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INTRODUCTION 

The computation of averages is a basic tool in statistics, but often the 

statistician uses other methods of forming "mean-values" e.g. by calculating 

transformed averages, medians, midranges, etc. In spite of the central role 

these quantities play in statistical work no attempt has been made to give 

a comprehensive treatment of their mathematical properties. As a result the 

ordinary average or mean-value, generalized to the mathematical expectation, 

dominates the theory in a way that does not look natural from the view

point of the practical statistician. 

Still there does exist a theory of mean-values. The ma~n contributions to 

this theory are papers by Kolmogorov [1930]and Nagumo[1930] • A review 

of the present state of the theory is found in Aczel [1961] The purpose of 

the theory is to show that the ordinary average or simple transforms of it 

are the only functions satisfying axioms of a certain kind, and the effort 

has been concentrated on weakening these assumptions as much as possible. 

Because of the emphasis on the average the theory is only of limited 

interest to the statistician. 

It also seems unnatural to reserve the word mean-value for these functions. 

Intuitively the main quality of a mean-value should be some kind of "inbe

tweenness"-property, but in Kolmogorov's and Nagumo's axioms a rule of 

combination (called associativity by de Finetti) is the fundamental 

assumption. 

In a most inspiring paper de Finetti [1931] tried to broaden the point of 

view, but his intentions have not been followed up by any research. 

What is then a natural concept of a mean-value ? First it ~s a real number 

that can be computed from any finite set of real numbers. Sometimes one 

also requires that the mean of a single number is the number itself. Finally 

the mean-value of the set of numbers must lie inbetween the smallest and 

the biggest number ~n the set, i.e. if xl, ... ,xn ' n = 1,2, ... , are real 

numbers, and m the mean-value then 
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Evidently this property ~s much too weak to give r~se to any interesting 

mathematical theory. 

The following treatment of mean-values will be based on the definition 

k = l, ... ,n. These inequalities state that if two samples of real numbers 

are combined into one sample then the mean-value of the total sample will 

lie between the mean-values of the subsamples. 

If a denotes ordinary average: 

n 

then 

which shows that a satisfies (1). 

The following is a preliminary report on basic properties of mean-values. 

The statistical applications will be treated later. 

Part of the work was carried out during the summer 1962 while the author 

was visiting University of California, Riverside, on a grant from NATO 

Science Fellowship Programme. 

The present paper has appeared ~n two preliminary vers~ons ~n 1963 and 

1964. This final version is identical with the 1964 version except for 

a few necessary changes and the addition of proofs for the theorems in 

sections 11 and Ill. 



I. Sample mean-values. 

1. The definition and simple examples of sample means. 

Let X be an abstract set. The sample space of X 1S the set of all ordered 

finite subsets of X, 1.e. the set 

X* 
00 

U 
k=l 

where xk, k = 1,2, ... , denotes the k'th cartesian power of X. The points 

in X* are samples from X. If 

and 

then x*y*denotes the combined sample 

A sample function on X is a numerical function on X*, i.e. a mapp1ng from 

X* into the extended real line R'. 

A mean-value (mean) on X is a sample function m on X that satisfies the 

conditions 

min(mx*,my*) < mx*y* < max(mx*,my*) 

for all x* E X* and y* E X*. 

It follows from this definition that if x~ E X*, 1 = l, ... ,k, k 
1 

and 

then 

mx* 
1 ~, 

mx* x* ... x.* 
1 2 k 

1,2, ... , 
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Also if f ~s a monotone numerical function on RI then fm ~s a mean-value 

on X. 

If Y c X then the restriction of m to Y* ~s a mean-value on Y. 

Example 1. The average. The ordinary average a ~s a mean-value on RI 

defined by 

x ) when meaningful 
n 

elsewhere, 

x* = (xl, ... ,xn ) E RI*. Instead of 0 one could have used any fixed real 

number. 

Example 2. Max and m~n. The function max defined on RI* by 

max(x*) 

x*= (xl' ... ,xn ) E RI* is clearly a mean-value on RI. Similarly for m~n. 

For x* = (xl, ... ,xn ) E R'* let x(k)' k 

smallest among xl"",xn ' 

1, ... ,n, denote the kith 

Example 3. The medians. The sample functions mO and m1 defined by 
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x* (Xl"" ,xn ) E R'*, are mean-values on R'. [x] 1S the integral part 

of x. 

Since 

m x* o -ml (-x*) , x*E R'*, 

it 1S sufficient to prove that ml 1S a mean-value. 

Put 

and 

To the left of the point m~n(ml~*,mlY*) there are at most 

points of the c.oIIlbined samplex*y*, Le. 

To the left of or 1n the point max(mlx*,mly*) there are at least 

points of the combined sample, 1.e. 

By the ordered sample corresponding to 

1S meant the sample 
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All the mentioned examples of mean-values are symmetric, ~.e. depend 

only on the ordered sample. In a general set a mean-value is symmetric 

if it takes the same value in all samples which are permutations of the 

sample. 

The R'-mean-values 

and 

are not symmetric. 

Example 4. The linear mean-values on R. 

x 
n 

We want to determine all mean-values m on R that are linear ~.e. of the 

form 

a . E R, i 
n~ 

l, ... ,n, n 

The inequalities 

n 
L 

i=l 

1,2, ... 

i-I n-i 
min(ml,O) < m(O,.:.,a,l;O, ..... ,a) < max(ml,O) 

or 

show that if a = all ~s zero then all the coefficients are zero, and 

if a + 0 then all have the same sign. 

For a + 0 the general case ~s reduced to the case a 
-1 

by a Put 

i-2 n-i 
~~ 

x = m(O, ... ,O,l,O, ... ,O) 

1 by multiplication 
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~ 2, •.• ,n, n 2,3,... . The equation 

i-2 n-i 
~~ 

x m(x,O, ... ,O,l,O, ... ,O) 

~s equivalent to 

an- 1 ,i-1 a a . + a . 
n1 n-1,~-1 n~ 

or 

(1) a . 
n~ 

al· l(l-a 1)' i n- ,~- n 
2, •. . ,u. 

Similarly the equation 

i-2 n-~ 
~~ 

x m(O, ... ,0,1,0, ... ,O,x) 

gives 

or 

a . 1 al· l(l-a ), i 
n.~- n- ,~- nn 

2, ... ,no 

For ~ 2 here and ~ n ~n (1) one gets 

a all (l-a 1) nn n- ,n- n 

and 

anI = a 11(l-a) n- , nn 

so that 

(2) a (l-a a ) 
n1 n-1,1 n-1,n-1 a 1 l(l-a 1 1)' n- • n- ,n-

The equation 

m(l,l) = m1 

~s equivalent to 
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In the case a21 > 0 put 

1 
a21 ' b > 0 l+b = 

so that 

It follows by induction from (1) and (2) that 

and for general a: 

a . 
n~ 

a . 
n~ 

i-I 
b 

n-l 
l+b+ ... +b 

i-I 
ab 

n-l 
l+b+ ... +b 

~ l, ... ,n, n 

With these coefficients m satisfies the equality 

1,2, . .. . 

k-l k n-l 
l+b+ ... +b ) b + ... +b m(x +1'" .,xn ), 
---':""=---n--':""l m (xl' ... ,xk + n -1 k 
l+b+ ... +b 1 +b+ ... +b 

which shows that m is a mean. 

o (b + 00) one finds 

a 
nn 

which corresponds to the mean 

0, ~ = l, ... ,n-l, n 

ax 
n 

1,2, .•. , 

Example 5. The quantiles. We want to determine all mean-values on RI of 

the form 

mx* X(r)' x* 
n 
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r 1,2, ... ,n. For a < b, a E R, b E R, consider the number 
n 

s = O,l, •.• ,n, 

s n-s 
~~ 

m(a, ... ,a,b, ... ,b) 

s n =1,2, .... This number depends only on - s~nce 
n 

ks k(n-s) 
,,---A-....~ 

m(a, ... ,a,b, ... ,b) 

s n-s 
~~ 

mea, . .. ,a,b, ... ,b) 

for k = 1,2, ... , because m ~s symmetric. The function g on the rational 

numbers in [0,1] defined by 

s = O, ••• ,n, n 

First 

Next 

or 

s 
g(-) 

n 

s n-s 
~~ 

m(a, ... ,a,b, ... ,b), 

1,2, ... , ~s decreasing. 

min(ma,g(~l» < g(s+l) < max(ma,g(sl» 
n- n n-

ma 
s 

g(-) 
n-1 ' 

s = 0, ... ,n-1, n = 2,3, .... Also 

s s s 
min(mb,g(n_1» < g(~) ~ max(mb,g(n~l» 

or 

This shows that 

g( s+l) < (s 
n g;), 



s = O, ... ,n-l, n 

Now g ~s g~ven by 

or equivalently 
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2,3, ... , which ~s sufficient. 

s g(-) 
n 

g(r) 

= {',b
a 

for s < :n_1 
for s > n 

= n 

Jb r -1 
for r < n 

= n 

I r 

La for r > 
n 

= n 

r E [0,1] , r rational. Neces sary and sufficient for this to define an 

decreasing function of r is that 

(3) 

for s = 1,2, ... , n 

From (3) follows 

1 ,2 , . •• • 

r r -1 
~> n 
s n 

I ~ - rn I < 1. for s > n, 
s n = n 

r 
so that n for n + 00 has a limit p E [0,1]. 

n 

From (3) one gets 

(4) 
r -1 

n 
n 

r 
< P < ...E:. = n 

by letting s + 00 for fixed n and vice versa. 

(4) can be written 

np ~ rn ~ np + 1, n 1 ,2 , . .. . 
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For p irrational r [np] + 1, n = 1,2, ... n 

For p 0 r 
n 

1, n 1,2, ... 

For p 1 r 
n 

n, n 1,2, ... 

For p E ]0,1[, p rational, there are two solutions 

rn {np for [np] = np 

[np] + 1 for [np] < np 

and 

r = [np]+ 1, 
n 

Slnce r sp and r np + 1 gives 
s n 

r r - 1 
s n = s n 

in contradiction with (3). That all these sample functions are mean-values 

1S proved as for the medians. 

2. Construction of mean-values by minimalization. 

Let f be a numerical function on a subset A of a linear space. f 1S said 
, 

to be quasi-convex on A if 

for Xo E A, xl E ~ (l-A)xO + AXl E A, A E [0,1]. f 1S quasi-concave 

on A if under the same conditions 

If f 1S both quasi-convex and quasi-concave on A, it 1S monotone on A. 

A numerical function defined on a convex subset A of a linear space 1S 

quasi-convex if and only if the set of all x E A for which 

f(x) ~ T 

1S convex for all T E RI. 
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Theorem 1. Let F be an arbitrary family of quasi-convex functions defined 

on the convex subset A of a linear space. Then the supremum 

lS quasi-convex. 

Proof. For T E R' lS 

g(x) = sup f(x), 
f E F 

(= {xlg(x) < T} n {xlf(x) < T} 
f E F 

which shows that B is convex. 

A numerical function on a convex subset A of a linear space lS convex if 

for all Xo E A, xl E iC, A E]O,l[; such that the right hand side lS defined. 

f is concave if - f lS convex. If f is both convex and concave it lS 

affine. 

A convex function lS quasi-convex. 

Let now f be a quasi-convex function on an interval J c R. 

A point eEJ lS a point of decrease for f if fee') ~ fee) for all e' ~ e , 

which belongs to J. J's left hand endpoint is a point of decrease if it 

belongs to J. 

Let e be a point of decrease for f and let el < e be a point In J. If 

e' < el is a point in J, then 

feel) ; max(f(e'),f(e» 

implies feel) < feel), i.e. el lS a point of decrease for f. 

Hence the set Sf of all points of decrease for f is an interval with the 

same left hand endpoint as J. Sf is possibly empty. 
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A point e E J is a point of increase for f if f(8') ~ f(8) for all 

8' ~ 8, which belong to J. J's right hand endpoint is a point of increase 

if it belongs to J. Analogously to the argument above it is proved that 

the set Df is empty or an interval with same right hand endpoint as J. 

We have that 

(2) 

for if 8 E J ,(Sf U Df ) there exist points 8' and e" In J such that 

8' < 8< 8", f(8') < f(8),f(8") < f(8) 

which lS In contradiction with (1). 

Now define 

mOf is J's right hand endpoint when Df is empty, and mlf lS J's left 

hand endpoint if Sf is empty. 

If mOf and mlf are equal we denote their common value by mf. 

The set Sf n Df is a (possibly empty) interval with endpoints mOf and 

mlf. It consists of all points in which f assumes its minimum value. 

f lS decreasing on Sf and increasing on Df . It is therefore immediate that 

a necessary and sufficient condition for a numerical function f on an inter

val J c R to be quasi-convex is that J lS the union of two disjoint 

(possibly empty) intervals such that f is decreasing on the left interval 

and increasing on the right. 

A family F of numerical functions on an interval J c R is said to be 

quasi-convex under addition if for all (fl, ... ,fn ) E F* the function 
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~s defined, quasi-convex, and not identically equal to +00 . 

A family of finite convex functions on J has this property. 

Theorem 2. Let to every x E X correspond a numerical function f on the 
x 

interval J c R such that the family {f } ~s quasi-convex under addition. 
x 

The sample functions 

* m (f + ... +f ), ml(f + ... +f ), (xl' ... ,xn ) EX, 
o xl xn xl xn 

are then symmetric mean-values on X. 

Proof. Let go and gl be quasi-convex functions on J such that g = gO+ gl 

is defined and quasi-convex on J. It is assumed that neither gO,gl' nor 

g are identically equal to + 00 . 

Let 

If 8 ' E J and 8' < 8 then 

By addition one gets 

~.e. 8 belongs to S , so 
g 

(3) 

Let now 

gl (8') > gl (8) . 

g(8'»g(8), 

S cS. 
gl g 

8 E (J" S ) n (J" S ) • 
go gl 

There exist points 8' and 8" ~n J such that 

(4) 

(5) 

8' < 8 , 

8" < 8 • 
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Assume e' ~ e", From the inequality gl (e');; max(gl (e"), gl (e» and (5) 

it follows that 

(6 ) 

If gl (e) is finite, addition of (4) and (6) glves gee') < gee), the 

condi tion for e to belong to J....... S . 
g 

Since e E J ....... S ,it is impossible that gl (e) = - 00. 

gl 

If gl (e) = + 00 , then gl (e l ) 

follows that 

+00 

slnce e EDIt 
gl 

for all el ~ e . g lS not identically equal to + 00. There must therefore 

exist a point e2 E J, such that g(e 2 ) < gee), e2 < e, i.e. e E J ....... Sg' 

We have thus shown that 

J ....... S C (J ....... S ) n (J ....... S ) 
g go gl 

or 

(7) 

It follows from (3) and (7) that min(mlgO,mlgl) ;; mlg ;; max(mlgO,mlgl)' 

Similarly one finds that min(mogO,mOgl) ~ mog ~ max(mogO,mOgl)' 

The theorem is proved by applying these results to the functions 

go= fXl+···+f~. gl = f~+l+"'+ f xn ' 

Example 6. The average a on R is the m-function of the family of finite 

convex functions on R defined by 

2 f (e) = (x-e) , x E R, e E R. 
x 

Example 7. The smallest and the largest p-quantile on R, p£ J 0, l[ 

respectively, are mO- and ml-functions of the family of finite convex 

functions on R defined by 
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x ~ 8 

f (8) 
x 

x > 8, 

x E R, 8 E R. 

max is the m-function of the family 

f (a) "f e 

x l+oo 

- x x < 8 

x > 8, 

x E R, 8 E R, and m~n ~s the m-function of the family 

x < 8 

x > 8 • 

Corollary. Let to every x E X correspond a finite numerical function f 
x 

on the interval J c R such that the family {f } is quasi-convex under 
x 

addition. For b E ]0,+ oo[ the function 

2 n-l f + bf + b f + ... +b f 
xl x2 x3 xn 

x* (xl' ... ,xn ) E X*,is quasi-convex on J, and the sample functions 

n-l n-l 
mO(f + ... +b f ), ml(f + ... +b f ) 

xl xn xl xn 

are mean-values on X~ 

Froof. When b is rational i t ~s evident that 

~s quasi-convex and for b irrational it follows by passing to the limit 

through rational values. 
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The second assertion is proved by remarking that if f is a quasi-convex 

function on J then bkf, k = 0,1,2, ... , lS quasi-convex and has the same 

mO- and ml - values as f, and then applying the result from the proof of 

theorem 2 to the functions 

f + bf + ... + bk-lf 
xl x2 ~ 

bk(f + bf + ... + bn-k-1f ) 
~+l ~+2 xn 

g 
n-l 

f + bf + ... +b f = gO+ gl' 
xl x2 xn 

The corollary shows how to construct unsymmetric mean-values. 

Example 8. The R-mean-value 

m(x*) 

n-l x + bx + ... +b x 
1 2 n 

1 + b + ... + b n-l 

x* = (xl, ... ,xn ) E R* , b E ]0,+ =[, is the m-function computed from 

the function 

S E R. 

A numerical function f on an interval J c R lS strictly quasi-convex if 

f((l-A)SO + AS 1 ) < max(f(SO),f(Sl» for all Xo and xl in J, Xo * xl' 

A E ]O,l[ . 

f is strictly quasl-convex if and only if it is quasi-convex and not con

stant on any non-degenerate subinterval of J. 

If f is strictly quasi-convex then mOf = mlf. 

The maxlmum of a finite family of strictly quasi-convex functions lS 

strictly quasi-convex. 
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Theorem 3. Let to every x E X correspond a strictly quas~-convex function 

f defined on the interval J c R. The sample function 
x 

m(max(f , ... ,f )) 
xl xn 

~s then a mean-value on X. 

Proof. Let go and gl be strictly quasi-convex functions on J, and put 

g = max(gO,gl)' g ~s then strictly quasi-convex. 

Let e E S n S If e' E J and e' < e then 
go gl 

gO(e') > gO(e) = 

gl (e') ~ gl (e). 

It follows that g'ee') > gee), i.e.e belongs to S , so 
g 

(7) 

By applying this result to the functions 

we get 

or 

( 8) 

s~nce D 
g 

J ....... S etc. 
g 

gC-e), - e E J, 

From (7) and (8) it follows that min(mgO,mgl ) < mg < max(mgo,mgl ), and 

the theorem is proved by putting 
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go = max(f , ... ,f ), 
xl ~ 

gl = max(f , ... ,f ), 
~+l n 

g max ( f , . . . , f ) . 
xl xn 

Unsymmetric mean-values can be constructed by considering the m-function 

for 

where b E [0,+ 00[. 

n-l 
max(f ,bf , ..• ,b f ), 

xl x2 xn 

3. Miscellaneous remarks. 

Fisher [1925] has noted that if a sample has independent identically 

distributed components, a sample function which is (minimal) sufficient 

for some parameter for all sample sizes has the property that the value 

~n a combined sample is a function of the values in the subsample. It 

~s easy to see that this property implies the associativity assumed in 

Kolmogorbv [1930] and Nagumo [1930] . Further all mean-values have the 

necessary monotonicity such that the Kolmogorov-Nagumo theorem can 

be restated in the following way: 

Under certain (not very strong) regularity conditions a mean-value that 

is sufficient for some parameter in the case of independent identically 

distributed observations xl, ... ,xn ' n = 1,2, ... , has the form 

n 

From this it follows easily that the distribution must be of the Darmois

Koopman type. 

These problems will be treated at a later occasion. 

Spitzer [1956] proved an important combinatorial lemma on sums or ordinary 

averages. The lemma was used to simplify the proofs of certain theorems 

due to Sparre Andersen. 

i_ 
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It is not difficult to see that the lemma is true for all mean-values. 

Brunk [1961] published a proof of this and used it to give an easy 

interpretation of the theorems of Sparre Andersen and to derive some 

tests for trend. 

The following theorem shows that mean-values are "limitierungsprozessen". 

Theorem 2. Let m be a mean-value on X. If for x E X, n = 1,2, ... , 
n 

mx 
n 

has a finite limit for n ~ 00 ,then m(x1 , ... ,xn ) is also convergent 

with a finite limit. 

Proof. Put 1im mx 
n 

·n+oo bounded, s~nce 

inf m~ < Yn < sup mxk 
k k 

1,2, .... {y} is 
n 

for all n. Assume first 1im sup Y = b > a. Let c E ]a,b[ . Then there 
n 

exists an N such that mx < c for n > N. 
n 

To every n > N there corresponds a k > n such that Yk > c. Now 

~.e. Y > c for n > N. 
n 

From 

c < Y 1 < max(y ,mx 1) n+ = n n+ 

it follows that Yn+1 ~ Yn' i.e. the sequence Yn is decreasing for n > N 

therefore has a limit. 

The case 1im inf Y < a is treated similarly. 
n 



11. Extension of mean-values. 

1. Symmetric mean-values and monotone functions. 

Let again X be an abstract set. The system of all subsets of X will be 

denoted by S. The indikatorfunction I is a function on X x S defined by 

I A 
x 

1 if x E A 

ifxEAc , 

x E X, A E 1. For every x E X the restriction I of I is a probability 
x 

measure on S which we shall call the point measure in x. The set of all 

point-measures is called f. 

More general: to every sample x* from X there corresponds a probability 

measure E * on S defined by 
x 

I A 
x. 

l 

x* = (xl, ... ,xn) E X*, A E S. This measure lS the sample distribution 

corresponding to x* or the empirical probability measure. E is the set 

of all such measures. 

If 

then 

n 
n+s 

~ ~ 

s 
Ex* + n+s 

Theorem 1. A sample function is a symmetric mean-value on X if and only 

if it depends on the sample through a monotone function of the sample 

distribution. 

Proof. Let m be a symmetric mean-value on X, and let x* and y* be samples 

from X of size nand s,respective1y, and with a common empirical distribution. 
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Put s 

~ 
z* = x*x* x* 

and 
n 
A. 

/ " w* = y*y* y*. 

Now E * = E * and E *= E *. Therefore the samples z* and w* have the z x w y 
same empirical distributions, and since they are of the same size w* 

~s a permutation of z*. It follows that mx* = mz* = mw* = my*, i.e. 

m depends on the empirical distribution. Put 

Assume 

mx* = m'E *, x* E X* 
x 

Ex* (l-A)E *+ AE * ' v u 

A E [0,1], then A must be rational or Ev* 

q = 1,2, .... The equation 

E *. Put 
u 

E * x 

n 
= q-p 1:. L 

q n i=l 
I 
v. 
~ 

+ 
s 

E 1:. L 
q s j=l 

1 (~(q-P)SI + ~ 
qns i=l vi j =1 

I u. 
J 

pnI ) u. 
J 

shows that E * ~s the empirical distribution of the sample 
x 

(q-p)s pn 
~~ 

w* = v*v* ... v*u*u* ... u* . 

We thus have 

min(mv*,mu*) < mw* < max(mv*,mu*) 

or 

0, ... ,q, 
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The sufficiency follows from the fact that the empirical distribution of 

a combined sample is a convex combination of the empirical distribution 

of the subsamples. 

Theorem 1 was proved in a special case ~n example 5 of chapter I. 

In the following we shall consider symmetric mean-values only, and shall 

therefore omit the adjective symmetric, and use the words mean-value and 

monotone function synonymously. 

A function F on S defined by 

FA 
n 

L 
i=l 

A.I A, 
~ x. 

~ 

A E S, 

n 
(Xl' ... ,xn ) E X*, A. > 0, LA. 1, 

1 = i=l 1 

~s a probability measure on ~. Such a measure ~s called a finite atomic 

probability measure, and f is the set of all these. 

To be able to consider more general probability measures one must restrict 

the domain of definition. Let therefore P(be a sub-cr-algebra of S, ~.e. 
/' 

a cr-field of subsets of X containing X, and let PJC be the set of all 

probability measures on X with domain of definition including A. If 

no confusion is possible we shall write f instead of PA . We have the 

relations 

{ /' ,/ /' 
cEcFcP. 

Two elements ~n P( are equal if they have the same domain of definition 

and coincide there. Let Po E 1 be defined on JCo and PI E ~ on Al' For 

A E ]O,l[ 

~s the element P ~n P defined by 
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PA 

For A o we put 

P 

and for A 1 

P (l-A)PO + HI 

Finite convex combinations 

n 
L 

i=l 
le. p. , 

l l 

where Pl""'Pn belong to P and Ai > 0, 

induction in n. 

n 
L 

i=l 
A. 

l 
1 are defined by 

The concepts: convex subset of P, quasi-convex, monotone etc. functions 

on subsets of i are now well defined, even if we shall not have occasion 

to consider P as a subset of a linear space. 

P is a convex set, and 

'" co ~ F, co I = 

where co stands for convex hull. 

If a set :rZ '" . c P wlth Po and PI contains 

(l-r)PO + rP l 

for all rational r in [O,lJ, R is said to be rationally convex. The 

rationally convex hull of a set { is denoted rco f. We have 

rco f = i. 

Example. The quantiles. Let f be an A-measurable numerical function. 

For pEp let mOP denote the smallest p-quantile of f with respect to 

P, p E[O,lJ . mO is defined by mOP E cl f(X) (cl = closure) 
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P{f < a} < p for a < mOP 

P{f < a} > p for a > mOP' 

mo is monotone on P. Let namely Po E P'P l E P,A E [O,lJ, and put 

p = (l-A)PO + AP l , For every a < min(mOPO,mOPl ) is 

It follows that mOP> a, and consequently mOP > min(mOPO,mOP l ) . 

For b = max(mOPO,mOP l ) l.S l.n the same way P{f < b} ~ p, and so mOP 

The largest p-quantile mlP, defined by ml P E cl f(X), P{f < a} < p 

a < mlP, P{f < a} > p for a > mlP, is also 
./ 

a mean-value on P. 

< b. 

for 

Later we shall discuss the possibility of extending sample mean-values to 

mean-values on probability measures. 

From the statistical point of view this l.S an investigation into the 

possibility of using Fisher's first definition of a consistent estimator. 

According to this definition an estimator is consistent for some parameter 

if it is the "same" function of the sample as the parameter is of the 

population. 

2. Simple convergence of probability measures. 

In the sequel we shall consider P as a topological space provided with 

the simple topology, i.e. the topology, for which the convex sets 

N (P) {Q E P 11 QA . - P A. 1 < S., J 
J J J 

1, ... ,k}, 

Al, ... ,~E A, Cl""'Sk > 0, k 

open sets for P E f. 
1,2, ... , form a neighbourhoodbasis of 
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A generalized sequence in f converges to PEP if and only if the values 

"'" on every set A E A converge to PA. 

The limit is, therefore, only identified by its values on £ which shows 

that f ~n general is not a Hausdorff space. 

For BEt, PEP, B > 0, the symbol pB denotes the element ~n P defined 

by 

P(B n A) 
PB A E £., 

the conditional distribution given B corresponding t~ P. Note that if 

Bk E £, k = 1,2, ... , Bk ~ F, k ~ 00 , PB > 0, then P k is defined from 

some number on and 

for k ~oo. (l-A)PO + APl ~s a continuous function of (PO,Pl,A), which 

shows that 

./ ./ 

cl rco K = cl co K 

for all K c (, 

Theorem 2. E is dense ~n P. 

Proof. We must prove that each R(P) contains an element of E. Since i 
is the set of all convex combinations with rational coefficient of 

elements in f, ( is dense in t, and it is sufficient to prove that 
/ / 
N(P) contains an element of F. If 

c {CIC A. or A~ 
J J 

J 1, ... ,k} 

then 

x U C, 
C E 6 



- 27 -

Choose in each of the finitely many C's a point Xc (if C lS empty choose 

any point in X) and form 

F L PC I 
C E t Xc 

Then F E f and FA. = PA., J 
J J 

1, ... ,k. 

We note that in general one needs generalized sequences to reach from i 
to an element in P, because countable sequences in E can only create 

atomic measures with finitely or countably many atoms. 

It follows from theorem 2 that cl co 1 = cl co E = cl E ./ ..... 
cl F = P. 

3. Extension of mean-values from i to t( 

Theorem 2 suggests the possibility of making this extension by continuity. 

Consider again the two extreme p-quantiles, but now for p E ]O,l[ only. 

The continuity properties of mO and ml are expressed in the equations 

P E 1 

(1) 

pEP. 

For the definition and simple properties of limit superior and limit 

inferior, see Bourbaki [1960] 

We prove the second equation. First mO lS lower semicontinuous, because 

the set 

lS an open set. Since mO < ml we have 
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If now mOP = mlP the proof lS finished. 

P{f < y} p > O. 

Choose x In {f < y}, and put 

Since 

and consequently 

Q.E.D. 

(1- l)p + l I 
n n x' 

n 1,2, . .. . 

Q {f < y} 
n = 

1 
p + -(l-p) > p 

n 

From (1) follows that mO is lower and ml lS upper semicontinuous, and 

that mO and ml are continuous in P if and only if the p-quantile for 

t with respect to P is unique. 

Let now m be any me'an-value on E. The example leads to consideration of 

lower and upper semicontinuous regularizations mO and ml of m: 

m P = o lim inf mE, 
E :3 E ~ P 

lim sup mE, 
E :3 E ~ P 

pEP, 

P E 1. 

If mO and ml take the same value In a point E E € then mE 

The following theorem lS of basic importance. 
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Theorem 3. Let f be a quasi-convex function on E. The lower semi-continuous 

regularization fa of f is a quasi-convex function on P. 

Proof. It ~s clear that 

for all a E R'. Since the sets 

n cl {P E E!f(P) ~ b} 
a < b E R' 

{P E Elf(P) < b} 

are rationally convex for all b E R' their closures are convex. Hence 

{fa < a} is convex, i.e. fa is quasi-convex. 

The similar theorem for the upper semi-continuous regularization of a 

quasi-convex function is not true in general. It is here necessary to 

introduce a stronger topology on P. This is defined as the simpel topology 

by considering the unit interval [0,1] as ]O,l[ in the ordinary topology 

plus two isolated points 0 and 1. 

4. The expectation. 

Let f be a numerical function on X which does assume at most one of the 

values - 00 and + 00 • The average of f is the mean-value. 

The corresponding monotone function on i ~s denoted af and ~s defined by 

(af)(E) ~ f(x)E{x} , E E E. 
x E X 

The following theorems describe the behavious of the lower and upper 

semi-continuous regularizations of af, denoted by f f(x)P(dx) and 

ff(x)P(dx), respectively. 
1 

o 
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Theorem 4a. If f is unbounded from below and does not assume the value 

+ 00 then j f(x)p(dx) = - 00 • 

o 

Proof. Let R be any neighbourhood of P and pick E E N n E. Take 
2 xl ,x2 ' ... to be a sequence 'of elements in X for which f(xn ) < -n 

for all n. If 

I 
+

n 
I , 

x 

then Q E E n N for all sufficiently large n. Now 
n 

n-l 1 n-l (af) (Q ) = -. -(af) (E) + - f(x )< -(af) (E) - n, 
n n n n = n 

which tends to - 00 for n ~ 00 

rheorem 4b. If f is a finite simple function given by f(x) 

xE X, A. EA, j = l, ... ,k, then 
J 

jf(x)P(dx) = jf(x)P(dx) 
o I 

k 
I: a.PA. 

j =1 J J 

The theorem is proved by taking limits in the evident equation 

k 
(af)(E) = I: 

j=l 
a.EA., E E E. 

J J 

k 
I: 

j=l 
a. lA., 

J J 

Theorem 4c. If f LS bounded and A-measurable then jf(x)P(dx) = jf(x)P(dx). 
o 1 

Proof. Let ba be a lower and b l an upper bound for f and define 

~j {bO+ (bl-bo)r < f ~ bO 
- j+q -+ (b l bO) ~j' k-l,2, ... , j= O,l, ... k-l, 

k-l 
(bO+ (b -b ) 1\ gk I: 1 0 k} I 1\. + bO I{f = bO} , 

j=O x J 

k-l 
( j+l) hk I: bO+ (bl-bO) -r- IxAkj + bOI{f bO} . 

j=O 
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Then gk and hk are finite simple functions and ak < f < hk . Therefore 

agk(E) ~ af(E) ~ ahkE and so 

fgk(x)P(dx) ~ ff(x)P(dx) < f hk(x)P(dx) 
000 

for all pEP. According to theorem 4b 

fhk(x)P(dx) - fgk(x)P(dx) 
o 0 

It follows that 

ff(x)P(dx) 
o 

inf fhk(x)P(dx) 
k 0 

for all PEp, which shows that ff(x)P(dx) as a function of P is the lower 
o 

bound of a family of continuous functions and therefore itself upper sem~-

continuous. 

Theorem 4d. If f l ,f2 , ... ~s an increasing sequence of measurable functions, 

bounded from below and tending to f, then ffk(x)P(dx) t ff(x)P(dx) for 
o 0 

k~· 00 

Proof. Since (afk)(E) t (af)(E) for all E E E, the sequence ffk(x)P(dx) 
o 

is increasing and 

lim ffk(x)P(dx) < ff(x)P(dx). 
k~ooO 0 

To prove the opposite inequality let b be a constant lower bound for f l , 

and put B = {f < + 00 }. First consider the case PB = 1. Let e be a positive 

number and define Bk = {fk > f-e} . Then Bkt B for k ~ 00 , and for 
./ 

EE E 

and so for EBk > 0 
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B 
(afk ) (E) ~ EBk (af) (E k) - E EBk + bEB~. 

By taking lower limits for E ~ P it follows that 

B 
ffk(x)P(dx) ~ PBIif(x)P k(dx)-E: PBk + bPB~ 
o 0 

B 
bec,ause (afHE k) is bounded from below and 

Bk Bk 
E ~ P • By computing 

lower limits for k ~ = and observing that 

Bk 
ff(x)P (dx) 
o 

Bk B 
is bounded from below and P ~ P = P, it is proved that 

lim f fk (x)P(dx)~ f f(x)P(dx)- Eo 

k~=O 0 

This holds for all E > 0 and so 

lim f fk(x)P(dx)~ ff(x)P(dx)0 
k~=O - 0 

Next consider the case PB < 1. Let K be a finite number and define 

Ck = {fk > Kl'n BC 0 Then Ck t BC for k ~ = , and from the inequality 

it follows that 

which for k ~ = yields 

lim f fk (x)P (dx) ~ KPB c + bPB 0 
k~ = 0 

since this LS true for all K it follows that 
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lim fk(x)P(dx) 
k~ooO 

+00, 

Theorem 4c justifies the following definition for fA-measurable: 

ff(x)P(dx) 

ff(x)P(dx) for f bounded from below 
o 

ff(x)P(dx) for f bounded from above, 
1 

and theorem 4b and 4d show that the definition gives the ordinary Lebesgue 

integral. 

The definition of the integral can be extended by the usual trick to 

functions that are neither bounded from below nor from above, but we 

shall not consider such integrals. 

5. Complete mean-values. 

Let (Y,B,L) be a probability space, and let to each y E Y correspond an 

element P of P such that P.A,A E A, is a B-measurable function. It 
y 

follows from theorem 4 that Q = fp L(dy) is in P. 
y 

A numerical function on P is a complete mean-value on P if mP < a 
y 

for all y E Y implies mQ < a, and mP > a for all y E Y implies mQ > a 
y = 

for a E R. 

A complete mean-value on P lS a mean-value on P. 

/ 

Theorem 5. A continuous mean-value on P is a complete mean-value. 

If f is an A-measurable numerical function bounded from below then 

ff(x)P(dx) is a complete mean-value on P. 

Proof. The first statement is an immediate consequence of lemma 4 and 

the second statement follows from lemma 3 below. 

Lemma 1. If f is a bounded A-measurable function and a E R then 

faf(x)P(dx) = aff(x)P(dx). 



Ill. Conditional mean-values and limit theorems. 

1. Conditional mean-values. 

Let (Y,B,L) be a probability space, and let there to every B E { with 

LB > 0 correspond an element pB of P such that pB = pB' if Band B' differ 

by an L-nu11 set, and if B = UB. is a countable disjoint union then PB 
1 B B 

1S a countable convex combination of P l,p 2, .... We shall call such a 
Y 

mapping a decomposition of P = P . 

Example 1. If to every y E Y there corresponds an element P 

that P .A, AEA', is a (-measurable then the mapping 

1 
LB 

J P L(dy), B E B, LB > 0, 
B Y 

1n P such 
y 

1S a decomposition of Q = QY. If a decomposition can be defined 1n this 

way it is regular. 

Example 2. Let Bbe a a-algebra contained 1n A, and let PEP. The 

mapping from B into P defined by 

PBA _p(BnA) ~ 
PB ,A E A 

.,,-
B E B, PB > 0 1S a decomposition of P. 

If there exists a regular conditional probability given B then this 

decomposition is regular. 

Theorem 6. Let P be decomposed as described above. Then to every complete 

mean-value m there exists a B-measurab1e function f such that for every 

a E R 

mPB > a for B E B, LB > 0, B~c {f > a} 

B 
mP ~ a for B E B, LB > 0 B c {f ~ a}. 

A function like f is called the conditional m-mean-va1ue given the 

decomposition. 

It is determined up to an L-equiva1ence. 
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If the decomposition is regular and mP ~s i-measurable fey) 
y 

L-almost all y E Y. 

We begin the proof of theorem 6 with a 

Lemma (Decomposition). Let m be a complete mean-value on A. 
a there exists a set B E :If such that mPF < a for F cB, F E 

and mP 
F 

> = 
c 

a for F CB, 
= 

F E :8, LF > 0, 

To 

i, 

mP for 
y 

all real 

LF > 0, 

Proof. A i-measurable set A shall be called negative if mPF < a for 

F c A, F E A, PF > O. 

The empty set is negative, and the difference between two negative sets 
c 

~s negative, because F c AI UA2 implies F c AI' The union of a sequence 

of pairwise disjoint negative sets is again negative. If namely 

Al ,A2 , ••• is such a sequence with union A then for F cA, F E £, PF > 0 

co p(FnA.) 
~ 

i=l PF 
P 

FnA. 
~ 

where the summation ~s extended over all i such that p(FnA.) > 0, but 
FnA. ~ 

mP ~ < a for all i and so mPF < a. 
= 

It follows that countable un~ons of netative sets are negative. 

Let ~ denote the supremum of PA over all negative sets A, and let Bl ,B2 , ... 

be a sequence of negative sets such that PB ~ ~ . If 
n 

B 

co 

U 
n=l 

B 
n 

then PB = ~ and B is negative. We shall show that B also satisfies the 

second condition in the lemma. 

Assume that on the contrary there exists a measurable set EO C BC such 

that PEO > 0 and mPEO < a. EO can not be negative because in that case 

EO U B is negative, but P(BUEO) = PB + PEO > ~ , Let kl be the smallest 

positive integer such that there is a measurable El c EO with PEl ~ ~ . 
n 
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EO E 
zero since this implies a > mP mP 1> a. 

Therefore 
E nEc E 

H well-defined,and from min(mP 01 ,mP 1) < a, 
c 

EOnEl 
it follows that mP < a. EOnE~ is not negative. Let k2 be the smallest 

positive integer for which there exists a measurable E2 C E n EC with 

1 PE > -... -. 
2 = 2 

k 

E 
and mP 2 > 

. 0 1 

a. 

Continuing in this way a sequence El' E2 , ... of sets and a sequence 

k l ,k2 , ... of positive integers are found. Put 

Then 

forn~oo. 

E 

00 

L 
n=l 

00 

U 
n=l 

E 
n 

PE > 
n = 

00 

L 
n=l 

c 

1 
k 

n 

and so k ~ 00 

n 
bee ause then a 

. 1 
> mPEO = mPE > 

Define FO = EOnE. PFO cannot be zero 

a. If F c FO' F E A, PF > 0, and mPF > a, 

then PF< k -1 

negative, Rut 

for all n and therefore PF = O. It follows that FO ~s 

then BUF is negative, and P(BUFO) > S. 

Proof of theorem 6. According to the decomposition lemma there corresponds 

rational 
+ 

to every r a set B and a set B such that 
r ¥ 

l3'-measurab le, 
+ -

C/J and for which Y = B UB r' B nB 
r r r 

mP B > r for B E B, L( > 0, B c B+ 
r 

mP B < r for B E B, Lt > 0, B c B 
r 

E UB + . ) For y def~ne fey = sup ¥ 
r x E B 

r 

B 
+ 

and B are 
r r 

nB put f (y) 
r 

For all real a ~s {f > a} = U 
+ / 

B , so f is a B-measurable function, 
r 

r > a 

- 00. 

and {f < a} = n B~, which shows that for B c {f ~ a} , B E {,and LB > 0, 
Br> a B 

{s fup < r for all rational r > a,and therefore mP < a. If B c {f > a} 

B E €, and LB > 0 then B c {f > b} for all Put B = U 
r > b 

B 
r 
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+ where B c B for all r > b and the Bls are pairwise disjoint. It 
r r B r B 

follows that mP > b for all b < a and therefore mP > a. This shows 

that f is a conditional m-meanvalue given the decomposition. 

Assume now that g is a B-measurable numerical function such that 

L{f * g} = 1. If B E Band LB > 0 then B c {g > a} implies 

mPB mPBn{f > a} d { }' I' mP=B = mPBn{f ~ a}< a and = . ~ a an Bcg ~ a lmp les 

so g is also a conditional mean-value. 

Next, let f and g be two conditional mean-values. Then {f < g} 

U({f ~ a}n{g ~ b}) where the union is taken over all rational a and 

b such that a < b. If P({f ~ a}n{g ~ b}) > 0 then a > mP({f~a}n{g~b}) > b 

which is impossible. Therefore P{f < g} = O. 

The last statement of the theorem follows immediately from the definitions. 

2. Limit Theorems. 

Let PEP be decomposed as described in 1. 

Definition. Let Cbe a a-algebra contained ln A. A mean-value m on P 
is said to have the monotone convergence property with respect to the 

decomposition restricted to C if for n = 1,2, ... 

E 
./ 

> 0, B B, LB LC > 0 n n 

B t C E 6 or B ~ C E 6 
n n 

B 
implies mP n -7 mP C 

B 
If P n -7 pC , and m lS continuous ln all pC C E C, then it has this , 
property. For integrals it is implied by theorem 4d. 

Theorem 7 (Martingale). Let 6l ,C2 , ... be an increasing sequence of 

a-algebras contained in t, and let ( be the smallest a-algebra over their 

union. Let m be a complete mean-value with the monotone convergence 
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property with respect to the decomposition determined by C. If f,f l ,f2 , ... 

are conditional m-mean-values of P with respect to the decomposition de

termined by t,Cl ,C2 , ... . then fn ~ f for n ~ 00 L-almost surely. 

Proof (Comp. Andersenand Jessen [1948]). The functions f = llininf f 
n 

and f = limsup f are 
n 

for all real a. 

(-measurable, Slnce 

00 00 

{f> a}= U n {f > a} 
k=l n=k n 

{I < a}= un· {f < a} 
k=l n=k n 

Now assume a < + 00, and let C E UC , C C {f < a} = H, and LC > O. Put 
n = - = 

and 

H 
n 

H np 

00 

= {inf f < a } = n+p n U {f < a } 
1 n+p n 

p 

= ~fn+l< an} 

~ p-l 

! q~l ({fn+q 

"'-

p= 

for p 1 

> a }n{ f < a }) 
n n+p n 

for p > 1, 

where a l > a2 > ... > an> lS a strictly decreasing sequence with limit 

a. It lS clear that H E C ,that H C {f < a } , that np n+p np n+p n 

for a fixed n al.l Hnp are mutually disjoint, 

00 

H U H . Further lS H .~. H· :::) ... and H = 
n p=l np 1 2 

There exists an nO 

for n ~ nO and all 

such that C E 6 for n > 

p. It follows 
n 

that 

cnH 
mP np < a 

n 

nO' 

and that 

00 

n H 
n=l n 

and therefore C n H E 6 np n+p 

C if L(CnH » 0, and so mP 
C np 

(CnH ) 
mP n < an for n > nO' which shows that 

mP < a. 

Consider next the set Co of all C E 6 such that C ~ {i ~ a} and either 

LC = 0 or mPC < a. Because of the monotone convergence property this class 
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1S a monotone class. The preceding argument shows that Co contains the 

field of all C E UCn such that C c {f ~ a} . It follows that Co contains 

the smallest a-field containing this field, 1.e. the set of all C E C 
such that C c {f < a}. We have thus shown that C c {! < a} , C E C, 
LC > 0 implies ~c < a. 

In a similar way it is proved that mPC ~ a for C c {f ~ a}, C E C, and 

LC > O. It follows that f and I both are conditional m-mean-values 
/' 

given the decomposition restricted to C, and therefore f = f almost 

surely with respect to L. 

Theorem 8 (Reversed martingale). Let cl 'C2 ' ... be a decreasing sequence of 

a-algebras contained in B, and let C be their intersection. Let m be a 

complete mean-value with the monotone convergence property with respect 

to the decomposition determined by C, then f ~ f for n ~ 00 L-almost 
n 

surely. 

Proof (Comp. Andersen and Jessen [1948]). f = liminf f and f = limsup f 
- n n 

are clearly {-measurable. Now assume C c {sup f > a}, C E C, LC > O. 
n 

Put 

and 

H 
n 

H 
np 

={ max f > a} 
p < n p 

n 
{f > a}n n {f < a} for p < n 

p q = q=p+l 

{f > a} for p n. 
n 

Then H ~ 6 ,H c {f > a} and 
np p np p 

cnH 

H 
n 

U H 
P < n np 

It follows that mP n > a. Since H t{sup f > a}, the monotone convergence 
n n 

. l' C property 1mp 1es mP > a. 

One proves in a similar way that mP C < a for C c {inf f < a}, C E {, = ' n 
and LC > O. This shows that both i and I are conditional mean-values given 

the decomposition restricted to {and therefore f = I a.s. with respect to L. 
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Theorem 9 ( Ergodic theorem). Let T be an invertible A-measurable trans

formation of X into itself, and let C be the er-algebra of T-invariant 

sets. Let m be a complete mean-value on P that has the monotone convergence 

property with respect to the decomposition determined by C. Let PEP 

be T-invariant and put 

f (x) 
n 

x E X. 

If f is A-measurable, and limsup f and liminf f are C-measurable then 
n n n n n 

f for n ~ 00 tends to the conditional m-meanvalue of P given C, almost 
n 

surely with respect to pIS restriction to C. 

Our proof is a generalization of a proof of the ergodic theorem due to 

A.N. Kolmogorov, see Khinchine [1949] , p. 19, seq. 

We start with some combinatorial lemmas. Let ... ,x_l,xO'xl , ..• be a 

fixed sequence of elements of X and a a fixed real number. For integers 

j < k let [j,k) denote the interval {j' Ij ~ j' < k}. An interval [j,k) 

is proper if m(xj , ... ,xk- l ) > a and m(xj , ... ,Xj I -1) ~ a for 

j <.j' <:: k. 

Lemma 1. If two proper intervals overlap each other, then one ~s contained 

in the other. 

Proof. Let [j,k) and [jl,kl ) be proper intervals such that j < J l < k ~ k l . 

Since 

m(x., ... ,X. 1) 
J J -

it follows that 

< a < m(x., ... ,x. 1) < max(m(x., ... ,x. 1) ,m(x. , ... ,x. 1» = J k- = J J - J k-

m(xj ""'~-l) > a and therefore k = ~l' 1 
1 

For n = 1,2, ..• an interval [j,k) is called n-proper if it ~s n-proper and 

k-j~n. [j ,k).<isfmaximal:·n""'proper if it isn."'"proper and not contained in a 

bigger n-proper interval. 

Lemma 2. Every n-proper interval ~s contained in a maximal n-proper interval. 

Proof. If two n-proper intervals contain the given one, they overlap and 

according to lemma lone is contained ~n the other. The set of n-proper 

intervals containing the given one is finite and so must contain a maximal 
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element. This interval must be maximal n-proper. 

Lemma 3.Two different maximal n-proper intervals are disjoint. 

Proof. Lemma 1 shows that if they are not disjoint one must contain 

the other, which ~s impossible according to the definition. 

Lemma 4. It ~s necessary and sufficient for 

max m(xO""'~_l) > a 
l<k<n 

that there exists a maximal n-proper interval containing O. 

Proof. Necessity: Let k be the smallest integer ~ 1 such that m(xO"" '~-l) 

> a. Then [O,k) is n-proper and therefore according to lemma 2 contained 

~n a maximal n-proper interval. Sufficiency: Let [j,k) be a maximal n

proper interval containing O. Then 1 ~ k ~ n, and the inequalities 

m(xj, ... ,x_ l ) ~ a < m(xj""'~_l) < max(m(xj, ... ,x_l),m(xO"·"~» 

show that m(xO""'~) > a. 

Turning to the proof of the theorem define 

for n = 1,2, ... , x E X, 

n-l 
= 1. r ITkx 

n k=O 

and put f = liminf - f and f limsup f where 
n 

f = mEn. It ~s sufficient to prove that B E CS, PB > 0, and B c {sup f >a} 
n B n 

implies mP ~ a, because {inf f < a} can be treated analogously. 
n 

Let H I max f > a} and F'k ={[-j,-j+k) maximal n-proper} for k = l, ... ,n, 
n lp ~ n P, J 

J = O,l, ... ,k-l or -J < 0 < -j+k. Lemma 3 proves that different Fls are 

disjoint, and lemma 4 that 

H 
n 

n 
U 

k=l 

k-l 
U 

j=O 

If An stands for T-nA for A c X it ~s seen that F3k FOk and therefore 

p(BnFjk) = p(BnFOk)' Similarly 



P(F'knA) 
J 

for A E A and PFjk > 0 and so 

BnH n k-l p(BnFjk) BnF'k 
P nA L L p(BnH ) 

P J A 
k=l j=O n 
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n k-l 
L L 

k=l j=O 

F k ' 
= P 0 AJ 

p(BnFOk ) 

p(BnH ) 
n 

BnH 

BnFOk ' 
P AJ 

since 

mPB> 

k 
mE >a 

x 
for x E BnFOk it follows that mP n > a which implies 

a because H t {sup f > n . n 
a}. 

The ergodic theorem can be used to prove that consistency of estimators 

in the sense mentioned on p.25 implies consistency in the usual sense. 
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