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We work with strict monoidal categories, i.e. the associativity morphisms
are given by the identity morphism. We will just say “monoidal” for simplic-
ity. In most cases, we will denote by ⊗ the product in a monoidal category.

1 monoidal functors

Definition 1. Let C and D be monoidal categories. A functor F : C → D is
w-monoidal if there exists a natural transformation

ν : F ⊗ F → F ( ⊗ )

(as functors from C⊗C → D) which is associative, i.e. the following diagram

of natural transformations commutes: F ⊗ F ⊗ F
id⊗ν

ν⊗id

F ⊗ F ( ⊗ )

ν , ⊗

F ( ⊗ )⊗ F ν F ( ⊗ ⊗ )
Such a functor is called monoidal if the natural transformation ν is given

by identity morphisms. In particular, if F is monoidal, F (x) ⊗ F (y) =
F (x⊗ y) for all objects x, y in C.

Remark 2. It follows from the definition that, for a monoidal functor F :
C → D, the following diagram commutes:

C(x, x′)⊗ C(y, y′) F D(Fx, Fx′)⊗D(Fy, Fy′)

C(x⊗ y, x′ ⊗ y′) F D(F (x⊗ y), F (x′ ⊗ y′)) = D(Fx⊗ Fy, Fx′ ⊗ Fy′)

Let Top denote the category of topological spaces with usual product and
let TopCm denote the category of w-monoidal functors from C to Top.
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2 Rectification of diagrams

In this section, we follow ideas of Dwyer and Kan.
Let D be a discrete category and let D̃ be a category enriched over Top

with the same objects as D and such that there is a functor (path components
functor)

p : D̃ → D,

which is the identity on objects and induces a homotopy equivalence

D̃(x, y) ≃ D(x, y)

for each pair of objects x, y. So D̃ has a contractible space of morphisms over
each morphism in D and p is the projection.

The functor p induces a functor

TopD
p∗−→ TopD̃,

from D-diagrams to D̃-diagrams. There is also a functor in the other direc-
tion:

TopD
p∗←− TopD̃,

where p∗F is defined on an object x of D as the realization of a simplicial
space whose space of n-simplices is

(p∗F )(x)n =
∐

y0,...,yn∈ ObD̃

F (y0)× D̃(y0, y1)× . . .× D̃(yn−1, yn)×D(p(yn), x).

Two functors F and G are said to be equivalent, denoted F ≃ G, if there
is a zig-zag of natural transformations F ←− F1 −→ . . .←− Fk −→ G which
induces homotopy equivalences on objects.

In “Infinite loop space structure(s) on the stable mapping class groups”,
we prove the following:

Proposition 3. There is an equivalence of functors

p∗p∗F ≃ F

for any F in TopD̃, which is natural in F .

As D and D̃ have the same objects, the equivalence given above means
in particular that p∗F (x) ≃ F (x) for any object x. The functor p∗F is the
rectification of F .
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3 Monoidal rectifications

Suppose now that D and D̃ are moreover monoidal, and that p : D → D̃ is
a monoidal functor. We want to show that the functors p∗ and p∗ defined
above are also functors between the categories of w-monoidal functors:

Proposition 4. The functors p∗ and p∗ restrict to functors

p∗ : TopDm ←→ TopD̃
m : p∗

Moreover, the equivalence of proposition 3 is monoidal, i.e. if F : D̃ → Top
is a w-monoidal functor, and H denotes the chain of natural transformations
giving the equivalence p∗p∗F ≃ F , then for each x, y objects of D̃, the follow-

ing diagram commutes: p∗p∗F (x)× p∗p∗F (y)
p∗p∗νx,y

Hx×Hy

p∗p∗F (x⊗ y)

Hx⊗y

F (x)× F (y)
νx,y

F (x⊗ y)

Proof. If (F, ν) is a w-monoidal functor from D to Top, then ν induces a
natural transformation p∗ν : p∗F (x) × p∗F (y) −→ p∗F (x ⊗ y) as p∗F (x) ×
p∗F (y) = F (px)×F (py) and p∗F (x⊗ y) = F (px⊗ py). Clearly, p∗ν has the
same properies as ν. So p∗F is also a w-monoidal functor.

Now let (F, ν) is a w-monoidal functor from D̃ to Top. We will construct
maps

p∗νx,y : p∗F (x)× p∗F (y) −→ p∗F (x⊗ y)

inducing a natural transformation which satisfies the associativity condition
of definition 1.

Note first that (p∗F (x)× p∗F (y))n can be rewritten as∐
(y0,y′

0),...,(yn,y′
n)∈ Ob(D̃×D̃) F (y0)× F (y′

0)× D̃(y0, y1)× D̃(y′
0, y

′
1)× . . .

. . . .× D̃(yn−1, yn)× D̃(y′
n−1, y

′
n)×D(p(yn), x)×D(p(y′

n), y)
This space maps to∐

(y0,y′
0),...,(yn,y′

n)∈ Ob(D̃×D̃) F (y0 ⊗ y′
0)× D̃(y0 ⊗ y′

0, y1 ⊗ y′
1)× . . .

. . . .× D̃(yn−1 ⊗ y′
n−1, yn ⊗ y′

n)×D(p(yn)⊗ p(y′
n), x⊗ y)

using ν and the monoidal structure of D and D̃. Finally, this maps to∐
z0,...,zn∈ ObD̃ F (z0)× D̃(z0, z1)× . . .× D̃(zn−1, zn)×D(p(zn), x⊗ y) which is

(p∗F (x⊗ y))n.
The above defines a simplicial map (using the fact that ν is a natural

transformation for d0 and using remark 2 for dn). It is a natural transforma-
tion (using the monoidal structure of D). The associativity follows from the
associativity of F and p, and of the monoidal structure of D and D̃.
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Finally, to show that the diagram in the proposition commutes, one uses
the fact that ν is a natural transformation as the equivalence H is obtained
by evaluating morphisms of D̃.

Example 5. Any A∞-algebra is equivalent, as an A∞-algebra, to a strict
monoid.

Proof. Consider the category D having objects the positive integers N0, and
morphism sets D(n, m) = {n1, . . . , nm ∈ N0|Σni = n}. One can think of
the morphisms as the “partial multiplications”. For example, the morphisms
from 4 to 2 are (x1x2)(x3x4),(x1x2x3)x4 and x1(x2x3x4). Note that there is
only one morphism from n to 1. This category corresponds to the PROP
of the associative non-Σ operad (Mor(An, Am) =

∐
Mor(An1 , A) × . . . ×

Mor(Anm , A)).
Consider also the category D̃ where these morphisms are replaces by

appropriate products of Stasheff polytopes, i.e.

D̃(n, m) =
∐

{n1,...,nm∈N0|Σni=n}

K(n1)× . . .×K(nm),

where K(1), K(2) are points, K(3) is an interval, K(4) is a pentagon, and
so on. The composition is induced by inclusions of products of polytopes as
faces of higher dimensional ones.

Now an A∞-algebra structure on a space X is the same as a monoidal
functor F : D̃ → Top with F (1) = X. In particular, F and its rectification
p∗F are w-monoidal functors. We will now show that for any w-monoidal M
functor from D to Top, M(1) is a strict monoid.

Let M : D → Top be a w-monoidal functor, with natural transformation
νa,b : M(a)×M(b)→M(a + b). Define the multiplication m on M(1) by

M(1)×M(1)
ν1,1

m

M(2)

M(µ)

M(1)

where µ is the unique morphism in D from 2 to 1.
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Consider the following diagram:

M(1)×M(1)×M(1)
ν1,1×id id×ν1,1

M(2)×M(1)
ν2,1

M(µ)×id

M(1)×M(2)
ν1,2

id×M(µ)M(3)

M(µ⊗id) M(id⊗µ)

M(1)×M(1)
ν1,1

M(2)

M(µ)

M(1)×M(1)
ν1,1

M(1)

The top square commutes because M is w-monoidal, and the two bottom
squares commute because ν is a natural transformation. In D, we have
µ ◦ (µ ⊗ id) = µ ◦ (id ⊗ µ). Hence the dotted square commute and the
multiplication is associative.

Note that one can prove similarly that if N is a w-monoidal functor from
D̃ to Top, then N(1) is an A∞-space.

As p∗F is a w-monoidal functor from D to Top, p∗F (1) is a monoid. Now
p∗F (1) = p∗p∗F (1) ≃ F (1). We want to show that it is an equivalence of
A∞-algebras. Considering p∗F (1) as an A∞-algebra comes to considering its
lift to D̃ by p∗. The result follows from the commutation of the following
diagram:

K(n)× F (1)n
=
ν

≃

K(n)× F (n)

≃

F (1)

≃

K(n)× p∗p∗F (1)n p∗p∗ν
K(n)× p∗p∗F (n) p∗p∗F (1)

The left square commutes by proposition 4 and the right one because the
equivalence is given by natural transformations.

Remark 6. The above can be done with any non-sigma operad, i.e. an
algebra over a “larger” version of the operad can always be strictified.

Similarly, for a non-sigma operad P , one can strictify other sorts of “P -
algebra up to homotopy” (for example, one can consider algebras such that
the associativity diagrams commute only up to high homotopy). This can be
done by constructing the appropriate “larger” version of the PROP category
associated to P .
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Remark 7. Proposition 4 cannot be extended in a straightforward way to
the symmetric monoidal case. The problem comes from the last step in the
construction of the maps p∗νx,y. An object zi of D cannot be uniquely seen
as a product so we “would not know what permutation to do”. It looks like
if one should do some form of transfer, summing on all the possibilities, but
I guess that wouldn’t be possible/make sense in general.
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