Flow equivalence of shift spaces (and their C^* -algebras), IV

Søren Eilers eilers@math.ku.dk

Department of Mathematical Sciences University of Copenhagen

01.03.11

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Theorem

When an $n \times n$ -matrix A and an $n' \times n'$ -matrix A' define irreducible and infinite SFTs the following are equivalent

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Basic operation

Lemma

When $A \ge 0$ with $a_{ij} > 0$ we have that $X_A \sim X_{A^{(ij)}}$ where

Step 1

Outsplit to go

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \to \begin{bmatrix} 0 & 0 & 1 \\ a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \end{bmatrix}$$

Step 2

Insplit to go

$$\begin{bmatrix} 0 & 0 & 1 \\ a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 1 & 0 \\ a_{11} & a_{11} & 0 & a_{12} - 1 \\ a_{21} & a_{21} & 0 & a_{22} \\ a_{21} & a_{21} & 0 & a_{22} \end{bmatrix}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ⊙へ⊙

Step 3

Symbol reduce to go

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ a_{11} & a_{11} & 0 & a_{12} - 1 \\ a_{21} & a_{21} & 0 & a_{22} \\ a_{21} & a_{21} & 0 & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \\ a_{21} & a_{21} & a_{22} \end{bmatrix}$$

Step 4

Out-amalgamate to go

$$\begin{bmatrix} a_{11} & a_{11} & a_{12} - 1 \\ a_{21} & a_{21} & a_{22} \\ a_{21} & a_{21} & a_{22} \end{bmatrix} \rightarrow \begin{bmatrix} a_{11} + a_{21} & a_{12} + a_{22} - 1 \\ a_{21} & a_{22} \end{bmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

Proposition

For any $A \ge 0$ there is a $B \ge 0$ such that

$$\mathsf{X}_A \sim \mathsf{X}_{I+B}$$

Proof

If all $a_{jj} > 0$ we are done. If not, employ that

$$A^{(ij)} = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} + a_{j1} & \dots & a_{ij} - 1 & \dots & a_{in} + a_{jn} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

to create a zero column, which may then be deleted.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二重 - のへで

Proposition

If a row or column addition takes an irreducible matrix $B\geq 0$ to $B'\geq 0,$ we have

 $\mathsf{X}_{I+B} \sim \mathsf{X}_{I+B'}$

Proof

Suppose row 2 of B is added to row 1 to create $B^\prime.$ The first row of $I+B^\prime$ is

$$\begin{bmatrix} 1 + b_{11} + b_{21} & b_{12} + b_{22} & b_{13} + b_{23} & \ldots \end{bmatrix}$$

and the first two rows of $\boldsymbol{I}+\boldsymbol{B}$ are

$$\begin{bmatrix} 1+b_{11} & b_{12} & b_{13} & \dots \\ b_{21} & 1+b_{22} & b_{23} & \dots \end{bmatrix}$$

Note how this coincides with "basic move" when $b_{12} > 0$. In general, use irreducibility.

Proposition

Let an irreducible matrix $B \ge 0$ be of size $n \times n$ with n > 1. Then

$$\mathsf{X}_{I+B} \sim \mathsf{X}_{I+C}$$

where we may assume that C > 0 of any size $m \ge n$.

Proof

We may keep adding rows until all entries are $\geq N$ for any N > 0. New rows may be added as required by state splitting as soon as the entries are sufficiently large.

Proposition

When C > 0 we have $X_{I+C} \sim X_{I+D}$ where the first column of D is identically d, with

$$d = \gcd\{c_{ij}\} = \gcd\{d_{ij}\}$$

Proof

Subsequent "column prepared row subtractions" and "row prepared column subtractions". See example.

Standard form 1

When C>0 is a given $n\times n\text{-matrix}$ with $\mathbb{Z}^n/C\mathbb{Z}^n=\sum_{i=1}^n\mathbb{Z}/d_i\mathbb{Z}$ where

$$d_1 \mid d_2 \mid \cdots \mid d_n$$

and $\det(-C) = (-1)^n \det(C) < 0$ we have that $X_{I+C} \sim X_{I+D}$ where

$$D = \begin{bmatrix} 0 & \dots & 0 & d_n \\ d_1 & 0 & & 0 & 0 \\ 0 & d_2 & & 0 & 0 \\ & \ddots & & \vdots \\ 0 & \dots & d_{n-1} & 0 \end{bmatrix}$$

Standard form 2

When C>0 is a given $n\times n\text{-matrix}$ with $\mathbb{Z}^n/C\mathbb{Z}^n=\sum_{i=1}^n\mathbb{Z}/d_i\mathbb{Z}$ where

$$d_1 \mid d_2 \mid \cdots \mid d_n$$

and $\det(-C) = (-1)^n \det(C) > 0$ we have that $X_{I+C} \sim X_{I+D}$ where

$$D = \begin{bmatrix} 0 & \dots & d_{n-1} & d_{n-1} \\ d_1 & 0 & 0 & 0 \\ 0 & d_2 & 0 & 0 \\ & \ddots & \vdots & \vdots \\ 0 & \dots & d_{n-1} & d_{n-1} + d_n \end{bmatrix}$$

Standard form 3

When C>0 is a given $n\times n\text{-matrix}$ with $\mathbb{Z}^n/C\mathbb{Z}^n=\sum_{i=1}^n\mathbb{Z}/d_i\mathbb{Z}$ where

$$d_1 \mid d_2 \mid \cdots \mid d_n$$

and $\operatorname{rank}(C) = k < n$ we have that $X_{I+C} \sim X_{I+D}$ where

$$D = \begin{bmatrix} 0 & \dots & 0 & d_k & \dots & d_k \\ d_1 & 0 & & 0 & 0 & \dots & 0 \\ 0 & d_2 & & 0 & & 0 \\ & & \ddots & \vdots & \vdots & & \\ & & d_{k-1} & 0 & \dots & 0 \\ 0 & & \dots & 0 & d_k & \dots & d_k \\ \vdots & & & \vdots & \vdots & & \vdots \\ 0 & & \dots & 0 & d_k & \dots & d_k \end{bmatrix}$$

Reducible case

Theorem

Suppose A is in $\mathfrak{M}^{\circ}_{\mathcal{P},+}(\mathbb{Z})$ and A' is in $\mathfrak{M}^{\circ}_{\mathcal{P}',+}(\mathbb{Z})$ The following are equivalent.

- The SFTs X_A and $X_{A'}$ are flow equivalent.
- ② For some permutation matrix implementing an isomorphism from P to P', there exists a positive SL_P(ℤ) equivalence from I − A to I − P⁻¹A'P
- So For some permutation matrix implementing an isomorphism from P to P', and sending cycle components to cycle components, there exists an SL_P(ℤ) equivalence from I − A to I − P⁻¹A'P which is positive on cycle components.

Equivariant case

Theorem

Let G be a finite group, and let A and B be square matrices over \mathbb{Z}^+G . Then X_A and X_B are G-flow equivalent precisely when I - A and I - B are G-positively equivalent.

Theorem

Let G be a finite group, and let A and B be essentially irreducible nontrivial matrices over \mathbb{Z}_+G . For X_A and X_B to be G-flow equivalent, it is necessary that W(A) = W(B). Suppose W(A) = G. Then the following are equivalent:

- **1** X_A and X_B are *G*-flow equivalent.
- **2** There exists $\gamma \in G$ and an $E(\mathbb{Z}G)$ equivalence from (I A) to $I \gamma B \gamma^{-1}$.