Phernilit
 AUG
 1971

H. K. Brøns

MEAN-VALUES

UNMERSITY OF CDPENHAREN INSTITUTE OF

MEAN-VALUES

H.K.Br申ns

Preprint 1971 No. 2

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

August 1971

Contents.

pageIntroduction
I. Sample mean-values

1. The definition and simple examples of 3 sample means
2. Construction of mean-values by minimali- 11 zation
3. Misce11aneous remarks 19
II. Extension of mean-values
4. Symmetric mean-values and monotone functions 20
5. Simple convergence of probability measures 25
6. Extension of mean-values from E to P 27
7. The expectation 29
8. Complete mean-values 33
III.Conditional mean-values and limit theorems
9. Conditional mean-values 35
10. Limit theorems 38
References

INTRODUCTION

The computation of averages is a basic tool in statistics, but often the statistician uses other methods of forming "mean-values" e.g. by calculating transformed averages, medians, midranges, etc. In spite of the central role these quantities play in statistical work no attempt has been made to give a comprehensive treatment of their mathematical properties. As a result the ordinary average or mean-value, generalized to the mathematical expectation, dominates the theory in a way that does not look natural from the viewpoint of the practical statistician.

Still there does exist a theory of mean-values. The main contributions to this theory are papers by Kolmogorov [1930]and Nagumo[1930] . A review of the present state of the theory is found in Aczé1 [1961]. The purpose of the theory is to show that the ordinary average or simple transforms of it are the only functions satisfying axioms of a certain kind, and the effort has been concentrated on weakening these assumptions as much as possible. Because of the emphasis on the average the theory is only of limited interest to the statistician.

It also seems unnatural to reserve the word mean-value for these functions. Intuitively the main quality of a mean-value should be some kind of "inbe-tweenness"-property, but in Kolmogorov's and Nagumo's axioms a rule of combination (called associativity by de Finetti) is the fundamental assumption.

In a most inspiring paper de Finetti [1931] tried to broaden the point of view, but his intentions have not been followed up by any research.

What is then a natural concept of a mean-vaiue ? First it is a real number that can be computed from any finite set of real numbers. Sometimes one also requires that the mean of a single number is the number itself. Finally the mean-value of the set of numbers must lie inbetween the smallest and the biggest number in the set, i.e. if $x_{1}, \ldots, x_{n}, n=1,2, \ldots$, are real numbers, and m the mean-value then

$$
\min \left(x_{1}, \ldots, x_{n}\right) \leqq m\left(x_{1}, \ldots, x_{n}\right) \leqq \max \left(x_{1}, \ldots, x_{n}\right)
$$

Evidently this property is much too weak to give rise to any interesting mathematical theory.

The following treatment of mean-values will be based on the definition
(1) $\min \left(m\left(x_{1}, \ldots, x_{k}\right), m\left(x_{k+1}, \ldots, x_{n}\right)\right) \leqq m\left(x_{1}, \ldots, x_{n}\right) \leqq$

$$
\max \left(m\left(x_{1}, \ldots, x_{k}\right), m\left(x_{k+1}, \ldots, x_{n}\right)\right)
$$

$k=1, \ldots, n$. These inequalities state that if two samples of real numbers are combined into one sample then the mean-value of the total sample will lie between the mean-values of the subsamples.

If a denotes ordinary average:

$$
a\left(x_{1}, \ldots, x_{n}\right)=\frac{x_{1}+\ldots+x_{n}}{n}
$$

then

$$
a\left(x_{1}, \ldots, x_{n}\right)=\frac{k}{n} a\left(x_{1}, \ldots, x_{k}\right)+\frac{n-k}{n} a\left(x_{k+1}, \ldots, x_{n}\right)
$$

which shows that a satisfies (1).

The following is a preliminary report on basic properties of mean-values. The statistical applications will be treated later.

Part of the work was carried out during the summer 1962 while the author was visiting University of California, Riverside, on a grant from NATO Science Fellowship Programme.

The present paper has appeared in two preliminary versions in 1963 and 1964. This final version is identical with the 1964 version except for a few necessary changes and the addition of proofs for the theorems in sections II and III.

I. Sample mean-values.

1. The definition and simple examples of sample means.

Let X be an abstract set. The sample space of X is the set of all ordered finite subsets of X, i.e. the set

$$
X^{*}=\bigcup_{k=1}^{\infty} X^{k}
$$

where $\mathrm{X}^{\mathrm{k}}, \mathrm{k}=1,2, \ldots$, denotes the k^{\prime} th cartesian power of X . The points in X^{*} are samples from X. If

$$
x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in x^{*}
$$

and

$$
y^{*}=\left(y_{1}, \ldots, y_{n}\right) \in x^{*}
$$

then $x * y *$ denotes the combined sample

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

A sample function on X is a numerical function on $X *$, i.e. a mapping from X* into the extended real line R^{\prime}.

A mean-value (mean) on X is a sample function m on X that satisfies the conditions

$$
\min \left(\mathrm{mx}^{*}, \mathrm{my}^{*}\right) \leqq \mathrm{mx}^{*} \mathrm{y}^{*} \leqq \max (\mathrm{mx} *, \mathrm{my} *)
$$

for all $\mathrm{x}^{*} \in \mathrm{X}^{*}$ and $\mathrm{y}^{*} \in \mathrm{X}^{*}$.

It follows from this definition that if $x_{i}^{*} \in X^{*}$, $i=1, \ldots, k, k=1,2, \ldots$, and

$$
\mathrm{mx}_{1}^{*}=\ldots=\mathrm{mx}_{\mathrm{k}}^{*}
$$

then

$$
\mathrm{mx}_{1}^{*} \mathrm{x}_{2}^{*} \cdots \mathrm{x}_{\mathrm{k}}^{*}=\mathrm{mx}{ }_{1}^{*}
$$

Also if f is a monotone numerical function on R^{\prime} then $f m$ is a mean-value on X .

If $Y \subset X$ then the restriction of m to Y^{*} is a mean-value on Y.

Example 1. The average. The ordinary average a is a mean-value on R^{\prime} defined by

$$
a\left(x^{*}\right)= \begin{cases}\frac{1}{n}\left(x_{1}+\ldots+x_{n}\right) & \text { when meaningful } \\ 0 & \text { elsewhere }\end{cases}
$$

$x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *}$. Instead of 0 one could have used any fixed real number.

Example 2. Max and min. The function max defined on $R^{\prime *}$ by

$$
\max \left(x^{*}\right)=\max \left(x_{1}, \ldots, x_{n}\right)
$$

$x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *}$ is clearly a mean-value on R^{\prime}. Similarly for min. For $x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *} \operatorname{let} x_{(k)}^{*}, k=1, \ldots, n$, denote the k^{\prime} th smallest among x_{1}, \ldots, x_{n}.

Example 3. The medians. The sample functions m_{0} and m_{1} defined by

$$
m_{0} x^{*}= \begin{cases}x^{*}\left(\left[\frac{n}{2}\right]+1\right) & \text { for } n \text { uneven } \\ x^{*} & \text { for } n \text { even } \\ \left(\frac{n}{2}\right) & \end{cases}
$$

and

$$
m_{1} x^{*}=x^{*}\left(\left[\frac{n}{2}\right]+1\right)^{\prime}
$$

$x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *}$, are mean-values on $R^{\prime} .[x]$ is the integral part of x.

Since

$$
m_{0} x^{*}=-m_{1}\left(-x^{*}\right), \quad x^{*} \in R^{\prime *}
$$

it is sufficient to prove that m_{1} is a mean-value.
Put

$$
x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *}
$$

and

$$
\mathrm{y}^{*}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right) \in \mathrm{R}^{\prime *} .
$$

To the left of the point $\min \left(m_{1} x^{*}, m_{1} y^{*}\right)$ there are at most

$$
\left[\frac{\mathrm{n}}{2}\right]+\left[\frac{\mathrm{s}}{2}\right]<\left[\frac{\mathrm{n}+\mathrm{s}}{2}\right]+1
$$

points of the combined sample $x^{*} y^{*}$, i.e.

$$
\min \left(m_{1} x^{*}, m_{1} y^{*}\right) \leqq m_{1} x^{*} y^{*}
$$

To the left of or in the point $\max \left(m_{1} x^{*}, m_{1} y^{*}\right)$ there are at least

$$
\left[\frac{\mathrm{n}}{2}\right]+1+\left[\frac{\mathrm{s}}{2}\right]+1 \geqq\left[\frac{\mathrm{n}+\mathrm{s}}{2}\right]+1
$$

points of the combined sample, i.e.

$$
\mathrm{m}_{1} \mathrm{x}^{*} \mathrm{y}^{*} \leqq \max \left(\mathrm{~m}_{1} \mathrm{x}^{*}, \mathrm{~m}_{1} \mathrm{y}^{*}\right)
$$

By the ordered sample corresponding to

$$
x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *}
$$

is meant the sample

$$
\left(x_{(1)}^{*}, \ldots, x_{(n)}^{*}\right)
$$

All the mentioned examples of mean-values are symmetric, i.e. depend only on the ordered sample. In a general set a mean-value is symmetric if it takes the same value in all samples which are permutations of the sample.

The R'-mean-values

$$
m^{\prime}\left(x_{1}, \ldots, x_{n}\right)=x_{1}
$$

and

$$
m^{\prime \prime}\left(x_{1}, \ldots, x_{n}\right)=x_{n}
$$

are not symmetric.

Example 4. The linear mean-values on R.
We want to determine all mean-values m on R that are linear i.e. of the form

$$
m\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} a_{n i} x_{i},\left(x_{1}, \ldots, x_{n}\right) \in R^{n}
$$

$$
a_{\mathrm{ni}} \in \mathrm{R}, \mathrm{i}=1, \ldots, \mathrm{n}, \mathrm{n}=1,2, \ldots
$$

The inequalities

$$
\min (m 1,0) \leqq m(\overbrace{0, \ldots, 0}^{i-1}, 1, \overbrace{0, \ldots, 0}^{n-i}) \leqq \max (m 1,0)
$$

or

$$
\min \left(a_{11}, 0\right) \leqq a_{n i} \leqq \max \left(a_{11}, 0\right)
$$

show that if $a=a_{11}$ is zero then all the coefficients are zero, and if $a \neq 0$ then all have the same sign.

For $a \neq 0$ the general case is reduced to the case $a=1$ by multiplication by a^{-1}. Put

$$
x=m(\overbrace{0, \ldots, 0}^{i-2}, 1, \overbrace{0, \ldots, 0}^{n-i})=a_{n-1, i-1},
$$

$\mathrm{i}=2, \ldots, \mathrm{n}, \mathrm{n}=2,3, \ldots$. The equation

$$
\mathrm{x}=\mathrm{m}(\mathrm{x}, \overbrace{0, \ldots, 0}^{\mathrm{i}-2}, 1, \overbrace{0, \ldots, 0}^{\mathrm{n}-\mathrm{i}})
$$

is equivalent to

$$
a_{n-1, i-1}=a_{n 1} a_{n-1, i-1}+a_{n i}
$$

or
(1)

$$
a_{n i}=a_{n-1, i-1}\left(1-a_{n 1}\right), i=2, \ldots, n .
$$

Similarly the equation

$$
x=m(\overbrace{0, \ldots, 0}^{i-2}, 1, \overbrace{0, \ldots, 0}^{n-i}, x)
$$

gives

$$
a_{n-1, i-1}=a_{n, i-1}+a_{n n} a_{n-1, i-1}
$$

or

$$
a_{n, i-1}=a_{n-1, i-1}\left(1-a_{n n}\right), i=2, \ldots, n .
$$

For $i=2$ here and $i=n$ in (1) one gets

$$
a_{n n}=a_{n-1, n-1}\left(1-a_{n 1}\right)
$$

and

$$
a_{n 1}=a_{n-1,1}\left(1-a_{n n}\right)
$$

so that
(2)

$$
a_{n 1}\left(1-a_{n-1,1} a_{n-1, n-1}\right)=a_{n-1,1}\left(1-a_{n-1, n-1}\right)
$$

The equation

$$
\mathrm{m}(1,1)=\mathrm{m} 1
$$

is equivalent to

$$
a_{21}+a_{22}=1
$$

In the case $a_{21}>0$ put

$$
\mathrm{a}_{21}=\frac{1}{1+\mathrm{b}}, \mathrm{~b} \geqq 0
$$

so that

$$
a_{22}=\frac{1}{1+b}
$$

It follows by induction from (1) and (2) that

$$
a_{n i}=\frac{b^{i-1}}{1+b+\ldots+b^{n-1}}
$$

and for general a :

$$
a_{n i}=\frac{a b^{i-1}}{1+b+\ldots+b^{n-1}}, i=1, \ldots, n, n=1,2, \ldots
$$

With these coefficients m satisfies the equality
$m\left(x_{1}, \ldots, x_{n}\right)=\frac{1+b+\ldots+b^{k-1}}{1+b+\ldots+b^{n-1}} m\left(x_{1}, \ldots, x_{k}\right)+\frac{b^{k}+\ldots+b^{n-1}}{1+b+\ldots+b^{n-1}} m\left(x_{k+1}, \ldots, x_{n}\right)$,
which shows that m is a mean.

For $a_{21}=0(b=+\infty)$ one finds

$$
a_{n n}=a, a_{n i}=0, i=1, \ldots, n-1, \quad n=1,2, \ldots,
$$

which corresponds to the mean

$$
m\left(x_{1}, \ldots, x_{n}\right)=a x_{n}
$$

Example 5. The quantiles. We want to determine all mean-values on R^{\prime} of the form

$$
m x^{*}=x_{\left(r_{n}\right)}^{*}, \quad x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{\prime *}
$$

$r_{n}=1,2, \ldots, n$. For $a<b, a \in R, b \in R$, consider the number

$$
m(\overbrace{a, \ldots, a}^{s}, \overbrace{b, \ldots, b}^{n-s})
$$

$\mathrm{s}=0,1, \ldots, \mathrm{n}, \mathrm{n}=1,2, \ldots$. This number depends on1y on $\frac{\mathrm{s}}{\mathrm{n}}$ since

for $k=1,2, \ldots$, because m is symmetric. The function g on the rational numbers in $[0,1]$ defined by

$$
g\left(\frac{s}{n}\right)=m(\overbrace{a, \ldots, a}^{s}, \overbrace{b, \ldots, b}^{n-s}),
$$

$\mathrm{s}=0, \ldots, \mathrm{n}, \mathrm{n}=1,2, \ldots$, is decreasing.

First

$$
\mathrm{a}=\mathrm{ma} \leqq \mathrm{~g}\left(\frac{\mathrm{~s}}{\mathrm{n}}\right) \leqq \mathrm{mb}=\mathrm{b}
$$

Next

$$
\min \left(\operatorname{ma}, g\left(\frac{\mathrm{~s}}{\mathrm{n}-1}\right)\right) \leqq \mathrm{g}\left(\frac{\mathrm{~s}+1}{\mathrm{n}}\right) \leqq \max \left(\operatorname{ma}, \mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{n}-1}\right)\right)
$$

or

$$
\mathrm{ma} \leqq \mathrm{~g}\left(\frac{\mathrm{~s}+1}{\mathrm{n}}\right) \leqq \mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{n}-1}\right),
$$

$s=0, \ldots, n-1, n=2,3, \ldots$. Also

$$
\min \left(\operatorname{mb}, g\left(\frac{\mathrm{~s}}{\mathrm{n}-1}\right)\right) \leqq \mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{n}}\right) \leqq \max \left(\mathrm{mb}, \mathrm{~g}\left(\frac{\mathrm{~s}}{\mathrm{n}-1}\right)\right)
$$

or

$$
\mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{n}-1}\right) \leqq \mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{n}}\right) \leqq \mathrm{mb}
$$

This shows that

$$
\mathrm{g}\left(\frac{\mathrm{~s}+1}{\mathrm{n}}\right) \leqq \mathrm{g}\left(\frac{\mathrm{~s}}{\mathrm{n}}\right)
$$

$s=0, \ldots, n-1, \quad n=2,3, \ldots$, which is sufficient.

Now g is given by

$$
g\left(\frac{s}{n}\right)=\left\{\begin{array}{l}
b \text { for } s<r_{n} \\
\text { a for } s \geqq \frac{r_{n}-1}{n}
\end{array}\right.
$$

or equivalently

$$
g(r)\left\{\begin{array}{l}
b \text { for } r \leqq \frac{r_{n}-1}{n} \\
\text { a for } r \geqq \frac{r_{n}}{n}
\end{array}\right.
$$

$r \in[0,1]$, r rational. Necessary and sufficient for this to define an decreasing function of r is that

$$
\begin{equation*}
\frac{r_{s}}{s}>\frac{r_{n}-1}{n} \tag{3}
\end{equation*}
$$

for $s=1,2, \ldots, n=1,2, \ldots$.

From (3) follows

$$
\left|\frac{r}{s}-\frac{r}{n}\right| \leqq \frac{1}{n} \quad \text { for } s \geqq n,
$$

so that $\frac{r}{n}$ for $n \rightarrow \infty$ has a limit $p \in[0,1]$.
From (3) one gets
(4)

$$
\frac{r_{n}-1}{n} \leqq p \leqq \frac{r_{n}}{n}
$$

by letting $\mathrm{s} \rightarrow \infty$ for fixed n and vice versa.
(4) can be written

$$
n p \leqq r_{n} \leqq n p+1, \quad n=1,2, \ldots
$$

For p irrational $r_{n}=[n p]+1, \quad n=1,2, \ldots$.
For $p=0 \quad r_{n}=1, \quad n=1,2, \ldots$.
For $p=1 \quad r_{n}=n, \quad n=1,2, \ldots$.
For $p \in$]0,1[, p rational, there are two solutions

$$
r_{n}=\left\{\begin{array}{l}
n p \text { for }[n p]=n p \\
{[n p]+1 \text { for }[n p]<n p}
\end{array}\right.
$$

and

$$
r_{n}=[n p]+1
$$

since $r_{s}=s p$ and $r_{n}=n p+1$ gives

$$
\frac{r_{s}}{s}=\frac{r_{n}-1}{n}
$$

in contradiction with (3). That all these sample functions are mean-values is proved as for the medians.
2. Construction of mean-values by minimalization.

Let f be a numerical function on a subset \AA of a linear space. f is said to be quasi-convex on \hat{A} if

$$
\left.f\left((1-\lambda) x_{0}+\lambda x_{1}\right) \leqq \max \left(f x_{0}\right), f\left(x_{1}\right)\right)
$$

for $x_{0} \in \AA, x_{1} \in \AA,(1-\lambda) x_{0}+\lambda x_{1} \in \AA, \lambda \in[0,1] . \quad \mathrm{f}$ is quasi-concave on Á if under the same conditions

$$
f\left((1-\lambda) x_{0}+\lambda x_{1}\right) \geqq \min \left(f\left(x_{0}\right), f\left(x_{1}\right)\right)
$$

If f is both quasi-convex and quasi-concave on A, it is monotone on A.

A numerical function defined on a convex subset Á of linear space is quasi-convex if and only if the set of all $x \in A$ for which

$$
f(x) \leqq \tau
$$

is convex for all $\tau \in R^{\prime}$.

Theorem 1. Let F be an arbitrary family of quasi-convex functions defined on the convex subset \AA of a linear space. Then the supremum

$$
g(x)=\sup _{f \in F} f(x), \quad x \in \AA
$$

is quasi-convex.

Proof. For $\tau \in R^{\prime}$ is

$$
B=\{x \mid g(x) \leqq \tau\}=\bigcap_{f \in F}\{x \mid f(x) \leqq \tau\}
$$

which shows that B is convex.

A numerical function on convex subset \AA of a linear space is convex if

$$
f\left((1-\lambda) x_{0}+\lambda x_{1}\right) \leqq(1-\lambda) f\left(x_{0}\right)+\lambda f\left(x_{1}\right)
$$

for all $\left.x_{0} \in A, x_{1} \in A, \lambda \in\right] 0,1[$, such that the right hand side is defined. f is concave if - f is convex. If f is both convex and concave it is affine.

A convex function is quasi-convex.

Let now f be a quasi-convex function on an interval $J \subset R$.

A point $\theta \in J$ is a point of decrease for f if $f\left(\theta^{\prime}\right) \geqq f(\theta)$ for all $\theta^{\prime} \leqq \theta$, which belongs to J. J's left hand endpoint is a point of decrease if it belongs to J.

Let θ be a point of decrease for f and let $\theta_{1} \leqq \theta$ be a point in J. If $\theta^{\prime} \leqq \theta_{1}$ is a point in J, then

$$
f\left(\theta_{1}\right) \leqq \max \left(f\left(\theta^{\prime}\right), f(\theta)\right)
$$

implies $f\left(\theta_{1}\right) \leqq f\left(\theta^{\prime}\right)$, i.e. θ_{1} is a point of decrease for f.
Hence the set S_{f} of all points of decrease for f is an interval with the same left hand endpoint as J. S_{f} is possibly empty.

A point $\theta \in J$ is a point of increase for f if $f\left(\theta^{\prime}\right) \geqq f(\theta)$ for all $\theta^{\prime} \geqq \theta$, which belong to J. J's right hand endpoint is a point of increase if it belongs to J. Analogously to the argument above it is proved that the set D_{f} is empty or an interval with same right hand endpoint as J. We have that

$$
\begin{equation*}
S_{f} \cup D_{f}=J, \tag{2}
\end{equation*}
$$

for if $\theta \in J \backslash\left(S_{f} \cup D_{f}\right)$ there exist points θ^{\prime} and $\theta^{\prime \prime}$ in J such that

$$
\theta^{\prime}<\theta<\theta^{\prime \prime}, f\left(\theta^{\prime}\right)<f(\theta), f\left(\theta^{\prime \prime}\right)<f(\theta)
$$

which is in contradiction with (1).

Now define

$$
\mathrm{m}_{0} \mathrm{f}=\inf \mathrm{D}_{\mathrm{f}}, \quad \mathrm{~m}_{1} \mathrm{f}=\sup \mathrm{S}_{\mathrm{f}},
$$

$\mathrm{m}_{0} f$ is J's right hand endpoint when D_{f} is empty, and $\mathrm{m}_{1} f$ is J's left hand endpoint if S_{f} is empty.
(2) shows that $\mathrm{m}_{0} \mathrm{f} \leqq \mathrm{m}_{1} \mathrm{f}$.

If $m_{0} f$ and $m_{1} f$ are equal we denote their common value by $m f$.

The set $S_{f} \cap D_{f}$ is a (possibly empty) interval with endpoints $m_{0} f$ and $m_{1} f$. It consists of all points in which f assumes its minimum value. f is decreasing on S_{f} and increasing on D_{f}. It is therefore immediate that a necessary and sufficient condition for a numerical function f on an interval $J \subset R$ to be quasi-convex is that J is the union of two disjoint (possibly empty) intervals such that f is decreasing on the left interval and increasing on the right.

A family F of numerical functions on an interval $J \subset R$ is said to be quasi-convex under addition if for $\operatorname{all}\left(f_{1}, \ldots, f_{n}\right) \in F^{*}$ the function

$$
f_{1}+\ldots+f_{n}
$$

is defined, quasi-convex, and not identically equal to $+\infty$.

A family of finite convex functions on J has this property.

Theorem 2. Let to every $x \in X$ correspond a numerical function f_{x} on the interval $J \subset R$ such that the family $\left\{f_{x}\right\}$ is quasi-convex under addition. The sample functions

$$
m_{0}\left(f_{x_{1}}+\ldots+f_{x_{n}}\right), m_{1}\left(f_{x_{1}}+\ldots+f_{x_{n}}\right),\left(x_{1}, \ldots, x_{n}\right) \in x^{*}
$$

are then symmetric mean-values on X.

Proof. Let g_{0} and g_{1} be quasi-convex functions on J such that $g=g_{0}+g_{1}$ is defined and quasi-convex on J. It is assumed that neither g_{0}, g_{1}, nor g are identically equal to $+\infty$.

Let

$$
\theta \in S_{g_{0}} \cap S_{g_{1}}
$$

If $\theta^{\prime} \in J$ and $\theta^{\prime}<\theta$ then

$$
\begin{aligned}
& \mathrm{g}_{0}\left(\theta^{\prime}\right) \geqq \mathrm{g}_{0}(\theta) \\
& \mathrm{g}_{1}\left(\theta^{\prime}\right) \geqq \mathrm{g}_{1}(\theta) .
\end{aligned}
$$

By addition one gets

$$
g\left(\theta^{\prime}\right) \geqq g(\theta)
$$

i.e. θ belongs to S_{g}, so
(3)

$$
S_{g_{0}} \cap S_{g_{1}} \subset S_{g}
$$

Let now

$$
\theta \in\left(J \backslash S_{g_{0}}\right) \cap\left(J \backslash S_{g_{1}}\right)
$$

There exist points θ^{\prime} and $\theta^{\prime \prime}$ in J such that

$$
\begin{equation*}
g_{0}\left(\theta^{\prime}\right)<g_{0}(\theta) \quad \theta^{\prime}<\theta \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
g_{1}\left(\theta^{\prime \prime}\right)<g_{1}(\theta), \quad \theta^{\prime \prime}<\theta \tag{5}
\end{equation*}
$$

Assume $\theta^{\prime} \geqq \theta^{\prime \prime}$. From the inequality $g_{1}\left(\theta^{\prime}\right) \leqq \max \left(g_{1}\left(\theta^{\prime \prime}\right), g_{1}(\theta)\right)$ and (5) it follows that

$$
\begin{equation*}
g_{1}\left(\theta^{\prime}\right) \leqq g_{1}(\theta) \tag{6}
\end{equation*}
$$

If $g_{1}(\theta)$ is finite, addition of (4) and (6) gives $g\left(\theta^{\prime}\right)<g(\theta)$, the condition for θ to belong to $\mathrm{J} \backslash \mathrm{S}_{\mathrm{g}}$.

Since $\theta \in J \backslash \mathrm{~S}_{\mathrm{g}_{1}}$, it is impossible that $\mathrm{g}_{1}(\theta)=-\infty$.
If $g_{1}(\theta)=+\infty$, then $g_{1}\left(\theta_{1}\right)=+\infty, \theta_{1} \geqq \theta, \theta_{1} \in \mathrm{~J}$, since $\theta \in \mathrm{D}_{\mathrm{g}_{1}}$. It follows that

$$
g\left(\theta_{1}\right)=+\infty
$$

for all $\theta_{1} \geqq \theta$. g is not identically equal to $+\infty$. There must therefore exist a point $\theta_{2} \in \mathrm{~J}$, such that $\mathrm{g}\left(\theta_{2}\right)<g(\theta), \theta_{2}<\theta$, i.e. $\theta \in \mathrm{J} \backslash \mathrm{S}_{\mathrm{g}}$. We have thus shown that

$$
J \vee S_{g} \subset\left(J \backslash S_{g_{0}}\right) \cap\left(J \backslash S_{g_{1}}\right)
$$

or

$$
\begin{equation*}
\mathrm{s}_{\mathrm{g}} \subset \mathrm{~S}_{\mathrm{g}_{0}} \mathrm{U} \quad \mathrm{~S}_{\mathrm{g}_{1}} \tag{7}
\end{equation*}
$$

It follows from (3) and (7) that $\min \left(m_{1} g_{0}, m_{1} g_{1}\right) \leqq m_{1} g \leqq \max \left(m_{1} g_{0}, m_{1} g_{1}\right)$. Similarly one finds that $\min \left(\mathrm{m}_{0} \mathrm{~g}_{0}, \mathrm{~m}_{0} \mathrm{~g}_{1}\right) \leqq \mathrm{m}_{0} \mathrm{~g} \leqq \max \left(\mathrm{~m}_{0} \mathrm{~g}_{0}, \mathrm{~m}_{0} \mathrm{~g}_{1}\right)$.

The theorem is proved by applying these results to the functions

$$
g_{0}=f_{x_{1}}+\ldots+f_{x_{k}}, g_{1}=f_{x_{k+1}}+\ldots+f_{x_{n}} .
$$

Example 6. The average a on R is the m-function of the family of finite convex functions on R defined by

$$
f_{x}(\theta)=(x-\theta)^{2}, x \in R, \quad \theta \in R .
$$

Example 7. The smallest and the largest p-quantile on $R, p \in] 0,1[$ respectively, are m_{0}^{-}and m_{1}-functions of the family of finite convex functions on R defined by

$$
f_{x}(\theta)= \begin{cases}\frac{1}{p}(\theta-x) & x \leqq \theta \\ \frac{1}{q}(x-\theta) & x \geqq \theta,\end{cases}
$$

$x \in R, \theta \in R$.
max is the m-function of the family

$$
f_{x}(\theta)= \begin{cases}\theta-x & x \leqq \theta \\ +\infty & x>\theta\end{cases}
$$

$x \in R, \theta \in R$, and \min is the m-function of the family

$$
f_{x}(\theta)= \begin{cases}+\infty & x \leqq \theta \\ x-\theta & x>\theta .\end{cases}
$$

Corollary. Let to every $x \in X$ correspond a finite numerical function f_{x} on the interval $J \subset R$ such that the family $\left\{f_{x}\right\}$ is quasi-convex under addition. For $b \in] 0,+\infty[$ the function

$$
f_{x_{1}}+b f_{x_{2}}+b^{2} f_{x_{3}}+\ldots+b^{n-1} f_{x_{n}}
$$

$x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in X^{*}$, is quasi-convex on J, and the sample functions

$$
m_{0}\left(f_{x_{1}}+\ldots+b^{n-1} f_{x_{n}}\right), m_{1}\left(f_{x_{1}}+\ldots+b^{n-1} f_{x_{n}}\right)
$$

are mean-values on X .

Proof. When b is rational it is evident that

$$
f_{x_{1}}+b f_{x_{2}}+\ldots+b^{n-1} f_{x_{n}}
$$

is quasi-convex and for b irrational it follows by passing to the 1imit through rational values.

The second assertion is proved by remarking that if f is a quasi-convex function on J then $b^{k} f, k=0,1,2, \ldots$, is quasi-convex and has the same $m_{0}-$ and $m_{1}-$ values as f, and then applying the result from the proof of theorem 2 to the functions

$$
\begin{aligned}
& g_{0}=f_{x_{1}}+b f_{x_{2}}+\ldots+b^{k-1} f_{x_{k}} \\
& g_{1}=b^{k}\left(f_{x_{k+1}}+b f_{x_{k+2}}+\ldots+b^{n-k-1} f_{x_{n}}\right) \\
& g=f_{x_{1}}+b f_{x_{2}}+\ldots+b^{n-1} f_{x_{n}}=g_{0}+g_{1}
\end{aligned}
$$

The corollary shows how to construct unsymmetric mean-values.

Example 8. The R-mean-value

$$
m\left(x^{*}\right)=\frac{x_{1}+b x_{2}+\ldots+b^{n-1} x_{n}}{1+b+\ldots+b^{n-1}}
$$

$\left.x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in R^{*}, b \in\right] 0,+\infty[$, is the m-function computed from the function

$$
\left(x_{1}-\theta\right)^{2}+b\left(x_{2}-\theta\right)^{2}+\ldots+b^{n-1}\left(x_{n}-\theta\right)^{2}
$$

$\theta \in R$.

A numerical function f on an interval $J \subset R$ is strictly quasi-convex if $f\left((1-\lambda) \theta_{0}+\lambda \theta_{1}\right)<\max \left(f\left(\theta_{0}\right), f\left(\theta_{1}\right)\right)$ for all x_{0} and x_{1} in $J, x_{0} \neq x_{1}$, $\lambda \in] 0,1[$.
f is strictly quasi-convex if and only if it is quasi-convex and not constant on any non-degenerate subinterval of J.

If f is strictly quasi-convex then $m_{0} f=m_{1} f$.

The maximum of a finite family of strictly quasi-convex functions is strictly quasi-convex.

Theorem 3. Let to every $\mathrm{x} \in \mathrm{X}$ correspond a strictly quasi-convex function f_{x} defined on the interval $J \subset R$. The sample function

$$
m\left(\max \left(f_{x_{1}}, \ldots, f_{x_{n}}\right)\right)
$$

is then a mean-value on X .

Proof. Let g_{0} and g_{1} be strictly quasi-convex functions on J, and put $\mathrm{g}=\max \left(\mathrm{g}_{0}, \mathrm{~g}_{1}\right) . \quad \mathrm{g}$ is then strictly quasi-convex.

Let $\theta \in \mathrm{S}_{\mathrm{g}_{0}} \cap \mathrm{~S}_{\mathrm{g}_{1}}$. If $\theta^{\prime} \in \mathrm{J}$ and $\theta^{\prime}<\theta$ then

$$
\begin{aligned}
& g_{0}\left(\theta^{\prime}\right) \geqq g_{0}(\theta) \\
& g_{1}\left(\theta^{\prime}\right) \geqq g_{1}(\theta) .
\end{aligned}
$$

It follows that $g^{\prime}\left(\theta^{\prime}\right) \geqq g(\theta)$, i.e. θ belongs to S_{g}, so

$$
\begin{equation*}
\mathrm{s}_{\mathrm{g}_{0}} \cap \mathrm{~s}_{\mathrm{g}_{1}} \subset \mathrm{~s}_{\mathrm{g}} . \tag{7}
\end{equation*}
$$

By applying this result to the functions

$$
\begin{aligned}
& h_{0}(\theta)=g_{0}(-\theta), \quad h_{1}(\theta)=g_{1}(-\theta), \\
& h(\theta)=\max \left(h_{0}(\theta), h_{1}(\theta)\right)=g(-\theta), \quad-\theta \in J,
\end{aligned}
$$

we get

$$
\mathrm{D}_{\mathrm{g}_{0}} \cap \mathrm{D}_{\mathrm{g}_{1}} \subset \mathrm{D}_{\mathrm{g}}
$$

or
(8)

$$
\mathrm{s}_{\mathrm{g}} \subset \mathrm{~s}_{\mathrm{g}_{0}} \cup \mathrm{~S}_{\mathrm{g}_{1}}
$$

since $\mathrm{D}_{\mathrm{g}}=\mathrm{J} \backslash \mathrm{S}_{\mathrm{g}}$ etc.
From (7) and (8) it follows that $\min \left(\mathrm{mg}_{0}, \mathrm{mg}_{1}\right) \leqq m g \leqq \max \left(\mathrm{mg}_{0}, \mathrm{mg}_{1}\right)$, and the theorem is proved by putting

$$
\begin{aligned}
& g_{0}=\max \left(f_{x_{1}}, \ldots, f_{x_{k}}\right), g_{1}=\max \left(f_{x_{k+1}}, \ldots, f_{n}\right), \\
& g=\max \left(g_{0}, g_{1}\right)=\max \left(f_{x_{1}}, \ldots, f_{x_{n}}\right)
\end{aligned}
$$

Unsymmetric mean-values can be constructed by considering the m-function for

$$
\max \left(f_{x_{1}}, b f_{x_{2}}, \ldots, b^{n-1} f_{x_{n}}\right)
$$

where $b \in[0,+\infty[$.
3. Miscellaneous remarks.

Fisher [1925] has noted that if a sample has independent identically distributed components, a sample function which is (minimal) sufficient for some parameter for all sample sizes has the property that the value in a combined sample is a function of the values in the subsample. It is easy to see that this property implies the associativity assumed in Kolmogorov [1930] and Nagumo [1930] . Further all mean-values have the necessary monotonicity such that the Kolmogorov-Nagumo theorem can be restated in the following way:

Under certain (not very strong) regularity conditions a mean-value that is sufficient for some parameter in the case of independent identically distributed observations $x_{1}, \ldots, x_{n}, n=1,2, \ldots$, has the form

$$
\frac{f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)}{n}
$$

From this it follows easily that the distribution must be of the DarmoisKoopman type.

These problems will be treated at a later occasion.

Spitzer [1956] proved an important combinatorial lemma on sums or ordinary averages. The lemma was used to simplify the proofs of certain theorems due to Sparre Andersen.

It is not difficult to see that the lemma is true for all mean-values. Brunk [1961] published a proof of this and used it to give an easy interpretation of the theorems of Sparre Andersen and to derive some tests for trend.

The following theorem shows that mean-values are "limitierungsprozessen".

Theorem 2. Let m be a mean-value on X. If for $x_{n} \in X, n=1,2, \ldots$, $m x_{n}$ has a finite limit for $n \rightarrow \infty$, then $m\left(x_{1}, \ldots, x_{n}\right)$ is also convergent with a finite limit.

Proof. Put $\lim m x_{n}=a$ and $m\left(x_{1}, \ldots, x_{n}\right)=y_{n}, n=1,2, \ldots$. \{y $\left.y_{n}\right\}$ is bounded, $\sin \underset{c}{\mathrm{n}} \mathrm{Cl}^{\infty}$

$$
\inf _{\mathrm{k}} \mathrm{mx}_{\mathrm{k}} \leqq \mathrm{y}_{\mathrm{n}} \leqq \sup _{\mathrm{k}} \mathrm{mx}_{\mathrm{k}}
$$

for $a 11 \mathrm{n}$. Assume first $\lim \sup \mathrm{y}_{\mathrm{n}}=\mathrm{b}>\mathrm{a}$. Let $\mathrm{c} \in$]a,b[. Then there exists an N such that $m x_{n}<c$ for $n>N$.

To every $n>N$ there corresponds a $k>n$ such that $y_{k}>c$. Now

$$
\mathrm{c}<\mathrm{y}_{\mathrm{k}} \leqq \max \left(\mathrm{y}_{\mathrm{n}}, \mathrm{mx}_{\mathrm{m}+1}, \ldots, \mathrm{mx}_{\mathrm{k}}\right)
$$

i.e. $y_{n}>c$ for $n>N$.

From

$$
c<y_{n+1} \leqq \max \left(y_{n}, m x_{n+1}\right)
$$

it follows that $y_{n+1} \leqq y_{n}$, i.e. the sequence y_{n} is decreasing for $n>N$ therefore has a 1imit.

The case $\lim \inf \mathrm{y}_{\mathrm{n}}<$ a is treated similarly.

1. Symmetric mean-values and monotone functions.

Let again X be an abstract set. The system of all subsets of X will be denoted by S. The indikatorfunction I is a function on $X \mathrm{x} S$ defined by

$$
I_{x} A= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \in A^{c}\end{cases}
$$

$x \in X, A \in S$. For every $x \in X$ the restriction I_{x} of I is a probability measure on S which we shall call the point measure in x. The set of all point-measures is called 1 .

More general: to every sample $x *$ from X there corresponds a probability measure $\mathrm{E}_{\mathrm{x}^{*}}$ on S defined by

$$
\mathrm{E}_{\mathrm{x}} *^{\mathrm{A}}=\frac{1}{\mathrm{n}_{\mathrm{i}=1}^{\mathrm{n}} \sum_{\mathrm{x}_{\mathrm{i}}} \mathrm{~A}, ~ ; ~}
$$

$x^{*}=\left(x_{1}, \ldots, x_{n}\right) \in X^{*}, A \in S$. This measure is the sample distribution corresponding to x^{*} or the empirical probability measure. É is the set of all such measures.

If

$$
\begin{aligned}
& \mathrm{x}^{*}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{x}^{*} \\
& \mathrm{y}^{*}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{s}}\right) \in \mathrm{x}^{*}
\end{aligned}
$$

then

$$
E_{x^{*} y^{*}}=\frac{n}{n+s} \quad E_{x^{*}}+\frac{s}{n+s} \quad E_{y^{*}}
$$

Theorem 1. A sample function is a symmetric mean-value on X if and only if it depends on the sample through a monotone function of the sample distribution.

Proof. Let m be a symmetric mean-value on X, and let x^{*} and y^{*} be samples from X of size n and $s, r e s p e c t i v e l y$, and with a common empirical distribution.

Put

$$
\mathrm{z}^{*}=\overbrace{\mathrm{x}^{*} \mathrm{x}^{*} \cdot \ldots \mathrm{x}^{*}}^{\mathrm{m}}
$$

and

$$
\mathrm{w}^{*}=\overbrace{\mathrm{y}^{*} \mathrm{y}^{*} \ldots \mathrm{y}^{*} .}^{\mathrm{n}}
$$

Now $E_{z^{*}}=E_{x^{*}}$ and $E_{\mathrm{w}^{*}}=\mathrm{E}_{\mathrm{y}^{*}}$. Therefore the samples z^{*} and w^{*} have the same empirical distributions, and since they are of the same size w* is a permutation of z^{*}. It follows that $m x^{*}=m z^{*}=m w^{*}=m y^{*}$, i.e. m depends on the empirical distribution. Put

$$
m x^{*}=m^{\prime} E_{x^{*}}, x^{*} \in X^{*}
$$

Assume

$$
\begin{aligned}
& \mathrm{v}^{*}=\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \in \mathrm{X}^{*} \\
& \mathrm{u}^{*}=\left(\mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{s}}\right) \in \mathrm{X}^{*}, \\
& E_{\mathrm{x}^{*}}=(1-\lambda) E_{\mathrm{v}^{*}}+\lambda \mathrm{E}_{\mathrm{u}^{*}}
\end{aligned}
$$

$\lambda \in[0,1]$, then λ must be rational or $E_{v^{*}}=E_{u^{*}} \cdot$ Put $=\frac{p}{q}, p=0, \ldots, q$, $q=1,2, \ldots$. The equation

$$
\begin{aligned}
E_{x^{*}} & =\frac{q-p}{q} \frac{1}{n} \sum_{i=1}^{n} I_{v_{i}}+\frac{p}{q} \frac{1}{s} \sum_{j=1}^{s} I_{u_{j}} \\
& =\frac{1}{q n s}\left(\sum_{i=1}^{n}(q-p) s I_{v_{i}}+\sum_{j=1}^{s} p n I_{u_{j}}\right)
\end{aligned}
$$

shows that E_{x} (is the empirical distribution of the sample

$$
\mathrm{w}^{*}=\overbrace{\mathrm{v}^{*} \mathrm{v}^{*} \ldots \mathrm{v}^{*} \mathrm{u}^{*} \mathrm{u}^{*} \ldots \mathrm{u}^{*}}^{(\mathrm{q}-\mathrm{p}) \mathrm{s}} .
$$

We thus have

$$
\min \left(\mathrm{mv}^{*}, \mathrm{mu}^{*}\right) \leqq \mathrm{mw}^{*} \leqq \max \left(\mathrm{mv}^{*}, \mathrm{mu}^{*}\right)
$$

or

$$
\min \left(m^{\prime} E_{v^{*}}, m^{\prime} E_{u^{*}}\right) \leqq m^{\prime} E_{x *} \leqq \max \left(m^{\prime} E_{v^{*}}, m^{\prime} E_{u^{*}}\right) .
$$

The sufficiency follows from the fact that the empirical distribution of a combined sample is a convex combination of the empirical distribution of the subsamples.

Theorem 1 was proved in a special case in example 5 of chapter I.

In the following we shall consider symmetric mean-values only, and shall therefore omit the adjective symmetric, and use the words mean-value and monotone function synonymously.

A function F on S defined by

$$
\begin{aligned}
& F A=\sum_{i=1}^{n} \lambda_{i} I_{x_{i}} A, \quad A \in S \\
& \left(x_{1}, \ldots, x_{n}\right) \in x^{*}, \quad \lambda_{i} \geqq 0, \sum_{i=1}^{n} \lambda_{i}=1,
\end{aligned}
$$

is a probability measure on S. Such a measure is called a finite atomic probability measure, and F is the set of all these.

To be able to consider more general probability measures one must restrict the domain of definition. Let therefore A^{\prime} be a sub- $\sigma=a l g e b r a$ of S, i.e. a σ-field of subsets of X containing X, and let ${ }^{\prime}$ _ be the set of all probability measures on X with domain of definition including Á. If no confusion is possible we shall write P^{\prime} instead of P_{A}. We have the relations

$$
I \subset E \subset E^{\prime} \subset \text { P. }
$$

Two elements in Pare equal if they have the same domain of definition and coincide there. Let $P_{0} \in \widehat{P}$ be defined on \widehat{A}_{0} and $P_{1} \in \widehat{P}$ on A_{1}. For $\lambda \in] 0,1[$

$$
(1-\lambda) P_{0}+\lambda P_{1}
$$

is the element P in P defined by

$$
P A=(1-\lambda) P_{0} A+\lambda P_{1} A, \quad A \in A_{0} \cap \AA_{1}
$$

For $\lambda=0$ we put

$$
P=(1-\lambda) P_{0}+\lambda P_{1}=P_{0},
$$

and for $\lambda=1$

$$
P=(1-\lambda) P_{0}+\lambda P_{1}=P_{1}
$$

Finite convex combinations

$$
\sum_{i=1}^{n} \lambda_{i} P_{i}
$$

where P_{1}, \ldots, P_{n} belong to P and $\lambda_{i} \geqq 0, \sum_{i=1}^{n} \lambda_{i}=1$ are defined by induction in n.

The concepts: convex subset of P, quasi-convex, monotone etc. functions on subsets of P are now well defined, even if we shall not have occasion to consider \mathfrak{P} as a subset of a linear space.

E is a convex set, and

$$
\text { co } \frac{1}{I}=\operatorname{co} E=\hat{F},
$$

where co stands for convex hull.

If a set $K \subset\left\{\right.$ with P_{0} and P_{1} contains

$$
(1-r) P_{0}+r P_{1}
$$

for all rational r in $[0,1], K$ is said to be rationally convex. The rationally convex hull of a set \bar{K} is denoted rco Ḱ. We have

$$
\text { rco } \hat{I}=E .
$$

Example. The quantiles. Let f be an \AA-measurable numerical function. For $P \in P^{\prime}$ let $m_{0} P$ denote the smallest p-quantile of f with respect to P, $p \in[0,1]$. m_{0} is defined by $m_{0} P \in c 1 f(X)(c 1=c 1 o s u r e)$

$$
\begin{aligned}
& P\{f \leqq a\}<p \text { for } a<m_{0} P \\
& P\{f \leqq a\} \geqq p \text { for } a \geqq m_{0} P .
\end{aligned}
$$

m_{0} is monotone on Ṕ. Let namely $P_{0} \in P, P_{1} \in$ P, $\lambda \in[0,1]$, and put $p=(1-\lambda) P_{0}+\lambda P_{1}$. For every $a<\min \left(m_{0} P_{0}, m_{0} P_{1}\right)$ is

$$
P\{f \leqq a\}=(1-\lambda) P_{0}\{f \leqq a\}+\lambda P_{1}\{f \leqq a\}<p
$$

It follows that $m_{0} P>a$, and consequently $m_{0} P \geqq \min \left(m_{0} P_{0}, m_{0} P_{1}\right)$.
For $b=\max \left(m_{0} P_{0}, m_{0} P_{1}\right)$ is in the same way $P\{f \leqq b\} \geqq p$, and so $m_{0} P \leqq b$. The largest p-quantile $m_{1} P$, defined by $m_{1} P \in c 1 f(X), P\{f<a\} \leqq p$ for $a \leqq m_{1} P, P\{f<a\}>p$ for $a>m_{1} P$, is also a mean-value on P.

Later we shall discuss the possibility of extending sample mean-values to mean-values on probability measures.

From the statistical point of view this is an investigation into the possibility of using Fisher's first definition of a consistent estimator. According to this definition an estimator is consistent for some parameter if it is the "same" function of the sample as the parameter is of the population.
2. Simple convergence of probability measures.

In the sequel we shall consider P as a topological space provided with the simple topology, i.e. the topology, for which the convex sets

$$
\hat{N}^{N}(P)=\left\{Q \in P| | Q A_{j}-P A_{j} \mid<\varepsilon_{j}, j=1, \ldots, k\right\}
$$

$A_{1}, \ldots, A_{k} \in A ́, \varepsilon_{1}, \ldots, \varepsilon_{k}>0, k=1,2, \ldots$, form a neighbourhoodbasis of open sets for $P \in P$.

A generalized sequence in P^{\prime} converges to $P \in$ P if and only if the values on every set $A \in \AA$ converge to $P A$.

The limit is, therefore, only identified by its values on \AA which shows that P in general is not a Hausdorff space.

For $B \in \AA, P \in \hat{P}, B>0$, the symbol P^{B} denotes the element in P defined by

$$
P^{B} A=\frac{P(B \cap A)}{P B}, \quad A \in \AA
$$

the conditional distribution given B corresponding $t_{B_{1}} P$. Note that if $B_{k} \in A, k=1,2, \ldots, B_{k} \rightarrow F, k \rightarrow \infty, P B>0$, then $P^{B_{k}}$ is defined from some number on and

$$
P^{B_{k}} \rightarrow P^{B}
$$

for $k \rightarrow \infty$. $(1-\lambda) P_{0}+\lambda P_{1}$ is a continuous function of $\left(P_{0}, P_{1}, \lambda\right)$, which shows that

$$
\mathrm{cl} \mathrm{rco} \widehat{K}=\mathrm{c} 1 \text { co } \widehat{K}
$$

for all $\mathrm{K} \subset$ р.
Theorem 2. É is dense in 5 .

Proof. We must prove that each $K(P)$ contains an element of E. Since E is the set of all convex combinations with rational coefficient of elements in $1, E^{\prime}$ is dense in F, and it is sufficient to prove that N(P) contains an element of F. If

$$
C=\left\{C \mid C=D_{1} \cap \ldots \cap D_{k}, D_{j}=A_{j} \text { or } A_{j}^{c}, j=1, \ldots, k\right\}
$$

then

$$
X=U_{C \in C}, \quad C, \quad C \subset
$$

Choose in each of the finitely many C's a point x_{C} (if C is empty choose any point in X) and form

$$
F=\sum_{C \in C} P C I_{x_{C}}
$$

Then $F \in \mathcal{F}$ and $F A_{j}=P A_{j}, j=1, \ldots, k$.
We note that in general one needs generalized sequences to reach from E to an element in P, because countable sequences in Éan only create atomic measures with finitely or countably many atoms.

It follows from theorem 2 that $c 1$ co $\mathbb{I}=c 1$ co $E=c 1 E=c 1 \hat{F}=\widehat{P}$.
3. Extension of mean-values from E to P.

Theorem 2 suggests the possibility of making this extension by continuity. Consider again the two extreme p-quantiles, but now for $p \in] 0,1[$ only. The continuity properties of m_{0} and m_{1} are expressed in the equations

$$
m_{1} P=\lim _{P \rightarrow Q \rightarrow P} \sup _{0} m_{0} Q, \quad P \in \hat{P}
$$

(1)

For the definition and simple properties of limit superior and limit inferior, see Bourbaki [1960] .

We prove the second equation. First m_{0} is lower semicontinuous, because the set

$$
\left.\left\{P \mid m_{0} P>a\right\}=\{P \mid P f \leqq a\}<p\right\}
$$

is an open set. Since $\mathrm{m}_{0} \leqq \mathrm{~m}_{1}$ we have

$$
\mathrm{m}_{0} \mathrm{P} \leqq \lim \text { inf } \mathrm{m}_{0} \mathrm{Q} \leqq \lim \text { inf } \mathrm{m}_{1} \mathrm{Q}
$$

If now $m_{0} P=m_{1} P$ the proof is finished.
Assume then $m_{0} P<m_{1} P$. For every $\left.y \in\right]_{0} P, m_{1} P[$ is

$$
P\{f \leqq y\}=p>0
$$

Choose x in $\{\mathrm{f} \leqq \mathrm{y}\}$, and put

$$
Q_{n}=\left(1-\frac{1}{n}\right) P+\frac{1}{n} I_{x}, \quad n=1,2, \ldots .
$$

Since

$$
Q_{n}\{f \leqq y\}=p+\frac{1}{n}(1-p)>p
$$

is $m_{1} Q_{n} \leqq y$. But $Q_{n} \rightarrow$ for $n \rightarrow \infty$ so

$$
\lim \inf \mathrm{m}_{1} \mathrm{Q} \leqq \mathrm{y},
$$

and consequent $1 y$

$$
\lim \inf \mathrm{m}_{1} \mathrm{Q} \leqq \mathrm{~m}_{0} \mathrm{P}
$$

Q.E.D.

From (1) follows that m_{0} is lower and m_{1} is upper semicontinuous, and that m_{0} and m_{1} are continuous in P if and only if the p -quantile for f with respect to P is unique.

Let now m be any mean-value on ℓ. The example leads to consideration of lower and upper semicontinuous regularizations m_{0} and m_{1} of m :

$$
\begin{aligned}
& m_{0} P=\underset{E \exists E \rightarrow P}{\lim \inf } \mathrm{mE}, \quad P \in P, \\
& m_{1} P=\lim _{E \sup } \lim _{\mathrm{E}} \mathrm{mE}, \quad P \in P .
\end{aligned}
$$

If m_{0} and m_{1} take the same value in a point $E \in E$ then $m E=m_{0} E=m_{1} E$. The following theorem is of basic importance.

Theorem 3. Let f be a quasi-convex function on $\begin{aligned} & \text { E. The lower semi-continuous }\end{aligned}$ regularization f_{0} of f is a quasi-convex function on $\mathbf{P}^{\text {. }}$

Proof. It is clear that

$$
\left\{f_{0} \leqq a\right\}=\cap \operatorname{cl}\{P \in E \mid f(P) \leqq b\}
$$

for all a $\in R^{\prime}$. Since the sets

$$
\{P \in E \mid f(P) \leqq b\}
$$

are rationally convex for $a l l b \in R^{\prime}$ their closures are convex. Hence $\left\{\mathrm{f}_{0} \leqq a\right\}$ is convex, i.e. f_{0} is quasi-convex.

The similar theorem for the upper semi-continuous regularization of a quasi-convex function is not true in general. It is here necessary to introduce a stronger topology on P. This is defined as the simpel topology by considering the unit interval [0,1] as]0,1[in the ordinary topology plus two isolated points 0 and 1.
4. The expectation.

Let f be a numerical function on X which does assume at most one of the values $-\infty$ and $+\infty$. The average of f is the mean-value.

$$
m\left(x_{1}, \ldots, x_{n}\right)=\frac{f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)}{n},\left(x_{1}, \ldots, x_{n}\right) \in x^{*}
$$

The corresponding monotone function on E is denoted af and is defined by

$$
(a f)(E)=\sum_{x \in X} f(x) E\{x\}, E \in E .
$$

The following theorems describe the behavious of the lower and upper semi-continuous regularizations of af, denoted by $\int_{0} f(x) P(d x)$ and $\int f(x) P(d x)$, respectively.

Theorem 4a. If f is unbounded from below and does not assume the value $+\infty$ then $\int_{0} f(x) p(d x)=-\infty$.

Proof. Let K be any neighbourhood of P and pick $E \in \mathbb{N} \cap$ E. Take x_{1}, x_{2}, \ldots to be a sequence of elements in X for which $f\left(x_{n}\right) \leqq-n^{2}$ for all n . If

$$
Q_{n}=\frac{n-1}{n} E+\frac{1}{n} I_{x},
$$

then $Q_{n} \in E \cap N^{\prime}$ for all sufficiently large n. Now

$$
\text { (af) }\left(Q_{n}\right)=\frac{n-1}{n}(a f)(E)+\frac{1}{n} f\left(x_{n}\right) \leqq \frac{n-1}{n}(a f)(E)-n,
$$

which tends to $-\infty$ for $n \rightarrow \infty$.
Theorem 4b. If f is a finite simple function given by $f(x)=\sum_{j=1}^{k} a_{j} I A_{j}$, $x \in X, A_{j} \in A, j=1, \ldots, k$, then

$$
\int_{0} f(x) P(d x)=\int_{1} f(x) P(d x)=\sum_{j=1}^{k} a_{j} P A_{j} .
$$

The theorem is proved by taking limits in the evident equation

$$
(a f)(E)=\sum_{j=1}^{k} a_{j} E A_{j}, E \in E
$$

Theorem 4c. If f is bounded and A-measurable then $\int_{0} f(x) P(d x)=\int_{1} f(x) P(d x)$.
Proof. Let b_{0} be a lower and b_{1} an upper bound for f and define

$$
\begin{aligned}
A_{k j} & =\left\{b_{0}+\left(b_{1}-b_{0}\right) \frac{j}{k}<f \leqq b_{0}+\left(b_{1}-b_{0}\right) \frac{j+1}{k}\right\}, k=1,2, \ldots, j=0,1, \ldots k-1, \\
g_{k} & =\sum_{j=0}^{k-1}\left(b_{0}+\left(b_{1}-b_{0}\right) \frac{j}{k}\right) I_{x} A_{k j}+b_{0} I\left\{f=b_{0}\right\}, \\
h_{k} & =\sum_{j=0}^{k-1}\left(b_{0}+\left(b_{1}-b_{0}\right) \frac{j+1}{k}\right) I_{x} A_{k j}+b_{0} I\left\{f=b_{0}\right\} .
\end{aligned}
$$

Then g_{k} and h_{k} are finite simple functions and $a_{k} \leqq f \leqq h_{k}$. Therefore $a g_{k}(E) \leqq a f(E) \leqq a h_{k} E$ and so

$$
\int_{0} g_{k}(x) P(d x) \leqq \int_{0} f(x) P(d x) \leqq \int_{0} h_{k}(x) P(d x)
$$

for $a 11 \mathrm{P} \in$ P. According to theorem 4 b

$$
\int_{0} h_{k}(x) P(d x)-\int_{0} g_{k}(x) P(d x)=\sum_{j=0}^{k-1}\left(b_{1}-b_{0}\right) \frac{1}{k} P A_{k j} \leqq \frac{b_{1}-b_{0}}{k} .
$$

It follows that

$$
\int_{0} f(x) P(d x)=\inf _{k} \int_{0} h_{k}(x) P(d x)
$$

for all $P \in P$, which shows that $\int f(x) P(d x)$ as a function of P is the lower bound of a family of continuous functions and therefore itself upper semicontinuous.

Theorem $4 d$. If f_{1}, f_{2}, \ldots is an increasing sequence of measurable functions, bounded from below and tending to f, then $\int_{0} f_{k}(x) P(d x) \uparrow \int_{0} f(x) P(d x)$ for $k \rightarrow \infty$.

Proof. Since $\left(a f_{k}\right)(E) \uparrow(a f)(E)$ for $a l l E \in \mathbb{E}$, the sequence $\int_{0} f_{k}(x) P(d x)$ is increasing and

$$
\lim _{k \rightarrow \infty} \int_{0} f_{k}(x) P(d x) \leqq \int_{0} f(x) P(d x) .
$$

To prove the opposite inequality let b be a constant lower bound for f_{1}, and put $B=\{f<+\infty\}$. First consider the case $P B=1$. Let ε be a positive number and define $\mathrm{B}_{\mathrm{k}}=\left\{\mathrm{f}_{\mathrm{k}}>\mathrm{f}-\varepsilon\right\}$. Then $\mathrm{B}_{\mathrm{k}} \uparrow \mathrm{B}$ for $\mathrm{k} \rightarrow \infty$, and for $E \in E$

$$
\left(a f_{k}\right)(E) \geqq a\left((f-\varepsilon) I B_{k}\right)(E)+b E B_{k}^{c},
$$

and so for $E B_{k}>0$

$$
\left(a f_{k}\right)(E) \geqq E B_{k}(a f)\left(E{ }^{B}\right)-\varepsilon E B_{k}+b E B_{k}^{c}
$$

By taking lower limits for $E \rightarrow P$ it follows that

$$
\int_{0} f_{k}(x) P(d x) \geqq P B_{k_{0}} f(x) P^{B_{k}}(d x)-\varepsilon P B_{k}+b P B_{k}^{c},
$$

because (af) ($E^{B} k$) is bounded from below and $E^{B}{ }^{B} \rightarrow P^{B} k$. By computing lower limits for $k \rightarrow \infty$ and observing that

$$
\int_{0} \mathrm{f}(\mathrm{x}) \mathrm{P}^{\mathrm{B}_{\mathrm{k}}}(\mathrm{dx})
$$

is bounded from below and $P^{B}{ }^{B} \rightarrow P^{B}=P$, it is proved that

$$
\lim _{k \rightarrow \infty} \int_{0} f_{k}(x) P(d x) \geqq \int_{0} f(x) P(d x)-\varepsilon
$$

This holds for all $\varepsilon>0$ and so

$$
\lim _{k \rightarrow \infty} \int_{0} f_{k}(x) P(d x) \geqq \int_{0} f(x) P(d x)
$$

Next consider the case $P B<1$. Let K be a finite number and define $C_{k}=\left\{f_{k}>K\right\} \cap B^{c}$. Then $C_{k} \uparrow B^{c}$ for $k \rightarrow \infty$, and from the inequality

$$
\left(\mathrm{af}_{\mathrm{k}}\right)(\mathrm{E}) \geqq \mathrm{KEC}_{\mathrm{k}}+\mathrm{bEC}_{\mathrm{k}}^{\mathrm{c}}
$$

it follows that

$$
\int_{0} f_{k}(x) P(d x) \geqq K P C_{k}+b P C_{k}^{c}
$$

which for $k \rightarrow \infty$ yields

$$
\lim _{k \rightarrow \infty} \int_{0} f_{k}(x) P(d x) \geqq K P B^{c}+b P B
$$

Since this is true for all K it follows that

$$
\lim _{k \rightarrow \infty} f_{k}(x) P(d x)=+\infty
$$

Theorem 4c justifies the following definition for f A-measurable:

$$
\int f(x) P(d x)= \begin{cases}\int_{0} f(x) P(d x) & \text { for } f \text { bounded from below } \\ \int_{1} f(x) P(d x) & \text { for } f \text { bounded from above }\end{cases}
$$

and theorem 4 b and 4 d show that the definition gives the ordinary Lebesgue integral.

The definition of the integral can be extended by the usual trick to functions that are neither bounded from below nor from above, but we shall not consider such integrals.

5. Complete mean-values.

Let (Y, 反, L) be a probability space, and let to each y $\in Y$ correspond an element P_{y} of $P^{\text {s }}$ such that $P . A, A \in A$, is a B-measurable function. It follows from theorem 4 that $Q=\int P_{y} L(d y)$ is in $P^{\text {P }}$

A numerical function on \mathcal{P} is a complete mean-value on ${ }^{\text {P }}$ if $\mathrm{mP} y \leqq a$ for all y $\in \mathrm{Y}$ implies $\mathrm{mQ} \leqq \mathrm{a}$, and $\mathrm{mP} \mathrm{y} \geqq$ a for all y $\in \mathrm{Y}$ implies $\mathrm{mQ} \geqq$ a for $a \in R$.

A complete mean-value on P is a mean-value on P.
Theorem 5. A continuous mean-value on P^{\prime} is a complete mean-value.

If f is an Ámeasurable numerical function bounded from below then $\int f(x) P(d x)$ is a complete mean-value on P.

Proof. The first statement is an immediate consequence of lemma 4 and the second statement follows from lemma 3 below.

Lemma 1. If f is a bounded A-measurable function and $a \in R$ then $\int a f(x) P(d x)=a \int f(x) P(d x)$.

1. Conditional mean-values.

Let (Y, B,L) be a probability space, and let there to every $B \in B$ with $L B>0$ correspond an element P^{B} of P such that $P^{B}=P^{B^{\prime}}$ if B and B^{\prime} differ by an $L-n u l l$ set, and if $B=U B$ is a countable disjoint union then $P B$ is a countable convex combination of $P^{B} 1, P^{B} 2, \ldots$. We shall call such a mapping a decomposition of $\mathrm{P}=\mathrm{P}^{\mathrm{Y}}$.

Example 1. If to every $y \in Y$ there corresponds an element P_{y} in P such that P.A, $A \in A$, is a B-measurable then the mapping

$$
Q^{B}=\frac{1}{L B} \int_{B} P_{y} L(d y), B \in \widehat{B}, L B>0,
$$

is a decomposition of $Q=Q^{Y}$. If a decomposition can be defined in this way it is regular.

Example 2. Let B́ be a σ-algebra contained in Á, and let $P \in$ P. The mapping from \bar{B} into \hat{P} defined by

$$
P^{B} A=\frac{P(B \cap A)}{P B} \quad, A \in A
$$

$B \in B, P B>0$ is a decomposition of P.
If there exists a regular conditional probability given \widehat{B} then this decomposition is regular.

Theorem 6. Let P be decomposed as described above. Then to every complete mean-value m there exists a B-measurable function f such that for every $a \in R$

$$
\begin{aligned}
& \mathrm{mP}^{B} \geqq a \text { for } B \in B, L B>0, B \subset\{f \geqq a\} \\
& \mathrm{mP}^{B} \leqq a \text { for } B \in B, L B>0 \quad B \subset\{f \leqq a\}
\end{aligned}
$$

A function like f is called the conditional m-mean-value given the decomposition.
It is determined up to an L-equivalence.

If the decomposition is regular and $m P_{y}$ is B-measurable $f(y)=m P$ for L-almost all y $\in \mathrm{Y}$.

We begin the proof of theorem 6 with a
Lemma (Decomposition). Let m be a complete mean-value on \AA. To all real a there exists a set $B \in B$ such that $m P^{F} \leqq$ a for $F \subset B, F \in B, L F>0$, and $\mathrm{mP}^{\mathrm{F}} \geqq$ a for $\mathrm{F} \subset \mathrm{B}^{\mathrm{C}}, \mathrm{F} \in \mathrm{B}, \mathrm{LF}>0$.

Proof. A K-measurable set A shall be called negative if $\mathrm{mP}^{\mathrm{F}} \leqq$ a for $\mathrm{F} \subset \mathrm{A}, \mathrm{F} \in \mathrm{A}, \mathrm{PF}>0$.

The empty set is negative, and the difference between two negative sets is negative, because $F \subset A_{1} U A_{2}^{C}$ implies $F \subset A_{1}$. The union of a sequence of pairwise disjoint negative sets is again negative. If namely A_{1}, A_{2}, \ldots is such a sequence with union A then for $F \subset A, F \in \mathbb{A}, P F>0$

$$
P^{F}=\sum_{i=1}^{\infty} \frac{P\left(F \cap A_{i}\right)}{P F} P^{F \cap A_{i}}
$$

where the summation is extended over all i such that $P\left(F \cap A_{i}\right)>0$, but
$\mathrm{mP}^{\mathrm{F}} \mathrm{i} \leqq \mathrm{a}$ for all i and so $\mathrm{mP}^{\mathrm{F}} \leqq \mathrm{a}$.

It follows that countable unions of netative sets are negative.

Let β denote the supremum of $P A$ over all negative sets A, and let B_{1}, B_{2}, \ldots be a sequence of negative sets such that $\mathrm{PB}_{\mathrm{n}} \rightarrow \beta$. If

$$
B=\bigcup_{n=1}^{\infty} B_{n}
$$

then $P B=\beta$ and B is negative. We shall show that B also satisfies the second condition in the lemma.

Assume that on the contrary there exists a measurable set $E_{0} \subset B^{C}$ such that $\mathrm{PE}_{0}>0$ and $\mathrm{mP}^{\mathrm{E}} 0<\mathrm{a}$. E_{0} can not be negative because in that case $E_{0} U B$ is negative, but $P\left(B U E_{0}\right)=P B+P E_{0}>\beta$. Let k_{1} be the smallest positive integer such that there is a measurable $E_{1} \subset \mathrm{E}_{0}$ with $\mathrm{PE}_{1} \geqq \frac{1}{\mathrm{k}_{\mathrm{n}}}$
and $\mathrm{mP}^{\mathrm{E}} 1$ a. $P\left(\mathrm{E}_{0} \cap \mathrm{E}_{1}^{\mathrm{c}}\right)$ cannot be zero since this implies a $>\mathrm{mP}^{\mathrm{E}}{ }_{0}=\mathrm{mP}^{\mathrm{E}} 1>$ a. Therefore $P^{E_{0} \cap E_{1}^{c}}$ is we11-defined, and from min(mP ${ }^{E} 0^{\cap E_{1}^{c}}, \mathrm{mP}^{E^{1}}$) $\leqq m P^{E_{0}}<a$, it follows that $m P{ }^{E_{0} \cap E_{1}^{c}}<a . E_{0} \cap E_{1}^{c}$ is not negative. Let k_{2} be the smallest positive integer for which there exists a measurable $E_{2} \subset E_{0} \cap E_{1}^{c}$ with $\mathrm{PE}_{2} \geqq \frac{1}{\mathrm{k}^{2}}$ and $\mathrm{mP}^{\mathrm{E}}>$ a.

Continuing in this way a sequence E_{1}, E_{2}, \ldots of sets and a sequence k_{1}, k_{2}, \ldots of positive integers are found. Put

$$
E={\underset{n=1}{\infty} E_{n} ~}^{\infty}
$$

Then

$$
P E_{0} \geqq P E=\sum_{n=1}^{\infty} P E_{n} \geqq \sum_{n=1}^{\infty} \frac{1}{k_{n}}
$$

and so $k_{n} \rightarrow \infty$ for $n \rightarrow \infty$. Define $F_{0}=E_{0} \cap E^{c}$. $P F_{0}$ cannot be zero bec ause then $a>m P^{E_{0}}=m P^{E} \geqq a$. If $F \subset F_{0}, F \in A$, $P F>0$, and $m P^{F}>a$, then $\mathrm{PF}<\frac{1}{\mathrm{k}-1}$ for all n and therefore $\mathrm{PF}=0$. It follows that F_{0} is negative, But then $B U F$ is negative, and $P\left(B U F_{0}\right)>\beta$.

Proof of theorem 6. According to the decomposition lemma there corresponds to every rational r a set B_{r}^{+}and a set B_{r}^{-}such that B_{r}^{+}and B_{r}^{-}are B-measurable, $Y=B_{r}^{+} U B_{r}^{-}, B_{r}{ }_{r} \cap B_{r}^{-}=\varnothing$ and for which

$$
\begin{aligned}
& \mathrm{mP}^{B} \geqq r \text { for } B \in B, L B>0, B \subset B_{r}^{+} \\
& m^{B} \leqq r \text { for } B \in B, L B>0, B \subset B_{r}^{-} .
\end{aligned}
$$

For $y \in U B_{r}^{+}$define $f(y)=\sup _{x \in B_{r}} \quad$ and for $y \in\left(U B_{r}^{+}\right)^{c}=\cap B_{r}^{-}$put $f(y)=-\infty$. For all real a is $\{f>a\}=\underset{r>a}{U} B_{r}^{+}$, so f is a B-measurable function, and $\{f \leqq a\}=\cap B_{r}^{-}$, which shows that for $B \subset\{f \leqq a\}, B \in \widehat{B}$, and $L B>0$, is $m P^{B} \leqq r$ for all rational $r>a$, and therefore $m P^{B} \leqq a$. If $B \subset\{f>a\}$ $B \in B$, and $L B>0$ then $B \subset\{f>b\}$ for $a l 1 \quad b<a$. Put $B=r>b B_{r}$
where $B_{r} \subset B_{r}^{+}$for $a l l r>b$ and the $B_{r}^{\prime} s$ are pairwise disjoint. It follows that $\mathrm{mP}^{B} \geqq \mathrm{~b}$ for $\mathrm{all} \mathrm{b}<\mathrm{a}$ and therefore $\mathrm{mP}^{B} \geqq$ a. This shows that f is a conditional m-meanvalue given the decomposition.

Assume now that g is a B-measurable numerical function such that $L\{f \neq g\}=1$. If $B \in B$ and $L B>0$ then $B \subset\{g \geqq a\}$ implies $\mathrm{mP}^{\mathrm{B}}=\mathrm{mP} \mathrm{P}^{\mathrm{B} \cap\{\mathrm{f} \geqq \mathrm{a}\}} \geqq \mathrm{a}$ and $\mathrm{B} \subset\left\{\mathrm{g} \leqq\right.$ a\}implies $\mathrm{mP}^{\mathrm{B}}=\mathrm{mP}^{\mathrm{B} \cap\{\mathrm{f} \leqq \mathrm{a}\}} \leqq$ a and so g is also a conditional mean-value.

Next, let f and g be two conditional mean-values. Then $\{f<g\}$ $=U(\{f \leqq a\} \cap\{g \geqq b\})$ where the union is taken over all rational a and b such that $a<b$. If $P(\{f \leqq a\} \cap\{g \geqq b\})>0$ then $a \geqq m P(\{f \leqq a\} \cap\{g>b\}) \geqq b$ which is impossible. Therefore $P\{f<g\}=0$.

The last statement of the theorem follows immediately from the definitions.

2. Limit Theorems.

Let $P \in$ fe decomposed as described in 1 .

Definition. Let Ć be a σ-algebra contained in A. A mean-value m on $\mathbf{P}^{\text {P }}$ is said to have the monotone convergence property with respect to the decomposition restricted to C if for $\mathrm{n}=1,2, \ldots$

$$
\begin{aligned}
& B_{n} \in \mathcal{B}, L B_{n}>0, L C>0 \\
& B_{n} \uparrow C \in C \text { or } B_{n}+C \in C
\end{aligned}
$$

implies $\mathrm{mP}^{\mathrm{B}} \mathrm{n} \rightarrow \mathrm{mP}^{\mathrm{C}}$.
If $P^{B}{ }^{n} \rightarrow P^{C}$, and m is continuous in all $P^{C}, C \in C$, then it has this property. For integrals it is implied by theorem 4 d .

Theorem 7 (Martingale). Let C_{1}, C_{2}, \ldots be an increasing sequence of σ-algebras contained in B, and let C be the smallest σ-algebra over their union. Let m be a complete mean-value with the monotone convergence
property with respect to the decomposition determined by C. If f, f_{1}, f_{2}, \ldots are conditional m-mean-values of P with respect to the decomposition determined by C, C_{1}, C_{2}, \ldots. then $f_{n} \rightarrow f$ for $n \rightarrow \infty$ L-almost surely.

Proof (Comp. Andersen and Jessen [1948]). The functions $\underline{f}=1 \operatorname{iminf} f_{n}$ and $\bar{f}=1 i m s u p f_{n}$ are C-measurable, since

$$
\begin{aligned}
& \{\underline{f}>a\}=\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty}\left\{f_{n}>a\right\} \\
& \{\bar{f}<a\}=\bigcup_{k=1}^{\cup} \cap_{n=k}\left\{f_{n}<a\right\}
\end{aligned}
$$

for all real a.
Now assume $a<+\infty$, and let $C \in U C_{n}, C \subseteq\{\underline{f} \leqq a\}=H$, and LC >0. Put

$$
H_{n}=\left\{\inf _{p} f_{n+p}<a_{n}\right\}=\bigcup_{p=1}^{\infty}\left\{f_{n+p}<a_{n}\right\}
$$

and

$$
H_{n p}=\left\{\begin{array}{l}
\left\{f_{n+1}<a_{n}\right\} \quad \text { for } p=1 \\
{\underset{n}{n-1}}_{q_{n}}^{\left(\left\{f_{n+q} \geqq a_{n}\right\} \cap\left\{f_{n+p}<a_{n}\right\}\right) \text { for } p>1} .
\end{array}\right.
$$

where $a_{1}>a_{2}>\ldots>a_{n}>\ldots$ is a strictly decreasing sequence with limit a. It is clear that $H_{n p} \in C_{n+p}$, that $H_{n p} \subset\left\{f_{n+p}<a_{n}\right\}$, that for a fixed n all $H_{n p}$ are mutually disjoint, and that $H_{n}=\bigcup_{p=1}^{\infty} H_{n p}$. Further is $H_{1} \supset H_{2} \supset \ldots$ and $H=\bigcap_{n=1}^{\infty} H_{n}$.

There exists an n_{0} such that $C \in C_{n}$ for $n \geqq n_{0}$, and therefore $C \cap H_{n p} \in C_{n+p}$ for $n \geqq n_{0}$ and all p. It follows that

$$
\mathrm{mP}^{\mathrm{C} \cap \mathrm{H}_{\mathrm{np}}} \leqq \mathrm{a}_{\mathrm{n}}
$$

if $\mathrm{L}\left({\mathrm{C} \cap \mathrm{H}_{\mathrm{np}}}\right)>0$, and so $\mathrm{mP}^{\mathrm{C}}=\mathrm{mP}{ }^{\left({\left.\mathrm{C} \cap \mathrm{H}_{\mathrm{n}}\right)}_{\leqq} \mathrm{a}_{\mathrm{n}} \text { for } \mathrm{n} \geqq \mathrm{n}_{0} \text {, which shows that }{ }^{\text {w }} \text {, }\right.}$ $m P^{C} \leqq a$.

Consider next the set C_{0} of all $C \in C$ such that $C \subseteq\{\underline{f} \leqq a\}$ and either $\mathrm{LC}=0$ or $\mathrm{mP}^{\mathrm{C}} \leqq \mathrm{a}$. Because of the monotone convergence property this class
is a monotone class. The preceding argument shows that C_{0} contains the field of all $C \in U C_{n}$ such that $C \subset\{f \leqq a\}$. It follows that C_{0} contains the smallest σ-field containing this field, i.e. the set of all $C \in C$ such that $C \subset\{\underline{f} \leq a\}$. We have thus shown that $C \subset\{\underline{\underline{f}} \leqq a\}, C \in C$, LC >0 implies $\mathrm{mP}^{\mathrm{C}} \leqq$ a.

In a similar way it is proved that $m P^{C} \geqq$ a for $C \subset\{\bar{f} \geqq a\}, C \in C$, and LC >0. It follows that \underline{f} and \bar{f} both are conditional m-mean-values given the decomposition restricted to C C, and therefore $\underline{f}=\bar{f}$ almost surely with respect to L .

Theorem 8 (Reversed martingale). Let $\delta_{1}, \delta_{2}, \ldots$ be a decreasing sequence of σ-algebras contained in \bar{B}, and let \bar{C} be their intersection. Let m be a complete mean-value with the monotone convergence property with respect to the decomposition determined by δ, then $f_{n} \rightarrow f$ for $n \rightarrow \infty$ L-almost surely.

Proof (Comp. Andersen and Jessen [1948]). $\underline{f}=\liminf f_{n}$ and $\bar{f}=\limsup f_{n}$ are clearly C'measurable. Now assume $C \subset\left\{\sup f_{n}>a\right\}, C \in C$, $L C>0$. Put

$$
\begin{gathered}
H_{n}=\left\{\max _{p \leqq n}>a\right\} \\
p \leqq
\end{gathered}
$$

and

$$
H_{n p}=\left\{\begin{array}{l}
\left\{f_{p}>a\right\} \cap_{q=p+1}^{n}\left\{f_{q} \leqq a\right\} \text { for } p<n \\
\left\{f_{n}>a\right\} \text { for } p=n
\end{array}\right.
$$

Then $H_{n p} \subset C_{p}, H_{n p} \subset\left\{f_{p}>a\right\}$ and

$$
H_{n}=U_{p \leqq n} H_{n p} .
$$

It follows that $m P{ }^{C \cap H}{ }_{n} \geqq$ a. Since $H_{n} \uparrow\left\{\sup f_{n}>a\right\}$, the monotone convergence property implies $\mathrm{mP}^{\mathrm{C}} \geqq \mathrm{a}$.

One proves in a similar way that $m P^{C} \leqq$ a for $C \subset\left\{\inf f_{n}<a\right\}, C \in C$, and LC >0. This shows that both \underline{f} and $\overline{\mathrm{f}}$ are conditional mean-values given the decomposition restricted to \mathcal{C} and therefore $\underline{f}=\bar{f}$ a.s. with respect to L .

Theorem 9 (Ergodic theorem). Let T be an invertible K-measurable transformation of X into itself, and let C be the σ-algebra of T-invariant sets. Let m be a complete mean-value on P that has the monotone convergence property with respect to the decomposition determined by C. Let $P \in P$ be T -invariant and put

$$
f_{n}(x)=m\left(\frac{1}{n} \sum_{i=0}^{n-1} I_{T} i_{x}\right), \quad x \in X
$$

If f_{n} is \AA-measurable, and $\underset{n}{ } \operatorname{imsup} f_{n}$ and $\liminf _{n} f_{n}$ are C-measurable then f_{n} for $n \rightarrow \infty$ tends to the conditional m-meanvalue of P given C, almost surely with respect to P^{\prime} s restriction to Ć.

Our proof is a generalization of a proof of the ergodic theorem due to A.N. Kolmogorov, see Khinchine [1949] , p. 19, seq.

We start with some combinatorial lemmas. Let $\ldots, x_{-1}, x_{0}, x_{1}, \ldots$ be a fixed sequence of elements of X and a fixed real number. For integers $j<k$ let $[j, k)$ denote the interval $\left\{j^{\prime} \mid j \leqq j^{\prime}<k\right\}$. An interval $[j, k)$ is proper if $m\left(x_{j}, \ldots, x_{k-1}\right)>a$ and $m\left(x_{j}, \ldots, x_{j}{ }^{\prime}-1\right) \leqq$ for $j<j^{\prime}<k$.

Lemma 1. If two proper intervals overlap each other, then one is contained in the other.

Proof. Let $[j, k)$ and $\left[j_{1}, k_{1}\right.$) be proper intervals such that $j \leqq j_{1}<k \leqq k_{1}$. Since
$m\left(x_{j}, \ldots, x_{j_{1}-1}\right) \leqq a<m\left(x_{j}, \ldots, x_{k-1}\right) \leqq \max \left(m\left(x_{j}, \ldots, x_{j_{1}-1}\right), m\left(x_{j_{1}}, \ldots, x_{k-1}\right)\right)$ it follows that $m\left(x_{j_{1}}, \ldots, x_{k-1}\right)>a$ and therefore $k=\frac{1}{k_{1}}$.

For $n=1,2, \ldots$ an interval $[j, k$) is called n-proper if it is n-proper and $k-j \leq n .[j, k)$ is maximal n-proper if it is n-proper and not contained in a bigger n-proper interval.
Lemma 2. Every n-proper interval is contained in a maximal n-proper interval.

Proof. If two n-proper intervals contain the given one, they overlap and according to lemma 1 one is contained in the other. The set of n-proper intervals containing the given one is finite and so must contain a maximal
element. This interval must be maximal n-proper.

Lemma 3.Two different maximal n-proper intervals are disjoint.

Proof. Lemma 1 shows that if they are not disjoint one must contain the other, which is impossible according to the definition.

Lemma 4. It is necessary and sufficient for

$$
\max _{1<k<n}^{=} m\left(x_{0}, \ldots, x_{k-1}\right)>a
$$

that there exists a maximal n-proper interval containing 0 .

Proof. Necessity: Let k be the smallest integer $\geqq 1$ such that $m\left(x_{0}, \ldots, x_{k-1}\right)$ $>$ a. Then $[0, k)$ is n-proper and therefore according to lemma 2 contained in a maximal n-proper interval. Sufficiency: Let [j,k) be a maximal nproper interval containing 0 . Then $1 \leqq k \leqq n$, and the inequalities $m\left(x_{j}, \ldots, x_{-1}\right) \leqq a<m\left(x_{j}, \ldots, x_{k-1}\right) \leqq \max \left(m\left(x_{j}, \ldots, x_{-1}\right), m\left(x_{0}, \ldots, x_{k}\right)\right)$ show that $m\left(x_{0}, \ldots, x_{k}\right)>a$.

Turning to the proof of the theorem define

$$
E_{x}^{n}=\frac{1}{n} \sum_{k=0}^{n-1} I_{T} k_{x}
$$

for $n=1,2, \ldots, x \in X$, and put $\underline{f}=\liminf f$ and $\bar{f}=1 i m s u p f_{n}$ where $f_{n}=m E^{n}$. It is sufficient to prove that $B \in C, P B>0$, and $B \subset\left\{\sup f_{n}>a\right\}$ implies $\mathrm{mP}^{\mathrm{B}} \geqq a$, because $\left\{\inf \mathrm{f}_{\mathrm{n}}<a\right\}$ can be treated analogously. Let $H_{n}=\left\{\max _{p} f_{p}>a\right\}$ and $F_{j k}=\{[-j,-j+k)$ maximal n-proper f for $k=1, \ldots, n$, $j=0,1, \ldots, k-1$ or $-j \leqq 0<-j+k$. Lemma 3 proves that different $F^{\prime} s$ are disjoint, and lemma 4 that

$$
H_{n}=\bigcup_{k=1}^{n} \bigcup_{j=0}^{k-1} F_{j k}
$$

If A^{n} stands for $T^{-n} A$ for $A \subset X$ it is seen that $F_{j k}^{j}=F_{0 k}$ and therefore $P\left(B \cap F_{j k}\right)=P\left(B \cap F_{0 k}\right) \cdot$ Similarly

$$
P^{F}{ }^{j k}=\frac{P\left(F_{j k} \cap A\right)}{P F_{j k}}=\frac{P\left(F_{0 k} \cap A^{j}\right)}{P F_{0 k}}=P^{F_{0 k}} A^{j}
$$

for $A \in A$ and $P_{j k}>0$ and so
$P^{B \cap H_{n}}=\sum_{k=1}^{n} \sum_{j=0}^{k-1} \frac{P\left(B \cap F_{j k}\right)}{P\left(B \cap H_{n}\right)} P^{B \cap F_{j k}}=\sum_{k=1}^{n} \sum_{j=0}^{k-1} \frac{P\left(B \cap F_{0 k}\right)}{P\left(B \cap H_{n}\right)} P^{B \cap F_{0 k}}{ }^{j}$

$$
=\sum_{k=1}^{n} \frac{k P\left(B \cap F_{0 k}\right)}{P\left(B \cap H_{n}\right)} \frac{1}{k} \sum_{j=0}^{k-1} P^{B \cap F_{0 k} A^{j}}=\sum_{k=1}^{n} \frac{k P\left(B \cap F_{0 k}\right)}{P\left(B \cap H_{n}\right)} \int E_{x}^{k}(A) P^{B \cap F_{0 k}}(d x)
$$

Since $\mathrm{mE}_{\mathrm{x}}^{\mathrm{k}}>$ a for $\mathrm{x} \in \mathrm{BnF}_{0 \mathrm{k}}$ it follows that $\mathrm{mP}{ }^{\mathrm{BnH}} \mathrm{n}^{\text {n }} \geqq$ a which implies $m P^{B} \geqq$ a because $H_{n} \uparrow\left\{\sup f_{n}>a\right\}$.

The ergodic theorem can be used to prove that consistency of estimators in the sense mentioned on p. 25 implies consistency in the usual sense.

References.

J. Aczel [1961]: Vorlesungen über Funktionalgleichungen und ihre Anvendungen. Base1 und Stuttgart 1961.
E.S. Andersen and B. Jessen [1948]: Some limit theorems on set functions, Danske Vid. Selsk. Mat-Fys. Medd. 25 (1948).
N. Bourbaki [1960]: Eléments de mathematique Première partie. Livre III. Topologie générale, Chapitre 4, Troisième édition. Paris 1960.
H.D. Brunk [1961]: A theorem of E. Sparre Andersen and its application to tests against trend, Math. Scand. 8 (1961), 305-326.
B. de Finetti [1931]: Sul concetto di media, Giorn. Inst. Ital. Attuarii 2 (1931), 369-396.
R.A. Fisher [1925]: Theory of statistical estimation, Proc. Cambridge Phil. Soc. 12 (1925), Pt.5, 700-725.
A.I. Khinchin [1949]: Mathematical foundations of statistical mechanics. New York 1949.
A.N. Kolmogorov [1930]: Sur la notion de la moyenne, R.C. Accad.Lincei (6) 12. (1930), 388-391.
M. Nagumo [1930]: Über eine Klasse Mittelwerten, Japanese J. Math. 7 (1930), 520-526.

