Flow equivalence of shift spaces (and their C^* -algebras), VII

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

12.04.11

Theorem (Boyle-Carlsen-E)

Let X and Y be two irreducible sofic shift spaces with Fischer covers A and B, respectively, and assume that \widetilde{X}_{A} and \widetilde{X}_{B} are both AFT. Then X and Y are flow equivalent exactly when the following conditions hold:

(1)
$$X_{\mathcal{A}} \sim X_{\mathcal{B}}$$

Proof

The extension theorem!

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Extension theorem

Let X and X' be flow equivalent irreducible SFTs with proper subshifts Y, Y' which are also flow equivalent. Then any given flow equivalence $\phi : SY \to SY'$ extends to $\overline{\phi} : SX \to SX'$:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Key results

Theorem (Cf. Krieger's embedding theorem)

Let X be a non-trivial irreducible SFT. For any $n,\,X\sim Y$ with $\mathsf{X}^{(n)} \hookrightarrow Y$

Theorem (Boyle-Krieger)

Let X be an irreducible SFT with Y, Y' disjoint subshifts such that $X \setminus (Y \sqcup Y')$ contains a copy of $X^{(2)}$. Assume $\phi : Y \to Y'$ is a conjugacy. Then ϕ extends to an automorphism $\overline{\phi} : X \to X$.

Theorem (Nasu)

Let Y and X be SFTs such that $Y \hookrightarrow X$. Then there exists a block matrix

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

such that

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Step 1 Set $Z' = \{x \in X' \mid [(x,0)] \in \text{Im}(\phi)\}$ $Z'' = \{x \in X' \mid [(x,0)] \in \text{Im}(\psi)\}$ and find subshift $W \subseteq X'$ such that h(W) < h(X') and $Z \cup Z'' \subseteq W$

Step 2

Assume WLOG that W is an SFT.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Step 3

Find

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

such that $X' \simeq \mathsf{X}_A$, $W \hookrightarrow \mathsf{X}_{A_{11}}$, and A_{22} is $k \times k$ with k > 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Step 4

Find n such that $Z'' \hookrightarrow X^{(n)}$.

Step 5

Assume WLOG that $X^{(n)} \sqcup X^{(2)} \hookrightarrow X_{A_{22}}$

Step 6

Find
$$\chi \in Aut(X_A)$$
 with $\chi(Z'') \subseteq X^{(n)} \hookrightarrow X_{A_{22}}$.

Step 7

Assume WLOG that $\operatorname{Im}(\phi) \cap \operatorname{Im}(\psi) = \emptyset$.

Step 8

Consider $\phi_0: Y \to SX'$ and $\psi_0: Y \to SX'$ and assume WLOG that

$$\phi_0(Y) = \bigcup_{j=1}^J C_j \times \{\epsilon_j\}$$

$$\psi_0(Y) = \bigcup_{k=1}^K D_k \times \{\delta_k\}$$

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Step 9

Build a cross section $R \subset SX'$ such that

$$\phi_0(Y) \sqcup \psi_0(Y) \sqcup \mathsf{X}^{(2)} \subseteq R$$

Step 10

Find $\zeta \in \operatorname{Aut}(R)$ such that $\zeta \circ \psi_0 = \phi_0$

Step 11

Find
$$\overline{\zeta} \in \operatorname{Aut}(SR) = \operatorname{Aut}(SX')$$
 such that $\overline{\zeta} \circ \psi = \phi$ on SY .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Definition

Let $\pi:X\to Y$ be an SFT cover of an irreducible sofic shift Y. The fiber product $F[\pi]$ is given by

$$F[\pi] = \{ (x, y) \in X \times X \mid \pi(x) = \pi(y) \}$$

Lemma

 $F[\pi]$ is an SFT which is irreducible if and only if Y is SFT.

Lemma

$$\Delta = \{ (x, x) \mid x \in X \}$$

is an irreducible component of $F[\pi]$ which is isolated when Y is AFT.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Lemma

 $F[\pi]$ has a $\mathbb{Z}/2$ -action

$$\chi((x,y)) = (y,x)$$

Definition

We say that the irreducible sofic shift Y is 2-sofic if both its left and right Fischer cover $\pi:X\to Y$ is 2-1.

Theorem

When Y is 2-sofic and AFT we have that

$$F[\pi] \setminus \Delta \simeq M^{-1}(\pi)$$

and $(M^{-1}(\pi), \chi)$ is a free $\mathbb{Z}/2$ -SFT.

Theorem

When Y and Y' are 2-sofic and AFT with Fischer covers

$$\pi: X \to Y \qquad \pi': X' \to Y'$$

we have $Y \sim Y'$ precisely when a $X \sim X'$ a $(M^{-1}(\pi), \chi) \sim (M^{-1}(\pi'), \chi)$