# Flow equivalence of shift spaces (and their $C^{*}$-algebras), IV 

Søren Eilers<br>eilers@math.ku.dk<br>Department of Mathematical Sciences<br>University of Copenhagen

01.03.11

## Content

(1) Franks' theorem
(2) Generalizations

## Outline

(1) Franks' theorem

## (2) Generalizations

## Theorem

When an $n \times n$-matrix $A$ and an $n^{\prime} \times n^{\prime}$-matrix $A^{\prime}$ define irreducible and infinite SFTs the following are equivalent
(1) $\mathrm{X}_{A} \sim \mathrm{X}_{A^{\prime}}$
(2) $\mathbb{Z}^{n} /(I-A) \mathbb{Z}^{n} \simeq \mathbb{Z}^{n^{\prime}} /\left(I-A^{\prime}\right) \mathbb{Z}^{n^{\prime}}$ and $\operatorname{sgn} \operatorname{det}(I-A)=\operatorname{sgn} \operatorname{det}\left(I-A^{\prime}\right)$

## Basic operation

## Lemma

When $A \geq 0$ with $a_{i j}>0$ we have that $\mathrm{X}_{A} \sim \mathrm{X}_{A^{(i j)}}$ where

$$
A^{(i j)}=\left[\begin{array}{ccccc}
a_{11} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1}+a_{j 1} & \ldots & a_{i j}+a_{j j}-1 & \ldots & a_{i n}+a_{j n} \\
\vdots & & \vdots & & \vdots \\
a_{n 1} & \ldots & a_{n j} & \ldots & a_{n n}
\end{array}\right]
$$

## Step 1

Outsplit to go

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
0 & 0 & 1 \\
a_{11} & a_{11} & a_{12}-1 \\
a_{21} & a_{21} & a_{22}
\end{array}\right]
$$

## Step 2

Insplit to go

$$
\left[\begin{array}{ccc}
0 & 0 & 1 \\
a_{11} & a_{11} & a_{12}-1 \\
a_{21} & a_{21} & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
a_{11} & a_{11} & 0 & a_{12}-1 \\
a_{21} & a_{21} & 0 & a_{22} \\
a_{21} & a_{21} & 0 & a_{22}
\end{array}\right]
$$

## Step 3

Symbol reduce to go

$$
\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
a_{11} & a_{11} & 0 & a_{12}-1 \\
a_{21} & a_{21} & 0 & a_{22} \\
a_{21} & a_{21} & 0 & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
a_{11} & a_{11} & a_{12}-1 \\
a_{21} & a_{21} & a_{22} \\
a_{21} & a_{21} & a_{22}
\end{array}\right]
$$

## Step 4

Out-amalgamate to go

$$
\left[\begin{array}{ccc}
a_{11} & a_{11} & a_{12}-1 \\
a_{21} & a_{21} & a_{22} \\
a_{21} & a_{21} & a_{22}
\end{array}\right] \rightarrow\left[\begin{array}{cc}
a_{11}+a_{21} & a_{12}+a_{22}-1 \\
a_{21} & a_{22}
\end{array}\right]
$$

## Proposition

For any $A \geq 0$ there is a $B \geq 0$ such that

$$
\mathrm{X}_{A} \sim \mathrm{X}_{I+B}
$$

## Proof

If all $a_{j j}>0$ we are done. If not, employ that

$$
A^{(i j)}=\left[\begin{array}{ccccc}
a_{11} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1}+a_{j 1} & \ldots & a_{i j}-1 & \ldots & a_{i n}+a_{j n} \\
\vdots & & \vdots & & \vdots \\
a_{n 1} & \ldots & a_{n j} & \ldots & a_{n n}
\end{array}\right]
$$

to create a zero column, which may then be deleted.

## Proposition

If a row or column addition takes an irreducible matrix $B \geq 0$ to $B^{\prime} \geq 0$, we have

$$
\mathrm{X}_{I+B} \sim \mathrm{X}_{I+B^{\prime}}
$$

## Proof

Suppose row 2 of $B$ is added to row 1 to create $B^{\prime}$. The first row of $I+B^{\prime}$ is

$$
\left[\begin{array}{llll}
1+b_{11}+b_{21} & b_{12}+b_{22} & b_{13}+b_{23} & \ldots
\end{array}\right]
$$

and the first two rows of $I+B$ are

$$
\left[\begin{array}{cccc}
1+b_{11} & b_{12} & b_{13} & \ldots \\
b_{21} & 1+b_{22} & b_{23} & \ldots
\end{array}\right]
$$

Note how this coincides with "basic move" when $b_{12}>0$. In general, use irreducibility.

## Proposition

Let an irreducible matrix $B \geq 0$ be of size $n \times n$ with $n>1$. Then

$$
\mathrm{X}_{I+B} \sim \mathrm{X}_{I+C}
$$

where we may assume that $C>0$ of any size $m \geq n$.

## Proof

We may keep adding rows until all entries are $\geq N$ for any $N>0$. New rows may be added as required by state splitting as soon as the entries are sufficiently large.

## Proposition

When $C>0$ we have $\mathrm{X}_{I+C} \sim \mathrm{X}_{I+D}$ where the first column of $D$ is identically $d$, with

$$
d=\operatorname{gcd}\left\{c_{i j}\right\}=\operatorname{gcd}\left\{d_{i j}\right\}
$$

## Proof

Subsequent "column prepared row subtractions" and "row prepared column subtractions". See example.

## Standard form 1

When $C>0$ is a given $n \times n$-matrix with $\mathbb{Z}^{n} / C \mathbb{Z}^{n}=\sum_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$ where

$$
d_{1}\left|d_{2}\right| \cdots \mid d_{n}
$$

and $\operatorname{det}(-C)=(-1)^{n} \operatorname{det}(C)<0$ we have that $\mathrm{X}_{I+C} \sim \mathrm{X}_{I+D}$ where

$$
D=\left[\begin{array}{ccccc}
0 & & \ldots & 0 & d_{n} \\
d_{1} & 0 & & 0 & 0 \\
0 & d_{2} & & 0 & 0 \\
& & \ddots & & \vdots \\
0 & & \ldots & d_{n-1} & 0
\end{array}\right]
$$

## Standard form 2

When $C>0$ is a given $n \times n$-matrix with $\mathbb{Z}^{n} / C \mathbb{Z}^{n}=\sum_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$ where

$$
d_{1}\left|d_{2}\right| \cdots \mid d_{n}
$$

and $\operatorname{det}(-C)=(-1)^{n} \operatorname{det}(C)>0$ we have that $\mathrm{X}_{I+C} \sim \mathrm{X}_{I+D}$ where

$$
D=\left[\begin{array}{ccccc}
0 & & \ldots & d_{n-1} & d_{n-1} \\
d_{1} & 0 & & 0 & 0 \\
0 & d_{2} & & 0 & 0 \\
& & \ddots & \vdots & \vdots \\
0 & & \ldots & d_{n-1} & d_{n-1}+d_{n}
\end{array}\right]
$$

## Standard form 3

When $C>0$ is a given $n \times n$-matrix with $\mathbb{Z}^{n} / C \mathbb{Z}^{n}=\sum_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$ where

$$
d_{1}\left|d_{2}\right| \cdots \mid d_{n}
$$

and $\operatorname{rank}(C)=k<n$ we have that $\mathrm{X}_{I+C} \sim \mathrm{X}_{I+D}$ where

$$
D=\left[\begin{array}{ccccccc}
0 & & \ldots & 0 & d_{k} & \ldots & d_{k} \\
d_{1} & 0 & & 0 & 0 & \ldots & 0 \\
0 & d_{2} & & & 0 & & 0 \\
& & \ddots & \vdots & \vdots & & \\
& & & d_{k-1} & 0 & \ldots & 0 \\
0 & & \ldots & 0 & d_{k} & \ldots & d_{k} \\
\vdots & & & \vdots & \vdots & & \vdots \\
0 & & \ldots & 0 & d_{k} & \ldots & d_{k}
\end{array}\right]
$$

## Outline

## (1) Franks' theorem

(2) Generalizations

## Reducible case

## Theorem

Suppose $A$ is in $\mathfrak{M}_{\mathcal{P},+}^{\circ}(\mathbb{Z})$ and $A^{\prime}$ is in $\mathfrak{M}_{\mathcal{P}^{\prime},+}^{\circ}(\mathbb{Z})$ The following are equivalent.
(1) The SFTs $\mathrm{X}_{A}$ and $\mathrm{X}_{A^{\prime}}$ are flow equivalent.
(2) For some permutation matrix implementing an isomorphism from $\mathcal{P}$ to $\mathcal{P}^{\prime}$, there exists a positive $S L_{\mathcal{P}}(\mathbb{Z})$ equivalence from $I-A$ to $I-P^{-1} A^{\prime} P$
(3) For some permutation matrix implementing an isomorphism from $\mathcal{P}$ to $\mathcal{P}^{\prime}$, and sending cycle components to cycle components, there exists an $S L_{\mathcal{P}}(\mathbb{Z})$ equivalence from $I-A$ to $I-P^{-1} A^{\prime} P$ which is positive on cycle components.

## Equivariant case

## Theorem

Let $G$ be a finite group, and let $A$ and $B$ be square matrices over $\mathbb{Z}^{+} G$. Then $\mathrm{X}_{A}$ and $\mathrm{X}_{B}$ are $G$-flow equivalent precisely when $I-A$ and $I-B$ are $G$-positively equivalent.

## Theorem

Let $G$ be a finite group, and let $A$ and $B$ be essentially irreducible nontrivial matrices over $\mathbb{Z}_{+} G$. For $\mathrm{X}_{A}$ and $\mathrm{X}_{B}$ to be $G$-flow equivalent, it is necessary that $W(A)=W(B)$.
Suppose $W(A)=G$. Then the following are equivalent:
(1) $\mathrm{X}_{A}$ and $\mathrm{X}_{B}$ are $G$-flow equivalent.
(2) There exists $\gamma \in G$ and an $E(\mathbb{Z} G)$ equivalence from $(I-A)$ to $I-\gamma B \gamma^{-1}$.

