l, ... ,n.} 

i=l l 
l 

o else 

2 
IR +!R : 

T : x ~ (Tl x,T2x) := (~ xi' I Zixi) = I x.(l,z.), 
ill 

dPe 
- (x) = 
d)l 

l l 

k n. 
IT [1 + exp(a + BZ.)] l 

l 
= 

i=l 

exp( e .Tx) 
~(e) 

(where • denotes the ordinary inner product in IR2), to be compared with the 

family of section 4. 

The support of the transformed measure )IT lS 

sUPP()lT) = T(supp()l)) 

= {I x.(l,z.) Ix. E {O,l, ... ,n.}, i=l, ... ,k}, 
l l l l 

and the convex hull of sUPP()lT) lS a (convex) polygon with 2k sides and the corners 

(0,.0 J 
k 
I n.(l,z.) 

. . l l 
l=J 

J 
I n. (l,z.) 

i=l l l 

j=1,2, ... ,k . 

Since (O+IR2 )P = (iR2 )P = {(O,O)}, it follows from theorem 4.1 that the maksimum 

likelihood estimator e(t O)' to = TxO' exists if and only if to belongs to the 

interior of the polygon conv(supp()lT))' 

Example: The case k = 3; nl = 2, n2 = 1, n3 = 3; zl = -1, z2 = 0, z3 = 1. 
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1 

E D 

A: n3(1,z3) 

B: . n3(1,z3) + n2(1,z2) 

c: n3(1,z3) + n2(1,z2) + nl(l,zl) 

D: nl (1, zl ) + n2(1,z2) 

E: nl (1, zl ) . 

{Xl (1, -1 ) I xl = 0,1,2} 

{xl(l,-l) 

+ {X2(1,0) 

{xl(l,-l) 

+ {x2(1,0) 

+ {x3 (1,1) 

3 
= { L: x.(l,z.) 

i=l l l 

Xl = 0,1,2} 

x 2 = O,l} 

xl = 0,1,2} 

x2 = O,l} 

x3 = 0,1,2,3} 

I x. =1, ... ,n.} 
l l 

It lS possible in an explicit manner to describe the observations Xo leading to a 

to = TxO on the boundary of conv(supp(~T))' since the corners are known; to = TxO 

lS a boundary point if and only if Xo is of the form 

(0, ... ,0, xOj ' nj+l, ... ,nk ) 

or 
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wherexOj E {O,l, ... ,nj }, J E {l, ... ,k}, and to lS a corner point if and only if 

also xOj E {O,nj }. 

Indeed, it is quiet an inconsistent behavior to want to estimate the parameter e 

by the maximum likelihood method when it is possible to get observations Xo with 

Pe({x o}) > 0, Ve E IR 2 , so that no maximum likelihood estimator exists. Therefore 

an extension of the model is needed. 

In the case of to = TxO E sUPP(~T) on the boundary, it turns out that for some 

sequences (en)nEIN so that the likelihood function converges to its supremum (and 

therefore (e ) converges to infinity), the corresponding sequence of logistic 
n 

functions (Pe ) converges to a kind of a degenerate logistic function which fits 
n 

the observed xOi-values perfectly; this has been discussed by Silverstone (1957). 

One might then use the family of degenerate and ordinary logistic functions as a 

parametrization of an extended model. 

Passing to polar coordinates for e and allowing the module to be +00 lS another 

convenient method, which has been used by Davis (1970), who also notices that the 

to's giving rise to nonsolvable maximum likelihood equations are those on the 

boundary of conv(suPp(~T))' 

A different approach has been made by Barndorff-Nielsen (1970), who proves a 

general result about extending certain types of exponential families; Barndorff 

uses the mean value parametrization, which makes many things very nice. 

Here we shall proceed in the following way. Since a parametrization of our family 

P : = {Pe 18 E ,JR2} - from a mathematical point of view - just serves to define the 
~ k 

subset P of the set of all probability measures onlR , let us for a while re-

formulate our problem of estimating 8 to a problem of estimating a probability 

measure from P. If we want to extend P in order to make maximum likelihood esti~ 

mation, it is good to have a non parametric definition of "likelihood function". 

Obviously we can use the function 

We are now able to find the smallest family of probability measures on ,IRk 

containing P, so that maximum likelihood estimation always is possible. 
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If to is a boundary point of conv(supp(~T)) let 3(t O) denote the normal cone of 

conv(supp(~T)) at to' i.e. 

3(tO) lS a closed convex cone with vertex O. 

/ 

I 
t + ,....., (to) o -= 

Let Xo be an observed value, to = TxO' If to belongs to the relative interior of 

conv(supp(~T)) we can (as already mentioned) solve the estimation problem. If to 

is a boundary point then choose I; E 3(tO)\(Q); from 4.4 we know that for e E 1R2 

the conditional distribution Pe(' !I;'(T - to) = 0) belongs to the closure P of P 
and that 

since the family 

of conditional distributions can be written in the same way as In section 4, -

with the same statistic T and another measure ~I;, }{x} = ~{x}'l{I;'(Tx _ t ) = O}' 
o 

- we are In a similar situation as before: given to E supp(~~) we seek the Q E pI; 

that maXlmlzes the likelihood function Q,:;:,{tOJ; and again this problem is solvable 

if and only if to is a point of the relative interior of conv(supp(~~)). If 
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to t ri(conv(suPp(ll~))) we choose an n from the normal cone of conv(supp(].l~)) at 

to so that ~ and n are linearly independent, and form the conditional distribu

tions 

From 4.4 we know that p~,n SP and that 

sup QT{t O} = sup QT{t O} = 

Q E ~ Q E ~~ 
sup QT{t O}' 

Q E p~,n 

The sequence (p, p~, p~,n) is a sequence of families of decreasing order, and 

because. P is of order 2 p~' n will contain only one element so that estimat ion 1S 

trivial. This means that it is always possible to find Q E P so that 

It is a reasonable demand to Q that it does not depend on our choise of ~IS and 

nls, and it is seen from the following investigation that this demand indeed is 

fulfilled. 

Consider an observation Xo with to = TxO on the boundary of conv(supp(].lT))' We 

will confine ourselves to the case 

but the results are generalized in an obvious way. 

If xO,k~l E {l""'~_l - I}, to is not corner point (cf. 5.4), and the normal 

cone is 

If xO,k-l = ~-l' to is a corner point, and the normal cone is 

~(tO) = {G'(-zk_l,l) + T'(-zk,l) I G,T E [O,+oo(}. 

The distribution of X = (xl, ... ,Xk ) conditionally on ~'(T-tO) = 0, ~ E ~(tO)\{Q}, 
is easily found; there are two cases: 
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A: sUPP(~T) n {tl~·(t - to) = O} = SUpp(~~) = {to}' 

BI: 

This happens if and only if to is a corner point (xO k-l = ~-l) and 

~ = O"(-zk_l,l) + '['(-zk,l) for 0','[ EIR+, For every'e = (a,S) EIR2 

A (I ( t) __ 0) __ the one-point distribution onfR2 
Q = Pe' 1;;< T - 0 

at Xo = (0, .. ,,0, nk-l'~)' 

Here we must distinguish between two cases: 

BI: 1;; = 0" ( - zk-l ' I ) 

B2: 

We shall only discuss BI; B2 can be treated in a completely analogous way. 

2 For every e = (a,S) E ~R and xk- l E {O,l" .. ,nk- l } we find 

and 

where 

(A lS 

dPe('I~'(T - to) = 0) 

d~~ 

exp(w'(Tx - TO)) 
(x) = ---------:---

!exp(w.(Tr - TO))~~(dY) 

~~{x} = ~{x}'I{1;;'(Tx - t ) = o} 
o 

_ l"Ok 
,x E' lL:\ , 

k 
x E 4R , 

TO = nk(l,zk) (so that Tx - TO = xk_I'(l'Zk_I)' x E sUPp(1-l~» 

We = A(Pe(Zk_l))'(l,O) = (a + SZk_l)'(I,O), 

w = y' (1,0) , y E fR = {A (Pe ( zk-l)) leE IR2} 

the logistic transformation, see 5.1) ; thus 

exp( w' (Tx - T )) 
~~{x} = (nk- 1) 

YXk- 1 
0 e 

! exp ( w . (Ty - TO)) ~ 1;; ( dy ) xk- 1 (1 + ey)nk- l 
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for x E supp(~~), l.e. Xk- l lS binomially distributed with parameters ~-l 
and eY/l+eY. 

Now to E ri(conv(supp(~~))) if and only if xO,k-l E {l""'~_l - I}, and in 

this case the maximum likelihood estimator ~ = Y'(l,O) is of course given by 

obtained from the relation 

that lS, 

consequently 

A exp(~'(Tx - To)) 
Q{x} = dQ (x)~~{x} = ------~-- ~~{x} 

d ~ ~ J exp ( W • Ty - TO)) ~ ~ ( dy) 

if 
= 

o 

Xl = ... = xk- 2 = 0, 

xk - l E {O, 1 , ... , nk- l } 

xk = nk 

else. 

If Xo k-l = nk- l no w exists. In this case we shall choose an n from the 

normai cone of conv(supp(~~)) so that ~ and n are linearly independent: 

For any such 1] 

so we are In a situation similar to A; we find 

2 for all 8 E lR • 

k 
= the one-point distribution on lR 

at Xo = (O, ... ,nk_l , nk ) 
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The distribution of X = (Xl, ... ,Xk ) is estimated as follows: 

Xl' ... ,Xk are independent binomially distributed with parameters nl , ... , ~ E ut: i 

( ) ' (1) (k) [ ] . . known and p , ••• ,p EO, 1 • The ob~ervat].on ],8 XO. ~j 

If to =;TxO E ri(conv(suPp(~T)))' ~h~n pC].) = Pe(zi)' i=l, ... ,k; if to ].s on the' 
, )v~"rl,~""""""( , '" ,';' y,ti) = xOi ' 

'boumiaT~ of conv( sUPP(4i;') ;'i,t1:ien p =;-:-, i=l, ... ,k, (see 5.4). Thus if we pu-tt 
]. 

k x. n.-x. k 
Pp{(xl , ... ,xk )} := IT p. ].(l-p.)]. ]. ~{x}, x E ~R , 

i=l ]. ]. 
k 

P E [0,1] , 
e E jR'l.. 

the smallest extension PI of P = {Pp I Pi = Pe(Zi)' i=l, ... ,k} so that maximum 

likelihbod estimation always is possible (and unique) is 

x. 
U {P I p = (1, ... ,1, n~' 0, ... ,0), xi=l, ... ,ni ; i=l, .. ,k}.~' 

p ]. 

j 
It seem~, however, more natural to consider the extension 

.. .. 
P = P U {p 

. 2 P 
p = (0, ... ,0, p.,l, ... ,l), p. E [0,1]; i=l, ... ,k} 

]. ]. 

u {P I p = (1, ... ,1, p.,O, ... ,O), p. E [0,1]; i=l, ... ,k}, p ]. ]. 

since 

].s independent of nl, ..• ,nk . 

With ea~h element Pe' e = (a,S) E ffi2, of P we can associate the logistic 

function 

tR -+ [0,1] 

Z 1+ Pe(z) 

If P E'P2\P we may associate with P the degenerate logistic function which ].s p p 
the pointwise limit of Pe 1:+' for any e, l;, n so that P -+ P for +Ps P n e+pl;+p'n p 
e.~e' -++ 00, This leads to the following func'tions: 

if'p =( 0, ... , 0, Pi' 1, ... ,1) 
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[ 0,1] 

0 for z E ] -00, z. [ 
l 

p. for z = Z. 
l l 

1 for z E ]z.,+oo[; 
l 

if P = (0, ... ,0, 1, ... ,1) 

filth 
place 

l E {2, 3, ... ,k}: 

IR \] z i -1 ' Z i [ -+ [ 0,1] 

0 if Z E -oo,z'l] l-
z 

1 if z E z. ,+oo[ ; 
l 

if P = (0, ... ,0): 

[ 0,1] 

z o . , 

if P = (1,:~!,1): 

[ 0,1] 

z 1 

(plus some analogous functions for the Pi-se~uence decreasing). 

The reason why some of the functions are undefined for some z E ~R is that for 

these z lim P8+ c+ I (z) is a non-constant function of (8,~,n) on the set of 
P PI" Ps P n , " 

all appiicable (8,~,n)Is. Thinking of the information contained In the obser-

vations (xOl, ... ,xOk ) about the graph of the logistic function, it lS indeed 

very reasonable that the function lS indetermined in some intervals. 

The dose-response model is often applicated when describing experiments where a 

number of animals are treated with different doses of a certain drug - n. animals 
l 

are treated with the i-th dose; z. 
l 

is most commonly the logarithme of the dose -

and one observes the number X. of animals that die in group i, i=l, ... ,k. It lS 
l 

often assumed that the probability of dying lS an increasing function of the dose, 

leading to the consideration of the family 

PO: = {p 8 I 8 = (a, (3) EIR x [ 0 , + 00 [} • 
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:Here the parameter set thus is jR2 n H, where 

H = {8 = fa, B ) E ~R 2 I B ~ O} 

lS closed and convex. Moreover 

On applying Theorem 4.1 it is seen that the existence of a maximum likelihood 

estimator 8H(tO) E ~R2 n H lS eQuivalent to the existence of 

So E ri(conv(suPp(~T)))' 0 E] -00,0], so that to = So + (0,8). 

We shall now discuss the tots glvlng rlse to a eH(t O) = (a,S) In the interior of 

IR2 n H, i.e. i3 > 0; in this case eH(t O) is the solution e to 

Ee T = to' 

According to 4.1 the mapping 

lS a bijection (as a matter of fact a homeomorphism) with the lnverse mapplng 
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8 ri(conv(supp(llT))) -+ IR2 

to ~ 8(tO) 

Since 

k n. 
e (a,S) l+ 2: 

l (l,z. ) T = exp(-a-Sz. ) 
, 

i=l 
1 + l l 

the .' of the lmage a-aXlS lS 

k 
/:, = {cr' 2: n. (l,z.) I cr E ] O,lf}. 

i=l l l 

The set ri(conv(supp(llT)))\/:' consists of two path-connected components, as does 

1R2\{(a,s)ls=0}, and as T is continuous and bijective, the image by T of 

ri( /R2 n H) = {(a,S) EIR2 Is>0} is one of the two components of 

ri(conv(supp(llT)))\/:'; it is seen that it is the upper one: 

T I' 

2 

If to belongs to the interior of the upper sub-polygon we can find 8H(tO) as the 

solution e to 

For any other to for which 8H(t O) exists, §H(t O) must be a point on the a-axls; 

because if 8H( to) E ri ( ;IR2 n H) then to = E§ (t ) T was an interior point of the 
H 0 

upper sub-polygon! 



For 8 = (0:, 0 ), 0: E lR, 

k k 
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exp( 0:' Tlx) 

(1 + eo:)n 

k x E:fR , 

where n = ~ n., Tlx = ~ x., that lS, Xl"",Xk are independent, binominally 
i=l l i=l l 

distributed with the same probability parameter eO:/l+eO:. The maximum likelihood 

estimator & thus exists if and only if 

but this is implied by the assumption that 8H(t O) exists, l.e. that 

to E ri(conv(supp(]lT))) + [0+( 1R2 n H)]P. 

We have, of course, that 

In cases where 8H(t O) does not exists, one should proceed in a similar way to 5.6, 

although for example the 1;'s now should be chosen from 0+(~R2n H) = H. The results 

are not surprising. One should however be aware of the cases to = Q and 
k 

t = ~ n.(l,z.); in the former case the degenerate logistic function is 
o i=l l l 

Z t+ 0 

and In the latter case 

Z t+ 1. 
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