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Introduction

About half a century ago, Thompson introduced a group V together with subgroups F 6 T 6 V in order
to construct examples of finitely presented groups with unsolvable word problem. Thompson’s groups
have since developed a life of their own, relating to many branches of mathematics. The homology of
the group F was computed by Brown and Geoghegan [BG84]; it is free abelian of rank 2 in all positive
degrees. The homology of the group T was computed by Ghys and Sergiescu [GS87]; it is isomorphic to
the homology of the free loop space on the 3-sphere. As for Thompson’s group V itself, Brown [Bro92]
proved that it is rationally acyclic and suggested that it might even be integrally so. In the present paper,
we prove that V is indeed integrally acyclic.

Thompson’s group V fits into the more general family of the Higman–Thompson groups Vn,r for n > 2
and r > 1, with V = V2,1 as the first case: A Cantor algebra of type n is a set X equipped with an
isomorphism Xn ∼= X , and the Higman–Thompson group Vn,r is the automorphism group of the free
Cantor algebra Cn,r of type n on r generators. The main result of this text is an identification of the
homology of all of the groups Vn,r in terms of a well-known object of algebraic topology: the mod n−1
Moore spectrum Mn−1.
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Theorem A. For any n > 2 and r > 1 there is a map BVn,r→Ω∞
0 Mn−1 inducing an isomorphism

H∗(Vn,r;M)
∼=−→ H∗(Ω∞

0 Mn−1;M).

in homology for any trivial or abelian coefficient system M.

Here the space Ω∞
0 Mn−1 is the zeroth component of the infinite loop space Ω∞Mn−1 that underlies the

mod n−1 Moore spectrum Mn−1. Note that the target of the isomorphism does not depend on r.

In the case n = 2, the spectrum Mn−1 is contractible and the above result answers Brown’s question:

Corollary B (Theorem 6.4). Thompson’s group V = V2,1 is acyclic.

In [Bro92], Brown indicates that his argument for the rational acyclicity of V extends to prove rational
acyclicity for all groups Vn,r. When n is odd, the group Vn,r was known not to be integrally acyclic just
from the computation of its first homology group, which is Z/2 in that case. Our main theorem applied
to the case n > 3 completes the picture, giving a proof of rational acyclicity for all Vn,r, and at the same
time showing that integral acyclicity only holds in the special case n = 2 :

Corollary C (Theorem 6.5). For all n > 3, the group Vn,r is rationally but not integrally acyclic.

The proof of our main theorem rests on two pillars. The first is homological stability: For any
fixed n > 2, the Higman–Thompson groups Vn,r fit into a canonical diagram

Vn,1 −→ Vn,2 −→ Vn,3 −→ ·· · (?)

of groups and we show that the maps Vn,r→Vn,r+1 induce isomorphisms in homology for large r in any
fixed homological degree. The definition of Cantor algebras leads to isomorphisms Cn,r ∼= Cn,r+(n−1)
for all n > 2 and r > 1, so that there are isomorphisms Vn,r ∼= Vn,r+(n−1) for all n > 2 and r > 1. Using
these isomorphisms, we obtain that the stabilization maps are actually isomorphisms in homology in all
degrees, see Theorem 3.6.

To prove homological stability, we use the framework of [R-WW]. The main ingredient for stability
is the proof of high connectivity of a certain simplicial complex of independent sets in the free Cantor
algebra Cn,r. It follows from [R-WW] that homological stability also holds with appropriate abelian and
polynomial twisted coefficients.

Our stability theorem can be reformulated as saying that the map

Vn,r −→
⋃
r>1

Vn,r = Vn,∞

is a homology isomorphism, where the union is defined using the maps in the diagram (?), and our
second pillar is the identification of the homology of Vn,∞. This is achieved by the identification of the
classifying spaces of the groupoid of free Cantor algebras of type n, as we describe now.
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Let Cantor×n denote the category of free Cantor algebras of type n with morphisms their isomorphisms.
The category Cantor×n is symmetric monoidal, and hence has an associated spectrum K(Cantor×n ), its
algebraic K-theory. We denote by Ω∞

0 K(Cantor×n ) the zeroth component of its associated infinite loop
space. Applying the group completion theorem, we get a map

BVn,∞ −→Ω
∞
0 K(Cantor×n ),

defined up to homotopy, that induces an isomorphism in homology with all local coefficient sys-
tems on the target (see Theorem 5.4). Now using a model of Thomason, we identify the classifying
space |Cantor×n | with that of a homotopy colimit Thon in symmetric monoidal categories build out of
the category of finite sets and the functor that takes the product with a set of cardinality n:

|Cantor×n | ' |Thon|,

where the equivalence respects the monoidal structure, see Theorem 4.1. In particular, the two categories
have equivalent algebraic K-theory spectra: K(Cantor×n ) ' K(Thon). The main theorem then follows
from an identification

K(Thon)'Mn−1,

see Theorem 5.1. The idea behind the last two equivalences is as follows. The category Thon is a
homotopy mapping torus of the functor, defined on the category of finite sets and bijections, that takes
the product with a set of size n. Thinking of the finite sets as the generating sets of free Cantor algebras
of a given type n, this functor implements, for any r, the identification of a Cantor algebra Cn,r with the
Cantor algebra Cn,rn = Cn,r+r(n−1), which reflects the defining property of Cantor algebras. In spectra,
this mapping torus equalizes multiplication by n with the identity on the sphere spectrum, which leads
to the Moore spectrum Mn−1.

We give in the last section of the paper some explicit consequences of our main theorem. In particular,
we confirm and complete the known information about the abelianizations and Schur multipliers of the
groups Vn,r (Propositions 6.1 and 6.3), and compute the first non-trivial homology group of Vn,r (Propo-
sition 6.2). When n is odd, the commutator subgroups V+

n,r is an index two subgroup, and our methods
can also be applied to study this group (Corollary 6.7).

The paper is organized as follows. In Section 1, we introduce the Cantor algebras and the Higman–
Thompson groups, and we give some of their basic properties that we will need later in the paper. In
Section 2, we show how the groups Vn,r fit into the set-up for homological stability of [R-WW] and
construct the spaces relevant to the proof of homological stability, which is given in Section 3. The
following Section 4 is devoted to the homotopy equivalence |Cantor×n | ' |Thon|, which is given as a
composition of three homotopy equivalences. Section 5 then relates the first of these two spaces to Vn,∞

and the second to the Moore spectrum; the section ends with the proof of the main theorem. Finally,
Section 6 draws the computational consequences of our main theorem.
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1 Cantor algebra

In this section, we recall some facts we need about Cantor algebras, and their groups of automorphisms,
the Higman–Thompson groups. We follow Higman’s own account [Hig74]. See also [Bro87, Sec. 4]
for a shorter survey.

Let A be a finite set of cardinality at least 2. Let

A∗ =
⊔

n>0

An

denote the word monoid on the set A. This is the free monoid generated by A, with unit A0 = Ø and
multiplication by juxtaposition. By freeness, an action of the monoid A∗ on a set S is determined by a
map of sets S×A→ S. Such a map has an adjoint

S−→ SA = Map(A,S). (1.1)

Definition 1.1. A Cantor algebra of type A is an A∗–set S such that the adjoint structure map (1.1) is a
bijection.

Such objects go also under the name Jónsson–Tarski algebras.

For any finite set X , there exists a free Cantor algebra CA(X) of type A generated by X . It can be
constructed from the free A∗–set with basis X , namely the set

C+
A (X) := X×A∗ =

⊔
n>0

X×An

by formally adding elements so as to make the adjoint of the map defining the action bijec-
tive. (See [Hig74, Sec. 2]; the set C+

A (X) is denoted X〈A〉 in [Hig74].) Throughout the paper we will
work with free Cantor algebras, but only the elements of the canonical free A∗–set C+

A (X)⊂ CA(X) will
play a direct role.

When A = {1, . . . ,n} and X = {1, . . . ,r}, we will sometimes shorten the notation and just write Cn,r

for CA(X) and C+
n,r for C+

A (X).

Our main object of study, the Higman–Thompson groups Vn,r, are the automorphism groups of the free
Cantor algebras Cn,r:

Definition 1.2. Given n > 2 and r > 1, the Higman–Thompson group

Vn,r = Aut(Cn,r)

is the automorphism group of the free Cantor algebra of type n on r generators.
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1.1 Isomorphisms via bases and expansions

We need to understand isomorphisms of Cantor algebras. By freeness, a map of Cantor algebras
from CA(X) to a Cantor algebra S is determined by its value on the generating set X . For instance,
the canonical map X×A ↪→C+

A (X) ↪→CA(X) induces a map CA(X×A)→CA(X), which one can show
is an isomorphism, using the Cantor algebra structure map of CA(X ×A). We use Higman’s descrip-
tion of isomorphisms in terms of expansions of the generating sets, which we recall now. We start by
defining bases and expansions.

Definition 1.3. A set S ⊂ CA(X) is called a basis for CA(X) if the induced map CA(S)→ CA(X) is an
isomorphism.

Definition 1.4. Given a subset Y of a free Cantor algebra CA(X), an expansion of Y is a subset of CA(X)

obtained from Y by applying a sequence of simple expansions, where a simple expansion replaces one
element y ∈ Y by the elements {y}×A⊂ C+

A (Y )⊂ CA(X), its “descendants” in CA(X).

If Y was a basis, then so is any of its expansions [Hig74, Lem. 2.3]. In particular, all the expansions of X
represent bases for CA(X), and these are the bases we will work with. Note that any such basis is a finite
subset of C+

A (X). One can think of C+
A (X) as the vertices of an infinite |A|–ary forest with roots the

elements of X , and expansions of X as sets of leaves of finite |A|–ary forests, see for instance [Bro87,
Sec. 4] for more details on this point of view.

Higman proved the following important fact about bases: Any two finite bases of a free Cantor algebra
have a common expansion, see [Hig74, Cor. 1, p. 12]. It follows in particular that the cardinality of a
finite basis for CA(X) is congruent to |X | modulo |A|− 1. In fact, we have that CA(X) ∼= CA(Y ) if and
only if X = Ø = Y or if X and Y are both non-empty of cardinality congruent modulo |A|−1; this is the
condition that guarantees that the two Cantor algebras admit finite bases of the same cardinality.

Note that if Y is an expansion of X , then expansions of Y are also expansions of X , as C+
A (Y ) is naturally

a subset of C+
A (X).

Given a basis E of CA(X), a basis F of CA(Y ) and a bijection λ : E→ F , there is a unique isomorphism
of Cantor algebras f : CA(X)→CA(Y ) that satisfies that f |E = λ . But such a representing triple (E,F,λ )
is far from unique. Indeed, any expansion E ′ of E defines a new such triple (E ′,F ′,µ) representing the
same isomorphism f simply by taking F ′ = f (E ′) and µ = f |E ′ . The following result, which we will
make heavy use of, says that every isomorphism admits a canonical minimal such representative if we
restrict ourselves to considering bases that lie inside C+

A (X) and C+
A (Y ).

Proposition 1.5. Any isomorphism of Cantor algebras f : CA(X)→ CA(Y ) has a canonical minimal
presentation as triple (E,F,λ ) with E an expansion of X, F an expansion of Y , and with λ : E → F a
bijection.

This is a slight generalization of [Hig74, Lem. 4.1], and it follows from the same proof. We give it for
completeness.
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Proof. Consider the subset U of C+
A (X) defined by

U = C+
A (X) ∩ f−1C+

A (Y ) = C+
A (X) ∩ C+

A ( f−1(Y )).

By [Hig74, Lem. 2.4], there exists an expansion E of X such that U = C+
A (E). As E lies inside U , it

satisfies that F = f (E) is an expansion of Y . Taking (E,F,λ ) with λ = f |E yields a presentation of f
with E and F expansions of X and Y .

Now assume that E ′ is another expansion of X satisfying that f (E ′) is an expansion of X . Then E ′

must lie in U and hence be an expansion of E. Hence (E,F,λ ) was minimal and unique with that
property.

1.2 Categories of Cantor algebras

We define the category CantorA to be the category of all finitely generated free Cantor algebras of
type A, with morphisms the maps of A∗-sets, and Cantor×A its subcategory of isomorphisms. Both
categories are symmetric monoidal, with the symmetric monoidal structure, denoted ⊕, induced by the
categorical sum in CantorA. On objects we have

CA(X)⊕CA(Y ) = CA(X tY )

and the symmetry
CA(X tY )→ CA(Y tX)

is induced by the symmetry X tY → Y tX in the category of sets.

Proposition 1.6. The sum of Cantor algebras CA(X)⊕ CA(Y ) = CA(X tY ) induces a symmetric
monoidal category Cantor×A with the property that the map

Aut(CA(X))×Aut(CA(Y ))
⊕−→ Aut(CA(X tY ))

is injective.

Proof. Note first that the symmetric monoidal structure of CantorA defined above restricts to a sym-
metric monoidal structure on Cantor×A . For the injectivity statement, we use a commutative diagram.

Aut(CA(X))×Aut(CA(Y )) //

��

CantorA(X ,X tY )×CantorA(Y,X tY )

��
Aut(CA(X tY )) // CantorA(CA(X tY ),CA(X tY ))

The sum is the map on the left. It is sufficient to prove that the composition is injective, and we will
do this for the composition through to top right corner. The first map is trivially injective if Y = Ø and
injectivity follows from the fact that it has a left inverse on each factor when Y 6= Ø. The second map is
injective by the property of free algebras.
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2 Spaces associated to Higman–Thompson groups

This section and the next one are concerned with the proof of homological stability for the Higman–
Thompson groups Vn,r, the automorphism group of the Cantor algebra Cn,r, with respect to the number r
of generators. Given a family of groups satisfying a few properties, the paper [R-WW] yields a sequence
of spaces whose high connectivity implies homological stability for the family of groups. In this section,
we will show how the groups Vn,r fit in the framework of [R-WW] and construct spaces relevant to the
proof of homological stability, which will be given in the following section.

For a fixed type n we collect the Higman–Thompson groups into a groupoid Vn: The objects are
the natural numbers r as placeholders for the free Cantor algebras Cr = Cn,r, and the morphism
set Vn(Cr,Cs) is empty unless r = s in which case Vn(Cr,Cr) = Vn,r. Recall that there are isomor-
phisms Cn,r ∼= Cn,r+(n−1) for any r > 1, but we do not include these isomorphisms into the groupoid Vn.
The groupoid Vn admits a symmetric monoidal structure ⊕ that is defined to be addition of natural
numbers on objects: Cr⊕Cs := Cr+s. On morphisms, the monoidal structure is given by the homomor-
phisms Vn,r×Vn,s→ Vn,r+s of groups as in CantorA for the set A = {1, . . . ,n}.

2.1 Quillen’s bracket construction

We can apply Quillen’s bracket construction [Gra76, p. 219] to the groupoid Vn to obtain a new cate-
gory Qn = 〈Vn,Vn〉: The category Qn has the same objects as Vn and there are no morphisms from Cr

to Cs unless there exists a k such that Ck⊕Cr ∼= Cs in Vn, i.e. r 6 s in our case, with k = s− r. If this
is the case, morphisms are equivalence classes [ f ] of elements f in Vn,s with f ∼ f ′ if there exists an
element g in Vn,k such that

f ′ = f ◦ (g⊕Cr) : Cs = Ck⊕Cr −→ Cs.

Here and in the following we employ the Milnor–Moore notation and denote the identity of an object
by that object. Note that C0 = Ø is now an initial object in the category Qn. We will write ιr : C0→ Cr

for the unique morphism, which we can represent as the equivalence class [Cr] of the identity in Vn,r.

2.2 Homogeneous categories

Recall from [R-WW, Def. 1.3] that a monoidal category (H,⊕,0) is called homogeneous if the monoidal
unit 0 is initial and the following two conditions are satisfied for every pair of objects A,B in H: The
set H(A,B) is a transitive AutH(B)–set under post-composition, and the homomorphism

AutH(A)→ AutH(A⊕B)

that takes f to f ⊕B is injective with image {ϕ ∈ AutH(A⊕B) |ϕ ◦ (ιA⊕B) = ιA⊕B}.

Proposition 2.1. The category Qn is symmetric monoidal and homogeneous with maximal sub-
groupoid Vn.
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Proof. This is a direct application of three results in [R-WW]: Because Vn is a symmetric monoidal
groupoid, [R-WW, Prop. 1.7] gives that Qn (denoted UVn in that paper) is a symmetric monoidal cate-
gory, with its unit initial. We have that Aut(C0) = {id} and that there are no zero divisors in Qn: If there
is an isomorphism Cr⊕Cs ∼= C0 in Vn, then we must have that Cr = Cs = C0. Then [R-WW, Prop. 1.6]
gives that Vn is the maximal subgroupoid of Qn. Also, the groupoid Vn satisfies cancellation (by con-
struction): If there exists an isomorphism Cr⊕Cs ∼= Cr⊕Cs′ in Vn, then Cs ∼= Cs′ in Vn, because we
have Cr+s ∼= Cr+s′ in the groupoid Vn if and only if r + s = r + s′. Finally, the groupoid Vn satisfies
that the map AutVn(Cr)→ AutVn(Cr⊕Cs) adding the identity on Cs is injective by Proposition 1.6.
From [R-WW, Thm. 1.9] we see that Qn is homogenous, which completes the proof.

Recall from Proposition 1.5 that the elements f of Vn,s admit a unique minimal presentation (E,F,λ )
where E,F ⊂ C+

n,s are expansions of the standard generating set

[s] := {1, . . . ,s}

of Cn,s, and λ : E → F is an isomorphism. The morphism set Qn(Cs,Cs) identifies by definition
with Vn,s. We will soon need the following description of the morphism sets Qn(Cr,Cs) for r < s,
analogous to the minimal presentations of the isomorphisms.

Definition 2.2. A subset P ⊂ C+
n,r is called independent if there exists an expansion E of [r] such

that P⊂ E.

It follows from [Hig74, Lem. 2.7 (i), (iii)] that there exists a unique minimal such expansion E contain-
ing P.

Consider the set Pn(r,s) of triples (E,P,λ ), where E ⊂ C+
n,r is an expansion of the canonical basis [r],

the set P ⊂ C+
n,s is an independent set which is not a basis, and λ : E → P is bijection. We partially

order Pn(r,s) by setting (E,P,λ )6 (F,Q,µ) if F is an expansion of E, then Q is an expansion of P,
and µ is the restriction to F of the map C+

n (E)→ C+
n (P) induced by λ .

Lemma 2.3. For all 0 6 r < s, the set of morphisms Qn(Cr,Cs) is isomorphic to the set of minimal
elements in Pn(r,s).

Note that the statement is trivially true when r = 0 as both sets contain a single element.

Proof. Given a morphism [ f ] : Cr → Cs, with representative f : Cs = Ck⊕Cr→ Cs, we want to asso-
ciate a minimal element of Pn(r,s). We choose a minimal presentation (E,F,λ ) of f . So the
sets E,F ⊂ C+

s are expansions of [s] and λ : E → F is a bijection. Consider the inclusion C+
r ⊂ C+

s
induced by [s] ∼= [k]t [r], and let E0 = E ∩C+

r . We have that E0 is an expansion of [r], and hence
a basis of Cr. Also P = λ (E0) ⊂ F is an independent set, and does not generate given that k > 0
under our assumption. Hence the triple (E0,P,λ |E0) is an element of Pn(r,s). It is moreover minimal
because (E,F,λ ) is minimal.
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We need to check that (E0,P,λ |E0) is independent of the choice of representative f of [ f ]. So
let g ∈ Vn,k with minimal presentation (A,B,µ). We have that g ⊕ Cr has minimal presenta-
tion (At [r],Bt [r],µ t [r]). Now if f ′ = f ◦ (g⊕Cr), we must have that f ′ has minimal presenta-
tion of the form (A′tE0,B′tP,µ ′tλ |E0). In particular, the above construction will yield the same
triple (E0,P,λ |E0), showing that the association is independent of the choice of representative for [ f ].

We check now that the association is injective. So suppose that we have two elements f and f ′ in Vn,s,
given minimally by f = (E,F,λ ) and f ′ = (E ′,F ′,λ ′), and satisfying that E0 = E∩C+

r = E ′∩C+
r = E ′0

and P = λ |E0 = λ ′|E ′0 = P′. We would like to show that [ f ] = [ f ′] as elements of Qn(Cr,Cs). Let H
be the smallest basis of Cs which is a common expansion of F and F ′. Note that H includes P = P′

as a subset. Then f and f ′ admit (non-minimal) representatives (G,H,Cs(λ )|Z) and (G′,H,Cs(λ
′)|Z),

for G = Cs(λ )
−1(H) and G′ = Cs(λ

′)−1(H), and we have that E0 ⊂ G and E ′0 ⊂ G′. Note now that
the complements G0 and G′0 of X0 in G and X ′0 in G′ are bases for Ck ⊂ Cr and µ = Cs(λ

′) ◦Cs(λ )
−1

restricts to a bijection between these two bases. The isomorphism g : Ck→ Ck presented by (G0,G′0,µ)
has the property that f ′ = f ◦g, showing that [ f ] = [ f ′]. This shows that the association defined above
is injective.

Finally we show that the assignment is also surjective by constructing an inverse. So consider a minimal
element (E,P,λ ) of Pn(r,s). Let F be a basis of Cn,s containing P. We have that |E|= r+a(n−1)
for some a > 0 and |F | = s + b(n− 1) for some b > 0, with s− r + (b− a)(n− 1) > 0 under our
assumption. If b− a < 0, replace F by an expansion of F still containing P by expanding an element
of F \P (which is non-empty by assumption) at least (b− a) times. After doing this, we can assume
moreover that b−a > 0. Then let G be a basis of Cs−r of cardinality s− r+(b−a)(n−1) and pick a
bijection µ : G→ F \P. Then GtE is a basis of Cs = Cs−r⊕Cs and (GtE,µ(G)tP,µtλ ) represents
an element f ∈ Vn,s with the property that the triple associated to [ f ] ∈ Qn(Cr,Cs), is precisely the
pair (E,P,λ ), finishing the proof of surjectivity.

2.3 Associated spaces

In the general context of the paper [R-WW], given a pair (A,X) of objects in a homogeneous category,
a sequence of semi-simplicial sets Wr(A,X) is defined, and the main theorem in that paper says that
homological stability holds for the automorphism groups of the objects A⊕X⊕r as long as the associ-
ated semi-simplicial sets are highly connected. In good cases, the connectivity of the semi-simplicial
sets Wr(A,X) can be computed from the connectivity of closely related simplicial complexes Sr(A,X).

We are here interested in the pair of objects (A,X) = (C0,C1) in the homogeneous category Qn. Indeed,
the automorphism group of C0⊕C⊕r

1 = Cr in the category Qn is the Higman–Thompson group Vn,r.
We will therefore begin by describing the semi-simplicial sets Wr = Wr(C0,C1) and the simplicial
complexes Sr = Sr(C0,C1) from Definitions 2.1 and 2.8 in [R-WW], and show that we are in a situa-
tion where we can use the connectivity of the latter to compute the connectivity of the former. In the
following Section 3 we will estimate that connectivity.
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Definition 2.4. Given r > 1, let Wr = Wr(C0,C1) be the semi-simplicial set where the set of p–
simplices is the set of maps Qn(Cp+1,Cr) and the i–th boundary map Qn(Cp+1,Cr)→Qn(Cp,Cr) is
defined by precomposing with Ci⊕ ι1⊕Cp−i.

Note that Wr has dimension r− 1, and a top dimensional simplex in Wr is an automorphism of Cr,
which is an element of Vn,r. For p < r− 1, Lemma 2.3 shows that p–simplices of Wr have a unique
minimal presentation by a triple (E,P,λ ) where E is an expansion of {p+1}, and P is an independent
set of C+

r that is not a basis, and λ : E→ P is a bijection.

To Wr we associate the following simplicial complex, of the same dimension r−1.

Definition 2.5. Given r > 1, let Sr = Sr(C0,C1) be the simplicial complex with the same vertices
as Wr, the set of maps Qn(C1,Cr), and where p+ 1 distinct vertices [ f0], . . . , [ fp] form a p–simplex if
there exists a p–simplex of Wr having them as vertices.

Given a simplicial complex X , one can build a semi-simplicial set Xord that has a p–simplex for each
ordering of the vertices of each p–simplex of X .

Proposition 2.6. There is an isomorphism of semi-simplicial sets Wr ∼= Sord
r . Moreover, if Sr is (r−3)–

connected, then so is Wr.

Proof. This follows from [R-WW, Prop. 2.9, Thm. 2.10], given that Qn is symmetric monoidal, once
we have checked that it is locally standard at (C0,C1) in the sense of [R-WW, Def. 2.5]. This means
two things: Firstly, the morphisms C1⊕ ι1 and ι1⊕C1 are distinct in Qn(C1,C2), and secondly, for
all r > 1, the map Qn(C1,Cr−1)→Qn(C1,Cr) that takes a morphism [ f ] to [ f ]⊕ ι1 is injective.

For the first statement, we need to decribe the morphisms C1⊕ ι1 and ι1⊕C1. Both C1 and ι1 are
represented by the identity on C1, but the first up to an automorphism of the trivial complement C0

in C1 and the second up to an automorphism of the complement C1 of C0 in C1. By definition of the
monoidal structure of Qn, we have

C1⊕ ι1 = [τ1,1] : C0⊕C1⊕C1⊕C0
C0⊕τ1,1⊕C0 // C0⊕C1⊕C1⊕C0

id⊕id // C1⊕C1,

where the symmetry τ1,1 is induced by the transposition (12), while

ι1⊕C1 = [C2] : C1⊕C0⊕C0⊕C1
C1⊕τ0,0⊕C1 // C1⊕C0⊕C0⊕C1

id⊕id // C1⊕C1 ,

with τ0,0 = id, is the isomorphism class of the identity on C2. Hence these two elements are indeed
distinct in Qn(C1,C2), the first one having minimal presentation ({1},{2},λ ) while the second has
presentation ({1},{1},µ), for λ ,µ the unique maps.

For the second statement, we have

[ f ]⊕ ι1 = [( f ⊕C1)◦ (Cr−2⊕ τ1,1)].
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If [ f ] is minimally presented by (E,P,λ ), then one can check that [ f ]⊕ ι1 is minimally presented
by (E, i(P), i ◦ λ ) for i : Cr−1 → Cr induced by the isomorphism [r− 1]t [1] ∼= [r]. As i is injective,
the result follows.

By [R-WW, Prop. 2.9] we now know that Wr “satisfies condition (A)”, which means that it is isomorphic
to Sord

r , and [R-WW, Thm. 2.10] of the same paper gives the second part of the statement.

2.4 Variations

We will have use for variants Ur, U∞
r and T∞

r of the simplicial complex Sr that we will introduce now.

Definition 2.7. Let U1 to be the simplicial complex of dimension 0 consisting of all the expansions
of {1} inside C+

n,1. For r > 2, let Ur be the simplicial complex of dimension r−1 with vertices the
independent subsets P of C+

n,r of cardinality congruent to 1 modulo n− 1 which are not bases. A set
of p+1 vertices P0, . . . ,Pp forms a p–simplex of Ur if the sets Pi are pairwise disjoint and

• p < r−1 and P0t·· ·tPp is an independent set that is not a basis, or

• p = r−1 and P0t·· ·tPp is a basis of Cn,r.

Using Lemma 2.3, we see that there is a forgetful map Sr→ Ur that takes a vertex (E,P,λ ) of Sr to the
independent set P. We in fact have the following:

Proposition 2.8. The simplicial complex Sr is a complete join complex over Ur in the sense of [HW10,
Def. 3.2].

Proof. Given the projection Sr → Ur just described, we need to verify that a set of p + 1 ver-
tices forms a p–simplex of the simplicial complex Sr if and only if their images in Ur form a
simplex there. So suppose (E0,P0,λ0), . . . ,(Ep,Pp,λp) are vertices of Sr. We first consider the
case p = r − 1. We have that P0, . . . ,Pr−1 forms an (r − 1)–simplex of Ur if and only if the
sets are disjoint and their disjoint union P0t·· ·tPr−1 is a basis, which is the case if and only
if (E0t·· ·tEr−1,P0t·· ·tPr−1,λ0t·· ·tλr−1) defines an element of the set Vn,r =Qn(Cr,Cr), which
is the case if and only if the vertices (E0,P0,λ0), . . . ,(Er−1,Pr−1,λr−1) form an (r− 1)–simplex in the
simplicial complex Sr. Similarly, for p < r− 1, using Lemma 2.3, we see that the vertices P0, . . . ,Pp

form a p–simplex of the simplicial complex Ur if and only if (E0t·· ·tEp,P0t·· ·tPp,λ0t·· ·tλp)

defines an element of the set Qn(Cp+1,Cr), which is the case if and only if (E0,P0,λ0), . . . ,(Ep,Pp,λp)

forms an p–simplex in the simplicial complex Sr.

In contrast to the simplicial complexes Sr and Ur, the variants U∞
r and T∞

r that we will now introduce
are both infinite-dimensional (as the notation suggests).

Definition 2.9. For r > 1, let U∞
r be the simplicial complex whose vertices are the independent subsets

of C+
n,r of cardinality congruent to 1 modulo n− 1 that are not bases. Distinct vertices P0, . . . ,Pp form
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a p-simplex U∞
r if the subsets are pairwise disjoint, their union P0t·· ·tPp is still independent, and they

do not form a basis.

Note that U∞
r and Ur have the same set of vertices when r > 2 but not when r = 1. In fact we have the

following:

Lemma 2.10. The simplicial complexes Ur and U∞
r share the same (r−2)–skeleton.

Proof. This follows immediately from the definitions.

Definition 2.11. For r > 1, let T∞
r denote the full subcomplex of U∞

r on the vertices that have cardinal-
ity 1.

The diagram

U∞
r T∞

r
⊇oo

Sr // Ur

skr−2 Ur

⊆

OO

skr−2 U∞
r

⊇

OO

indicates the relations between the spaces that we have introduced so far, with the height reflecting their
dimension. In the next section, we will prove high connectivity of Sr using this sequence of maps.

3 Homological stability

In this section, we estimate the connectivity of the simplicial complexes defined in the previous section,
and use these to deduce homological stability for the canonical diagrams (?) of the Higman–Thompson
groups. All of this will be based on the following two results.

Proposition 3.1. For each integer r > 1 the simplicial complex T∞
r is contractible.

Proposition 3.2. For each integer r > 1 the simplicial complex U∞
r is contractible.

Before we give proofs of these two propositions in Section 3.3, let us state and prove their consequences
that lead to homological stability.

3.1 Consequences of Propositions 3.1 and 3.2

Recall from [HW10, Def. 3.4] that a simplicial complex is called weakly Cohen–Macaulay of dimen-
sion n if it is (n−1)–connected and the link of every p–simplex of it is (n− p−2)–connected.
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Corollary 3.3. For all r > 2 the simplicial complexes Ur are weakly Cohen–Macaulay of dimen-
sion r−2.

Proof. A space is (r− 3)–connected if and only if its (r− 2)–skeleton is. Since the simplicial com-
plexes Ur and U∞

r share the same (r− 2)–skeleton by Lemma 2.10, we see that the simplicial com-
plex Ur is (r−3)–connected if the simplicial complex U∞

r is, and the latter is even contractible by
Proposition 3.2. Let now σ be a p–simplex of Ur with vertices P0, . . . ,Pp. For p > r−2, there is noth-
ing to check as (r− 2)− p− 2 6 −2 and (−2)–connected is a non-condition. So assume p 6 r− 3.
Let E ⊂ C+

s be an expansion of {s} that contains the independent subset P0 t ·· · t Pp, and that is
minimal with respect to that property. Write Q = E \ (P0 t ·· · t Pp). Note that Q is non-empty.
The link of σ is the subcomplex of vertices P that lie in C+

n (Q) ⊂ C+
n,s, as P must be independent

of P0, . . . ,Pp, and the union PtP0t·· ·tPp must not form a basis as p+ 1 < r− 1, given that E was
minimal. A set of k+1 vertices of the link forms a k–simplex if and only if the corresponding sub-
sets are disjoint, their union is independent, and they together with P0, . . . ,Pp form a basis if and only
if k + p+ 1 = r− 1, or k = r− p− 2. Hence the (r− p−3)–skeleton of the link is isomorphic to
the (r− p− 3)–skeleton of U∞

|Q|. As the latter space is contractible by Proposition 3.2, it follows that
the link is at least (r− p−4)–connected, which is what we needed for the Cohen–Macaulay condition
as r− p−4 = (r−2)− p−2.

Corollary 3.4. For each r > 2 the spaces Sr and Wr are (r−3)–connected.

Proof. By Proposition 2.8), the simplicial complex Sr is a complete join complex over Ur, and Ur is
weakly Cohen–Macaulay of dimension r−2 by Corollary 3.3. It thus follows from [HW10, Prop. 3.5]
that Sr is also weakly Cohen–Macaulay of that dimension, and so in particular (r−3)–connected. Then,
by Proposition 2.6, it follows that the semi-simplicial sets Wr are also (r−3)–connected.

Corollary 3.5. The semi-simplicial set Wr+1 is ( r−2
2 )–connected for all r > 0.

Proof. There is a morphism C1→ Cr+1 in the category Qn as soon as r+1 > 1, or equivalently r > 0.
This shows that the semi-simplicial set Wr+1 is non-empty for all r > 0. This gives the starting
cases r = 0,1. For r > 2, Corollary 3.4 gives that Wr+1 is (r−2)–connected, which, under the assump-
tion on r, implies that it is at least ( r−2

2 )–connected.

3.2 Stability theorem

The stabilization homomorphism σr : Vn,r→Vn,r+1 takes an element f to f ⊕C1, leading to the canon-
ical diagram (?) of groups.

13



Theorem 3.6. The stabilization homomorphisms induce isomorphisms

σr : Hd(Vn,r;M)−→ Hd(Vn,r+1;M)

in homology in all dimensions d > 0, for all r > 1, and for all H1(Vn,∞)–modules M.

Proof. First, we can apply the stability result of [R-WW] to the category Qn with the choice of
objects A = C1 and X = C1: our Corollary 3.5 shows that the complexes Wr(C1,C1)∼= Wr+1(C0,C1)

are ( r−2
2 )–connected, which implies, by [R-WW, Thm. 3.4], that σr is an isomorphism in the range

of dimensions d 6 r−4
3 , that is a range that increases with the rank r. Recall now that the group Vn,r

is isomorphic to the group Vn,r+(n−1) as soon as r > 1. We choose an isomorphism between the two
groups as follows. Let h : Cn,1→Cn,n be the isomorphism with minimal presentation ({1}× [n], [n], id).
Then hr = h⊕Cr−1 : Cr→ Cr+n−1 is also an isomorphism. Let γ(hr) denote conjugation with hr. Then
we get a commutative diagram

Vn,r
σr //

γ(hr)

��

Vn,r+1

γ(hr+1)

��
Vn,r+(n−1)

σr+1 // Vn,r+(n−1)+1,

as (h⊕Cr)
−1( f ⊕C1)(h⊕Cr) =

(
(h⊕Cr−1)

−1 f (h⊕Cr−1)
)
⊕C1 for all r > 1. Given that the vertical

maps are isomorphisms and increase the rank of the group, while the horizontal maps induce an isomor-
phism in homology when the rank of the group is large enough, we get that the horizontal maps must
always induce an isomorphism in homology.

Remark 3.7. For the purposes of the present paper, we will only need homological stability with respect
to trivial, or potentially abelian, coefficients, in the form stated. Applying the more general Theorem A
of [R-WW] instead of Theorem 3.4 in that paper, one obtains that stability also holds with finite degree
coefficient systems. We refer the interested reader to [R-WW] for the definitions.

3.3 Proofs of Propositions 3.1 and 3.2

In the rest of this section we give the proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1. We will show that all maps Sk→ T∞
r from spheres into the space T∞

r are null-
homotopic. Recall that a vertex of T∞

r is a set of cardinality 1 in C+
r , that is an element of C+

r . The
set

C+
r =

⊔
h>0

[r]× [n]h

is canonically graded by the height h of its elements. The number of vertices in T∞
r of a given height h

is strictly increasing with h. In fact, more is true: There is a strictly increasing function w such that,
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given any non-generating independent set P of at most k (the dimension of Sk) vertices in T∞
r , there

are at least w(h) vertices in T∞
r of height h that are in the complement of [n]∗–set C+

n (P) generated
by P inside C+

r . To see this, notice that a non-generating subset admits an independent element in the
complement. If that element has height h0, then for all h > h0 there are at least nh−h0 vertices of height h
in the complement, namely the descendants of the chosen vertex of height h0.

Let us now be given a map f : Sk → T∞
r . We can assume that the sphere Sk comes with a triangulation

such that the map f is simplicial. Let v be the (total) number of simplices of all dimensions of that
triangulation. In particular, and this is obviously a very crude estimate, this triangulation has at most v
vertices. We choose an integer h such that w(h)> v+2, and we call a simplex of the sphere Sk bad
for f if all of its vertices are mapped to vertices in T∞

r that have height less than h.

If there is a bad simplex for f with respect to the given triangulation of the sphere, then we will see
that we can find a homotopy from f to a map that is simplicial with respect to another triangulation of
the sphere that still has at most v vertices and that has fewer bad simplices. To do so, we will choose
a bad simplex σ of maximal dimension p among all bad simplices, and modify f and the triangulation
of the sphere in the star of that simplex. In the process, we will increase the number of vertices by at
most 1, and not at all if σ was a vertex. (This implies that we will always have at most v vertices in the
triangulation of the sphere.) There are two cases:

The case p = k. If the bad simplex σ is of the dimension k of the sphere Sk, then its image f (σ) is a
non-generating independent subset of C+

n,r. Hence we can choose a vertex y that has height at least h
and that is not a descendant of f (σ) and still, together with f (σ), gives a non-generating independent
subset. As the union f (σ)∪{y} is again a simplex of T∞

r , we can add a vertex x in the center of σ ,
replacing σ by ∂σ ∗ x and replace f by the map f |∂σ ∗ (x 7→ y) on ∂σ ∗ x. This map is homotopic to f
through the simplex f (σ)∪{y}. We have added a single vertex to the triangulation and removed one
bad simplex without adding any new one.

The case p < k. If the bad simplex σ is a p–simplex for some p < k, by maximality of its dimension,
the link of σ is mapped to vertices of height at least h in the complement of the [n]∗–set C+

n ( f (σ))

generated by f (σ). The simplex σ has p+1 vertices whose images form an independent subset of C+
n,r

of cardinality at most p + 1 6 k. Hence there are at least w(h) > v + 2 vertices of height h in the
complement of C+

n ( f (σ)). As there are fewer vertices in the link than in the whole sphere, and the
whole sphere has at most v vertices, there are at least two vertices y and y′ of height h that are not
descendent of f (σ) and that are not already in the link. It follows that for any simplex τ of the link the
union f (τ)∪ f (σ)∪{y} is independent and non-generating, and hence forms a simplex of T∞

r . We can
then replace f inside the star

Star(σ) = Link(σ)∗σ ' Sk−p−1 ∗Dp

through the cone on a new vertex x

Link(σ)∗ x∗σ ' Dk−p ∗Dp

by the map f |Link(σ) ∗ (x 7→ y)∗ f |σ on

Link(σ)∗ x∗∂σ ' Dk−p ∗Sp−1.
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Now Link(σ) ∗ x ∗ ∂ (σ) has exactly one extra vertex compared to the star of σ , unless σ was just a
vertex, in which case its boundary is empty, and it has the same number of vertices. And again, we have
reduced the number of bad simplices by one.

By induction, we can now assume that there are no bad simplices for f with respect to a triangulation
with at most v vertices. With this assumption, we can cone off f as follows. We have at least w(h)> v+2
vertices of height h in T∞

r , and at most v vertices in the sphere. These vertices are mapped to vertices of
height at least h, that is to descendants of the vertices of height h. By the pigeonhole principle, we know
that there are at least two vertices, say y and y′, of height h such that no vertex of the sphere is mapped
to any of their descendants. Hence we can cone off the sphere using {y}. Indeed, this {y} is disjoint and
independent from the set f (σ) for every simplex σ of the sphere, ensuring that the union f (σ)∪{y}
still forms a simplex of T∞

r .

Proof of Proposition 3.2. Consider a map f : Sk → U∞
r . Again we can assume that it is simplicial for

some triangulation of the sphere Sk. We will show that there is a homotopy from f to a map that lands
inside T∞

r . This will prove the result by Proposition 3.1.

We will, just like in the previous proof, modify f by a homotopy on the stars of the bad simplices in Sk,
namely those whose vertices are all mapped to U∞

r \T∞
r . We will show how to reduce their number one

by one, so that the result follows by induction.

Let σ be a bad simplex of maximal dimension, say p, in the sphere Sk. By maximality, the link of σ

is mapped to T∞
r ∩Star( f (σ)), which itself equals T∞

r ∩Link( f (σ)) as the vertices of f (σ) are mapped
to U∞

r \T∞
r . We now argue that the intersection T∞

r ∩Link( f (σ)) is isomorphic to T∞

r′ for some r′ > 1.

The simplex f (σ) is a set of disjoint subsets of C+
n,r that together form a non-generating independent

subset. Let E be the minimal basis of Cr containing these. Let C+
n (P) be the [n]∗–invariant subset of C+

n,r
that is generated by P = E \ f (σ). Note that P is non-empty as f (σ) was non-generating. In particular,
we have r′ = |P|> 1. The link of σ is mapped by f to independent subsets of C+

n (P), because E is the
minimal basis containing f (σ), and any simplex of the link is mapped to a set of subsets of C+

n,r that,
together with f (σ), forms an independent subset, and hence must lie in an expansion of E. It follows
that Link( f (σ))∼= U∞

r′ and hence also that T∞
r ∩Link( f (σ))∼= T∞

r′ .

Let us consider the restriction of the map f to the star of the simplex σ . Since we are working inside
a k-sphere, we have

Star(σ)∼= Link(σ)?σ ∼= Sk−p−1 ?σ .

The simplicial complex T∞

r′ is contractible by Proposition 3.1. Therefore, the restriction of the map f to
the star of the simplex σ can be extended to get a map f̂ : Dk−p ∗σ → U∞

r on the ball Dk−p∗σ with Dk−p

mapped to T ∞

r′ . This extension defines of homotopy on the star of σ , relative to the boundary link, from f
to a map with strictly fewer bad simplices: The simplex σ is gone, and we have not introduced any new
bad simplex, because new simplices are joins of simplices of ∂σ and simplices in the disc, but the latter
are mapped to good vertices. The result follows by induction.
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4 The classifying space for the Cantor groupoid

Let Set× denote the groupoid of finite sets and their isomorphisms and recall from Section 1 the
groupoid Cantor×A with objects the free Cantor algebras of type A, where A is a fixed set of cardinality
at least 2, and morphisms their isomorphisms. The groupoids Set× and Cantor×A are both symmetric
monoidal with respect to categorical sums formed in the larger categories Set and CantorA, where all
maps of sets and all morphisms of Cantor algebras are allowed. The monoidal unit in Set× is the empty
set Ø, and in Cantor×A it is the empty algebra CA(Ø). The purpose of this section is to describe the
homotopy type of the classifying space |Cantor×A | of the symmetric monoidal groupoid Cantor×A and
its associated infinite loop space in terms of the of the classifying spaces |Set×|.

There are algebraic K-theory “machines” that produce for every symmetric monoidal category C a
spectrum K(C) whose underlying infinite loop space Ω∞K(C) is a group completion of the classifying
space |C| of C. (See [Tho82] for the particular machine that we will be using here.) The Barratt–
Priddy–Quillen theorem says that for C = Set×, this spectrum is the sphere spectrum S'K(Set×), so
that there is a group completion |Set×| →Ω∞S (see [BP72]).

In this section we will use a construction of Thomason to produce from Set× and a set A a symmetric
monoidal category ThoA and prove the following result.

Theorem 4.1. There is a zigzag Cantor×A ←→ ThoA of symmetric monoidal functors that induce
monoidal equivalences |Cantor×A | ' |ThoA| between the classifying spaces.

Corollary 4.2. There is an equivalence K(Cantor×A )'K(ThoA) of spectra.

The idea behind the symmetric monoidal category ThoA is as follows. First of all, there is a sym-
metric monoidal functor from the symmetric monoidal category Set to CantorA that sends a set X
to the free Cantor algebra CA(X) of type A with basis X . It restricts to a symmetric monoidal func-
tor CA : Set×→ Cantor×A . There is also a symmetric monoidal endofunctor

ΣA : Set× −→ Set×

that takes a set X to the set X × A and similarly for maps. The functor CA has the property
that it is insensitive to pre-composition with ΣA: as we have already seen, there are isomor-
phisms CA(X×A)∼= CA(X), and these isomorphisms are essentially the defining property of Cantor
algebras of type A. There is in fact a natural isomorphism CA ◦ΣA ∼= CA of functors. This suggests
that CA extends over a “mapping torus of ΣA” and the category ThoA, which we define below, will be
precisely such a device.

Given a diagram C : λ 7→Cλ of symmetric monoidal categories, indexed on a small category Λ, Thoma-
son [Tho82, Sec. 3] defines a new symmetric monoidal category, denoted here by hocolimΛ Cλ , with
the property that

K(hocolim
Λ

Cλ )' hocolim
Λ

K(Cλ ). (4.1)

In order to construct ThoA, we take the diagram that is indexed by the monoid N of natural numbers,
thought of as a category with one object. Given a pair (C,F) consisting of a symmetric monoidal
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category C together with a symmetric monoidal endo-functor F , we get a diagram on N that associates
to the unique object the category C and to the morphism k ∈ N the functor Fk. Accordingly, we can
define

ThoA = hocolim
N

(Set×,ΣA). (4.2)

By the universal property of Thomason’s construction [Tho82, p. 337], symmetric monoidal functors
from ThoA to Cantor×A can be defined by the following data: A symmetric monoidal functor Set×→
Cantor×A and a symmetric monoidal natural transformation CA ◦ΣA ∼= CA. Since we already have these
in our hands, this gives rise to a symmetric monoidal functor ThoA → Cantor×A . It turns out that this
functor induces an equivalence on the level of classifying spaces. To prove the equivalence between the
two classifying spaces, we will proceed in three steps, as we explain now.

The idea behind the proof is as follows. Considering the functor ThoA→ Cantor×A , one sees that mor-
phisms of Cantor×A differ from morphisms of ThoA in two ways. Firstly, the morphisms of ThoA that
are mapped to expansions are not invertible in ThoA. Secondly, only certain simple types of expansions
occur directly as morphisms of ThoA. We will take care of these two issues one at a time, writing a
homotopy equivalence in three steps: We will define a category ExpA of finite sets, expansions and
isomorphisms, where the expansions are not invertible anymore, and a category LevA of “level expan-
sions” and isomorphisms, where level expansions are simpler types of expansions. These categories
come with monoidal functors

Cantor×A ←− ExpA←− LevA −→ ThoA

and we will show that each functor in the sequence induces a homotopy equivalence by studying the
fibers each time.

4.1 Expansions

We will now define the category ExpA of expansions and we will then explain that passing from the
groupoid Cantor×A to the category ExpA preserves the homotopy type of the classifying space.

Recall from Section 1 that a morphism from CA(X) to CA(Y ) in Cantor×A can be described by a
triple (E,F,λ ), with the set E an expansion of X , the set F an expansion of Y , and λ : E→ F a bijection.
The expansions of a given set X form a poset E(X): We write E 6 F for two expansions E and F of X
if F is also an expansion of E.

Proposition 4.3. For all X the classifying space |E(X)| is contractible.

Proof. The poset E(X) has a minimal element X .

The poset E(X) of expansions depends functorially on the finite set X ∈ Set×: To see that note that
expansions of X are subsets of the free A∗–set C+

A (X) and any bijection λ : X → Y induces an isomor-
phism C+

A (λ ) : C+
A (X)→ C+

A (Y ) which takes expansions to expansions and induces in turn an isomor-
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phism E(λ ) : E(X)→ E(Y ) of posets. More than that, if E ∈ E(X) and F ∈ E(Y ) correspond under this
isomorphism, then there is also an induced bijection E→ F that we will denote by λ for short.

Definition 4.4. The expansion category ExpA has objects the finite sets and morphism X → Y given
by pairs (E,λ ) of an expansion E of X and a bijection λ : E → Y . This expansion category can be
identified with the subcategory of Cantor×A , with the same objects, and with morphisms that can be
presented as (E,Y,λ ) with F = Y . This description also makes the composition obvious.

Proposition 4.5. The inclusion I : ExpA→ Cantor×A of categories induces an equivalence

|ExpA| ' |Cantor×A |

on the level of classifying spaces.

Proof. By Proposition 4.3 and Quillen’s Theorem A, the result will follow if we show that the fibers
of I over CA(X) are equivalent to E(X).

Consider the fiber I/CA(X) over an object CA(X) of Cantor×A . This category has objects the pairs (Y,y)
with y : CA(Y )→ CA(X) an isomorphism of Cantor algebras, and morphisms (Y,y)→ (Z,z) given by
maps (E,λ ) : Y → Z in ExpA such that z◦ I(E,λ ) = y.

There is a functor Λ : E(X)→ I/CA(X) that is defined on objects by Λ(E) = (E,e), where e is the iso-
morphism CA(E)→ CA(X) described by the triple (E,E, id), and on morphisms by taking an expansion
to the corresponding morphism of I/CA(X).

We can also define a functor Π : I/CA(X)→ E(X) in the other direction: Given an object (Y,y)
with y : CA(Y )→ CA(X) an isomorphism of Cantor algebras, let (F,G,µ) be the minimal presenta-
tion of y. We define Π on objects by Π(Y,y) = G. On morphisms, we have no choice as the target
category is a poset, but we have to check that, given a morphism (E,λ ) : (Y,y)→ (Z,z) in the fiber, the
expansion Π(Z,z) of X is an expansion of Π(Y,y). This follows from the fact that y = z◦ I(E,λ ) and
the fact that I(E,λ ) is an expansion: If y and z have minimal presentations (F,G,µ) and (H,L,ν), then
the composition z ◦ I(E,λ ) = (H,L,ν) ◦ (E,Z,λ ) can be represented as (E ′,L,ν ◦λ ) for E ′ an expan-
sion of E. Given that this composition is equal to y, and that y has minimal presentation (F,G,µ), we
necessarily have that L is an expansion of G.

The composition ΠΛ is clearly the identity. On the other hand, the composition ΛΠ takes an
object (Y,(F,E,λ )) to (E,(E,E, id)). There is a morphism in I/CA(X) between these two objects,
namely the morphism (F,E,λ ). These assemble to a natural transformation between the identity func-
tor on I/CA(X) and the composition ΛΠ.

Remark 4.6. The category ExpA has a symmetric monoidal structure induced by the disjoint union of
sets, and the inclusion I : ExpA→ CantorA is a symmetric monoidal functor. Hence the equivalence of
classifying spaces in Proposition 4.5 is given by a map of monoids.
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4.2 Level expansions

The category ExpA has morphisms generated by expansions and bijections. We will now decompose
the expansions into simpler types of expansions, which we call level expansions, and construct a cate-
gory LevA where the morphisms will now be generated by level expansions and bijections.

Definition 4.7. An expansion E of X is called a level expansion if there exists a subset P of X such
that E = (P×A)∪Q as a subset of C+

A (X), where Q is the complement of P in X .

Note that any expansion E of a set X , considered as a morphism (E,X , id) in ExpA, can be factored
as a composition of level expansions. There is even a canonical such factorization using the height
filtration of C+

A (X), but we will not use it. This says in particular that the composition of two level
expansions does not necessarily yield a level expansion. For that reason, we do not get a category of
level expansions right away. To define a category of level expansions analogous to ExpA, we will start
with a simplicial complex of level expansions, and then pass to its poset of simplices.

Definition 4.8. Given a set X , we let L(X) denote the simplicial complex whose vertices are the expan-
sions E of X , and where a set of p+ 1 expansions E0, . . . ,Ep forms a p–simplex if, after re-ordering
them, all of them are level expansions of E0, and there exists pairwise disjoint subsets P1, . . . ,Pp ⊆ E0

such that Ei is also the level expansion of Ei−1 along Pi for each i = 1, . . . , p.

A pair of expansions of X forms an edge in L(X) if and only if one is a level expansion of the other. As
every expansion can be factored as a composition of level expansions, this shows that L(X) is connected
for every finite set X . The following result shows that these complexes are in fact contractible.

Proposition 4.9. For all finite sets X, the complex L(X) is contractible.

Proof. If Y is an expansion of X , we define L(X ,Y ) to be the full subcomplex of L(X) whose vertices
are expansions E of X admitting Y as an expansion. Compactness of the spheres implies that every
homotopy class can be represented by a map into some L(X ,Y ) ⊆ L(X). It is therefore sufficient to
show that the complexes L(X ,Y ) are contractible.

For an expansion E of X , we define its height to be h(E) = (|E|− |X |)/(n−1). This is the number of
simple expansions (expanding a single element x once) needed to obtain E from X . Suppose that the
expansion Y has height h. Let FiL(X ,Y ) denote the full subcomplex of L(X ,Y ) on the vertices of height
at least i. This defines a descending filtration of L(X ,Y ).

L(X ,Y ) = F0L(X ,Y )⊇ F1L(X ,Y )⊇ F2L(X ,Y )⊇ ·· · ⊇ FhL(X ,Y ) = {Y}

For each i < h, the complex FiL(X ,Y ) is obtained from Fi+1L(X ,Y ) by attaching cones on the vertices E
of height i along their links, because no two such vertices are part of the same simplex. The link
of E inside Fi+1L(X ,Y ) identifies with the poset of non-trivial level expansions of E admitting Y as an
expansion. (It also identifies with a subposet of the poset of non-empty subsets of E under inclusion.)
This is a contractible poset as it has a maximal element, namely the level expansion along the largest
possible subsets of E which still admits Y as an expansion, proving that L(X ,Y ) is contractible.
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Let L(X) denote the poset of simplices of L(X). The elements of L(X) are the simplices of L(X), and
the morphisms are the inclusions among them.

Note that a p-simplex with vertices E0, . . . ,Ep as in Definition 4.8 can be identified with (E0,P),
where E0 is an expansion of X , and P = (P1, . . . ,Pp) is a p-tuple of pairwise disjoint subsets of E0.
Under this identification, the faces of σ are

∂ j(E0,P1, . . . ,Pp) =


(E1,P2, . . . ,Pp) j = 0

(E0,P1, . . . ,Pj ∪Pj+1, . . . ,Pp) 0 < j < p

(E0,P2, . . . ,Pp−1) j = p.

In other words, the poset L(X) can be identified with the poset of the (E,P), with E an expan-
sion of X and P = (P1, . . . ,Pp) a p-tuple of pairwise disjoint subsets of E0, for some p > 0. We
have (E,P)6 (F,Q) if there is an i such that F is the expansion of E along the union P1 ∪ ·· · ∪Pi,
and

Q j = Pi+κ(1)+···+κ( j−1)+1∪·· ·∪Pi+κ(1)+···+κ( j)

for some function κ : [q]→ N such that i+κ(1)+ · · ·+κ(q)6 p.

Note that a bijection λ : X →Y induces a map of simplicial complexes L(λ ) : L(X)→ L(Y ), and hence
of poset of simplices L(λ ) : L(X)→ L(Y ). More than that, if (E,P) is mapped to (F,Q) by L(λ ),
then P and Q must be tuples of the same size and λ also induces a bijection λ : E→ F with the property
that λ (Pi) = Qi for each i, which we also write as λ (P) = Q.

We can now construct categories LevA from the posets L(X) in a way similar to the one in which
we constructed the categories ExpA from the posets E(X), where we consider all objects (E,P) of the
poset L(X) for all sets X , and where morphisms are generated by bijections and “level expansions,”
now interpreted as the poset structure of L(X) for some X .

Definition 4.10. The category LevA has objects (E,P) for E a finite set and P a p-tuple of non-
empty pairwise disjoint subsets of E (for some p > 0). The morphisms (E,P)→ (F,Q) are given
by triples (F ′,Q′,λ ) where (E,P)6 (F ′,Q′) in L(E) and λ : F ′→ F is a bijection such that λ (Q′) = Q.

Note in particular that, when there is a morphism from (E,P) to (F,Q) in LevA, then there exists an
expansion F ′ of E and a bijection F ′ ∼= F . This means that forgetting the tuples P of subsets induces a
functor LevA→ ExpA.

Proposition 4.11. The forgetful functor

J : LevA→ ExpA , (E,P) 7−→ E

induces an equivalence |LevA| ' |ExpA| on classifying spaces.

Proof. We show that the fiber of J over X is homotopy equivalent to L(X). The result then follows from
Proposition 4.9, which says that L(X)' |L(X)| is contractible.
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The objects of the fiber J\X can be written as tuples (E,P,λ : E ′ ∼= E) for (E,P) an object of LevA,
an expansion E ′ of X and λ a bijection, as the pair (E ′,λ ) defines a morphism X → J(E,P) in ExpA.
A morphism from (E,P,λ : E ′ ∼= E) to (F,Q,µ : F ′ ∼= F) is given by a morphism ϕ : (E,P)→ (F,Q)

in LevA such that (F ′,µ) = J(ϕ)◦ (E ′,λ ).

Just as in the proof of Proposition 4.5, there is then a pair Λ : L(X)↔ X\J : Π of functors with

Π(E,P,λ : E ′ ∼= E) = (E ′,λ−1P)

Λ(E,P) = (E,P, id : E = E).

Clearly the composition ΠΛ is the identity functor. On the other hand, we have

ΛΠ(E,P,λ : E ′ ∼= E) = (E ′,λ−1P, id : E ′ = E ′)

and λ defines a natural transformation with the identity.

Remark 4.12. The category LevA has a symmetric monoidal structure induced by the disjoint union
of sets, and the functor inducing the equivalence in Proposition 4.11 is monoidal with respect to that
structure. Compare Remark 4.6. Consequently, the equivalence is given by a map of monoids.

4.3 Thomason’s homotopy colimit

We will now recall Thomason’s explicit model for the homotopy colimit (4.2).

The symmetric monoidal category ThoA has objects the tuples m[X1, . . . ,Xm] with m > 0 and each Xi a
finite set. Morphisms are given as tuples

(ψ,µ, f1, . . . , fn) : m[X1, . . . ,Xm]−→ n[Y1, . . . ,Yn]

with a surjection ψ : [m]→ [n], a function µ : [m]→ N, and bijections

f j : X(ψ,µ) j −→ Yj,

where [m] = {1, . . . ,m} as before and where we have already used the notation

X(ψ,µ) j =
⊔

i∈ψ−1( j)

Xi×Aµ(i).

The composition of such morphisms is defined by composition of the surjections, corresponding “multi-
additions” of the values µ(i) and composition of the bijections f j, appropriately multiplied with powers
of A. The monoidal structure is given on objects by

m[X1, . . . ,Xm]⊕n[Y1, . . . ,Yn] = (m+n)[X1, . . . ,Xm,Y1, . . . ,Yn].

Note that a morphism 1[X ] → 1[Y ] in the category ThoA is given by a bijection X×Aµ ∼= Y for
some µ ∈ N. These are powers of very special level expansions. A bit more generally, if E is a level
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expansion of X that expands a subset P of X once, and leaves the complement Q = X \P intact, we have
a zigzag

1[X ]←− 2[P,Q]−→ 1[E]

in ThoA: The arrow to the left is given by X = PtQ, and the arrow to the right by E = (P×A)tQ.
This suggests that 2[P,Q] is the better object to represent the expansion than either of the sides. For
general level expansions, we can say the following.

Lemma 4.13. There is a functor
αX : L(X)→ ThoA

that sends the object (E,P) to the object p+1[P,E \P], when P = (P1, . . . ,Pp) and where E \P denotes
the set E \ (P1∪·· ·∪Pp).

Proof. We need to show functoriality of the indicated assignment. So we assume that we have a mor-
phism (E,P)6 (F,Q) in the category L(X). Recall that this means that there is an i such that F is the
expansion of E along the union P1∪·· ·∪Pi, and the Q j are given by

Q j = Pi+κ(1)+···+κ( j−1)+1∪·· ·∪Pi+κ(1)+···+κ( j)

for some function κ : [q]→N such that i+κ(1)+ · · ·+κ(q)6 p. This data precisely yields a morphism

(p+1)[P,E \P]→ (q+1)[Q,F \Q]

in ThoA: The surjection ψ : [p+1]→ [q+1] has

ψ
−1( j) = {i+κ( j−1)+1, . . . , i+κ( j−1)+κ( j)}

for j = 1, . . . ,q (with the convention κ(0) = 0) and ψ−1(q+1) = {1, . . . , i, p+1}, the function µ sends
the integers 1, . . . , i to 1 and the other ones to 0, and the bijections are given by

(P1×A)t·· ·t (Pi×A)t (E \P) = F \Q.

This finishes the definition of αX on morphisms, and it is readily checked that this is compatible with
composition and identities.

Lemma 4.14. For every bijection λ : X → Y , there is a natural isomorphism

αX ∼= αY ◦L(λ )

of functors L(X)→ ThoA, for L(λ ) : L(X)→ L(Y ) the poset isomorphism induced by λ .

Proof. Given an object (E,P), we have that L(λ )(E,P) = (L(λ )E,L(λ )P), so that

αX (E,P) = p+1[P,E \P]

and
αY ◦L(λ ) = p+1[L(λ )P,L(λ )(E \P)].

We define the natural isomorphism between these as follows: The required surjection [p+1]→ [p+1]
is the identity, the function µ is constant 0, and the bijections Pj ∼= L(λ )Pj and E \P∼=L(λ )(E \P) are
the ones induced by λ .
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Let Cat denote the category of all small categories, and consider the functor L : Set× → Cat tak-
ing a set X to the poset L(X). The Grothendieck construction Gr(L) is a category with objects the
triples (X ,E,P), with X a finite set and (E,P) an object of L(X), and a morphism (X ,E,P)→ (Y,F,Q)

for each bijection λ : X → Y with (λ (E),λ (P))6 (F,Q) in L(Y ). Note that there is a forgetful functor

U : Gr(L)−→ LevA

defined on objects by U(X ,E,P) = (E,P).

Proposition 4.15. The functors αX assemble to define a functor H : LevA→ ThoA.

Proof. The functors αX of Lemma 4.13 and natural transformations of Lemma 4.14 together define a
functor Ĥ : Gr(L)−→ ThoA defined on objects by

Ĥ(X ,E,P) = αX (E,P) = p+1[P,E \P].

The result follows from noting that this functor factors through LevA.

To study the fibers of the functor H : LevA→ ThoA, we introduce simplicial complexes L0(X1, . . . ,Xk)

associated to families (X1, . . . ,Xk) of pairwise disjoint finite sets X j. These will be subcomplexes of the
complex L(X) defined in Section 4.2, where X = X1t·· ·tXk is their disjoint union.

The vertices of L0(X1, . . . ,Xk) are the sets E of the form

E = (X1×Aµ(1))t·· ·t (Xk×Aµ(k)) (4.3)

for some function µ : [k]→N. A set of p+1 distinct vertices E0, . . . ,Ep forms a p–simplex if, possibly
after reordering the sets Ei, the set is the set of vertices of a p–simplex (E0,P1, . . . ,Pp) of L(X) with
each of the pairwise disjoint sets Pi a disjoint union of some of the X j×Aµ( j).

The set of vertices is a subset of the set of expansions of X that is canonically isomorphic to Nk. A set
of p+ 1 elements µ0, . . . ,µp of Nk forms a p–simplex if, possibly after reordering them, µ j−µi takes
values in {0,1} for each i < j. In other words, from one Ei to the next, we only multiply some of the
sets X j one extra time with A, and each X j is multiplied with A at most once between E0 and Ep.

We let L0(X1, . . . ,Xp) denote the poset of simplices of the simplicial complex L0(X1, . . . ,Xp), and just
as with L(X), we identify its objects with the tuples (E,P1, . . . ,Pp) with E is as in (4.3) a vertex
of L0(X1, . . . ,Xk) and each Pi a disjoint union of X j×Aµ( j).

Proposition 4.16. For each family (X1, . . . ,Xk) of pairwise disjoint finite sets, the simplicial com-
plex L0(X1, . . . ,Xk) is contractible.

Proof. The proof is essentially the same as for the complexes L(X). We use a filtration of the com-
plex by the number of simple expansions needed to get from X = X1 t ·· · t Xk to the given ver-
tex. Identifying the vertices with the elements of Nk, we define the height of a given vertex µ
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as h(µ) = µ(1)+ · · ·+µ(k), and we let Fh = FhL0(X1, . . . ,Xk) be the full subcomplex of vertices of
height at most h. We have

{X}= F0 ⊂ F1 ⊂ ·· · ⊂ L0(X1, . . . ,Xk).

We show by induction that each Fh is contractible. As any map from a sphere into the complex has
image in a finite filtration stage by compactness, this will imply the statement.

Clearly, the subcomplex F0 is a point, hence contractible. Suppose that Fh−1 is contractible. The com-
plex Fh is build from Fh−1 by attaching a cone on each vertex of height h along its link in Fh−1. Given a
vertex µ of height h, its link in Fh−1 is the subcomplex of vertices ν of height at most h−1 that satisfy
that ε = µ−ν takes values in {0,1}. In particular, every element of the link of µ in Fh−1 is in the link
of the minimal such element, namely the vertex ν with ε(i) = 1 whenever µ(i)> 1. Hence the link of µ

in Fh−1 is contractible. Given that Fh−1 was contractible, it follows that Fh is also contractible.

Proposition 4.17. The functor H induces an equivalence |LevA| ' |ThoA|.

Proof. We show that the fiber of the functor H : LevA → ThoA over k[X1, . . . ,Xk] is equivalent
to L0(X1, . . . ,Xk). The proof is analogous to that of Propositions 4.5 and 4.11, only longer because
the objects and morphisms in the present case are more complicated.

The fiber has as objects the pairs consisting of an object (E,P) of the category LevA and a mor-
phism f : k[X1, . . . ,Xk]→ p+ 1[P,E \P] in the category ThoA. That morphism f is given by a sur-
jective map π : [k]→ [p+ 1], some function µ : [k]→ N, and bijections λ j : X(π,µ) j → Pj, where we
set Pp+1 = E \P and

X(π,µ) j =
⊔

i∈π−1( j)

Xi×Aµ(i).

The morphism f factors canonically as

k[X1, . . . ,Xk]−→ p+1[X(π,µ)1, . . . ,X(π,µ)p+1]
f−→ p+1[P,E \P], (4.4)

where the first morphism is given by π , the function µ , and the identity maps, and where the second
morphism is given by the identity, the function 0, and the λ j. In particular, such a morphism can only
exist if the expansion E has the form

k⊔
j=1

X j×Aµ( j) (4.5)

for some function µ : [k] → N. A morphism from an object (E,P, f ) to another object (F,Q,g) is
given by a morphism c : (E,P)6 (F ′,Q′)∼= (F,Q) in LevA satisfying g = H(c) ◦ f . Let us spell out
in detail what this means: First, recall that (E,P) 6 (F ′,Q′) means that the expansion F ′ is obtained
from the expansion E by multiplying the subset P1t·· ·tPi with the set A (for some index i > 0),
that the subsets Q′j are each a disjoint union of consecutive subsets Pj with j > i, and that we
have Q′1t·· ·tQ′q = Pi+1t·· ·tPq for some index q 6 p. Second, recall also that, if g is given by a
surjection χ : [k]→ [q+1], some function ν : [k]→N, and bijections κ j, then the condition g =H(c)◦ f
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yields

ν(h) =

{
µ(h)+1 h 6 i

µ(h) h > i.

We can then use H(c) to define a morphism c′ that makes the diagram

p+1[X(π,µ)1, . . . ,X(π,µ)p+1]
c′ //

f
��

q+1[X(χ,ν)1, . . . ,X(χ,ν)q+1]

g
��

p+1[P,E \P]
H(c)

// q+1[Q,F \Q]

in ThoA commute, where f and g are the isomorphisms coming from the canonical factorization (4.4)
introduced above.

We can now define the functor Π : H \ k[X1, . . . ,Xk]→ L0(X1, . . . ,Xk) on objects by

Π(E,P, f ) = (E,X(π,µ)1, . . . ,X(π,µ)p),

when E is as in (4.5) for f determined by maps π,µ and λ j. On morphism, the functor Π is given
by c 7→ c′.

There is also a functor Λ : L0(X1, . . . ,Xk)→ H \ k[X1, . . . ,Xk] in the other direction. It is defined on
objects by

Λ(E,P) = (E,P, f ),

where f gets its µ from (4.5), and the surjection π and the bijection λ j from the Pk. If (E,P)6 (F,Q),
then this determines a morphism under k[X1, . . . ,Xk].

On the one hand, the composition ΠΛ is the identity. On the other hand, the composition ΛΠ takes an
object (E,P, f ) with E as in (4.5) to

ΛΠ(E,P, f ) = (
k⊔

j=1

X j×Aµ( j),X(π,µ)1, . . . ,X(π,µ)p, f ′),

where f ′ relates to f as c′ relates to c. Now f brings bijections λ j that give a natural isomorphism from
this to (E,P, f ), finishing the proof.

Remark 4.18. The functor inducing the equivalence in Proposition 4.17 is monoidal with respect to the
symmetric monoidal structures. Compare with Remark 4.12. Consequently, the equivalence is given by
a map of monoids.

5 Homotopy theory and homology

In this section, we identify the spectrum K(ThoA) from the preceding section with the Moore spectrum
for Z/(n− 1), where n is the cardinality of A as above. We will use this and the relationship between
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the category ThoA and the Higman–Thompson groups to give, in Section 6, concrete computations of
the homology of the Higman–Thompson groups.

5.1 Entry of the Moore spectra

For any integer n > 1 let Mn denote the homotopy cofiber of the multiplication by n map on the sphere
spectrum S, so that there is a homotopy cofiber sequence as follows.

S n−→ S−→Mn (5.1)

The spectrum Mn is the Moore spectrum for Z/n, also known as the mod n Moore spectrum.

Theorem 5.1. Let A be a finite set of cardinality n > 2. There is an equivalence of spectra

K(ThoA)'Mn−1.

Proof. Recall that the category ThoA is defined from the diagram of categories on N which takes the
unique object to the category Set× and the arrow k to the functor Σk

A that takes the product with Ak. By
the Barratt–Priddy–Quillen theorem, we have that K(Set×)' S and the functor ΣA induces multiplica-
tion with the cardinality n of A on S. We apply Thomason’s formula (4.1) to our definition (4.2) and
get

K(ThoA) =K(hocolim
N

(Set×,ΣA))' hocolim
N

(K(Set×),K(ΣA))' hocolim
N

(S,n).

There is a spectral sequence

E2
p,q = Hp(N;(πqS,n)) =⇒ π∗ hocolim

N
(S,n)

that computes the homotopy groups of the homotopy colimit, see [Tho82, Sec. 3]. Here (πqS,n) is the
diagram of abelian groups on N that takes the object to πqS and the morphism 1 to multiplication by n.
The monoid ring Z[N]∼= Z[T] is polynomial on one generator T, so that we can use the standard Koszul
resolution

Z[T] T−1−→ Z[T]−→ Z

to compute the E2 page. As the resolution has length one, the spectral sequence degenerates at E2, and
yields a long exact sequence

· · · −−−→ π∗S
n−1
−−−→ π∗S−−−→ π∗ hocolim

N
(S,n)−−−→ ·· · . (5.2)

Let ε ∈ π0 hocolimN(S,n) = [S,hocolimN(S,n) ] be the image of 1 ∈ π0S = [S,S ] in the long exact
sequence. From the long exact sequence we get that (n−1)ε = 0. Therefore, this map factors through
the Moore spectrum to give a map

ε : Mn−1 −→ hocolim
N

(S,n).
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Comparison of the long exact sequence obtained from the homotopy cofibration sequence (5.1) with the
long exact sequence (5.2) shows that ε induces an isomorphism on homotopy groups, and thus that it is
an equivalence.

Together with Corollary 4.2 the proposition gives the following result.

Corollary 5.2. For any finite set A of cardinality n > 2 there is an equivalence of spectra

K(Cantor×A )'Mn−1.

Remark 5.3. It is instructive to work out the implications of Corollary 5.2 on the level of com-
ponents. The cofiber sequence (5.1) shows that the group π0Mn−1 is the cokernel of the multi-
plication by n− 1 map on the group π0S = Z, so that it is cyclic of order n−1. On the other
hand the abelian group π0Ω∞K(Cantor×A ) = π0K(Cantor×A ) is the group completion of the abelian
monoid π0|Cantor×A |. The latter can be identified with {0,1, . . . ,n− 1} as a set, where an integer r
corresponds to the free Cantor algebra Cn,r of type n on r generators. The monoid structure is dictated
by Cn,r⊕Cn,s ∼= Cn,r+s and Cn,r+(n−1)

∼= Cn,r if r > 1. Note that the neutral element 0 is the only invert-
ible element in this monoid. The group completion of this monoid is Z/(n−1) by the theorem, but this
can of course also be worked out by hand: Once 1 is inverted, the element n−1 is identified with 0 and
we immediately obtain the group Z/(n−1).

5.2 The (stable) homology of the Higman–Thompson groups

If X is a spectrum, its associated infinite loop space Ω∞X is a group-like monoid, that is a monoid whose
monoid of components is a group. It follows that all its components are homotopy equivalent, and in the
following, we denote by Ω∞

0 X the component corresponding to the zero element 0 ∈ π0X. We will now
relate the homology of the zeroth component Ω∞

0 K(CantorA) to that of the Higman–Thompson groups.
Together with Corollary 5.2 this will yield the main identification we are after, namely the isomorphism
of the homology of the Higman–Thompson groups with that of Ω∞

0 Mn−1.

Recall from Section 3 the stabilization homomorphism σr : Vn,r→ Vn,r+1 and let

Vn,∞ = colim(Vn,1 −→ Vn,2 −→ ·· ·)

denote the associated stable group. The homology of Vn,∞ is usually called the stable homology of the
groups Vn,r for r > 1, but a direct consequence of our stability theorem, Theorem 3.6, is that

H∗(Vn,r)∼= H∗(Vn,∞).

So in the case at hand, all the homology is stable and hence it is enough to identify the homology
of Vn,∞.

Given a monoid M, one can form its bar construction BM and the loop space ΩBM is a group-like space,
known as the group completion of M. The group completion theorem of McDuff and Segal [McDS76]
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identifies in good cases the homology of ΩBM with that of its “stable part.” We will use this theo-
rem to compute the homology of Ω∞K(Cantor×A ) ' ΩB|Cantor×A |, the group completion of the E∞

monoid |Cantor×A |.

Theorem 5.4. Let A = {1, . . . ,n} with n > 2. There is a map

BVn,∞ −→Ω
∞
0 K(Cantor×A )

which induces an isomorphism in homology with all systems of local coefficients on Ω∞
0 K(Cantor×A ).

Proof. We apply the group completion theorem to the monoid M = |Cantor×A |. More precisely, we will
use Theorem 1.1 in [R-W13], which makes explicit the relevant result in [McDS76]. The monoid M is
homotopy commutative, in fact E∞, as it is the classifying space of a symmetric monoidal category. It
has components indexed by 0, . . . ,n−1, forming a monoid in the way describe in Remark 5.3. To apply
Theorem 1.1 of [R-W13], we use the constant sequence of elements of M given by Cn,1,Cn,1, . . . . We
need to check that for every m ∈M, the component of m in M is a right factor of the component of some
finite sum Cn,1⊕ ·· ·⊕Cn,1, which is obvious as every component can be reached this way except for
the zero component which is a right factor of any such sum.

Form the colimit
M∞ = colim

(
|Cantor×A |

⊕Cn,1−→ |Cantor×A |
⊕Cn,1−→ ·· ·).

Theorem 1.1 in [R-W13] says that there is a homology isomorphism

M∞ −→ΩB|Cantor×A | 'Ω
∞K(CantorA)

with respect to all local coefficient systems on the target. Now the zeroth component of M∞ can be
identified with the colimit on classifying space of the maps

Vn,0 −→ Vn,1
σ1−→ ·· · −→ Vn,n−1

σn−1−→ Vn,n
σn−→ Vn,n+1 −→ ·· ·

of groups , and this colimit of groups is the group Vn,∞ in the stability statement. The result follows.

We are now ready to prove the main result of this text.

Proof of Theorem A. As a consequence of our stability result, Theorem 3.6, for all r > 1, the stabiliza-
tion map σr : Vn,r→ Vn,r+1 induces an isomorphism in homology with coefficients in any H1(Vn,∞)–
module. Note that, in particular, we have an isomorphism H1(Vn,r) ∼= H1(Vn,∞), so H1(Vn,∞)–
modules are the same as H1(Vn,r)–modules. It follows that the map BVn,r → BVn,∞ induces an iso-
morphism in homology with abelian coefficients for all r > 1. Theorem 5.4 gives that there is a
map BVn,∞→Ω∞

0 (Cantor×A ) which induces an isomorphism in homology with all local coefficients on
the target. (Note that π1Ω∞

0 (Cantor×A )∼= H1(Ω
∞
0 (Cantor×A ))∼= H1(Vn,∞), so these are again H1(Vn,r)–

modules as above.) Corollary 5.2, we have a homotopy equivalence Ω∞
0 K(Cantor×A )'Ω∞

0 Mn−1, prov-
ing the result.
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6 Computational consequences

We will in this section explain how Theorem A can be used to give explicit consequences about the
homology of the Higman–Thompson groups. Concretely, we will compute the abelianizations and
Schur multipliers of the Higman–Thompson groups directly from Theorem A, and we will also com-
pletely decide which of the groups are integrally or rationally acyclic. We recover old results with new
methods, as well as prove new results. In particular, we prove the acyclicity of the Thompson group V.

The results in this section are based on computations of the homology groups of the infinite loop space
of the Moore spectrum Mn with classical methods from homotopy theory. Given a spectrum X, the
stable homotopy groups π∗X agree with the (unstable) homotopy groups π∗Ω

∞X of the underlying
infinite loop space Ω∞X. The situation is different for homology, however. The homology of the Moore
spectrum Mn is, up to a shift, the homology of the mod n Moore space: H0Mn ∼= Z/n and HdMn = 0
for d 6= 0. In contrast, the homology of the underlying infinite loop space Ω∞Mn is more difficult to
compute. We will here give some partial computations of these homology groups. Further computations
can be obtained by working harder.

6.1 Abelianizations and Schur multipliers

In this section, we compute H1 and H2 as well as the first non-trivial homology group of Vn,r by com-
puting these groups for Ω∞

0 Mn−1. We confirm and extend the known results from the literature.

Proposition 6.1. For all n > 2 and r > 1 there are isomorphisms

H1(Vn,r)∼=

{
0 n even

Z/2 n odd.

Proposition 6.2. For all n > 3, we have that

Hd(Vn,r)∼=

{
0 0 < d < 2p−3

Z/p d = 2p−3

for p the smallest prime dividing n−1, and

H2q−3(Vn,r) 6= 0

for q any prime dividing n−1.

Proposition 6.1 is essentially the case p = 2 of Proposition 6.2. We prove both propositions together.

Proof of Propositions 6.1 and 6.2. By Theorem A, it is equivalent to compute these homology groups
for Ω∞

0 Mn−1. The space Ω∞
0 Mn−1 is a connected infinite loop space, and so

H1Ω
∞
0 Mn−1 ∼= π1Ω

∞
0 Mn−1 ∼= π1Mn−1.
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As π1S ∼= Z/2, the latter can easily be computed from the cofiber sequence (5.1) of spectra to be the
cokernel of multiplication by n−1 on π1S= Z/2, which proves the first proposition.

For the second proposition, we assume that n > 3 so that n− 1 > 2. Let p be a prime. The p-parts of
the homotopy groups of the sphere spectrum vanish below dimension 2p−3 and π2p−3S⊗Z/p∼= Z/p.
Now multiplication by n−1 is an isomorphism on Z/p if and only if p does not divide n−1, and if it
does, the map is zero. The result follows using the same long exact sequence now for homotopy groups
with coefficients and Hurewicz’s theorem.

The following result recovers and extends the computation of Kapoudjian [Kap02], who worked out the
case r = 1 by entirely different methods.

Proposition 6.3. For all n > 2 and r > 1 there are group isomorphisms

H2(Vn,r)∼=


0 n even

Z/4 n≡ 3 mod 4

Z/2⊕Z/2 n≡ 1 mod 4.

Proof. Again, by Theorem A, it is equivalent to compute these homology groups for Ω∞
0 Mn−1. Let us

first tick off the case when n is even, so that n− 1 is odd. By Proposition 6.2, when n > 3 with n− 1
odd, the first possible non-trivial homology group of Vn,r is in degree 2 ·3−3 = 3 (if 3 divides n−1).
In particular H2 vanishes. If n = 2, the group vanishes because multiplication by n− 1 is the identity,
making M1 the trivial spectrum. (See also the more general Theorem 6.4.)

Let us now assume that n is odd, and write X = Ω∞
0 Mn−1. We have that π1X ∼= Z/2. Consider the

Postnikov truncation X2, with same first and second homotopy groups as X . We have H2X ∼= H2X2.
As X is an infinite loop space, its first k-invariant vanishes (see [Arl90]), so that

X2 ' K(π1X ,1)×K(π2X ,2).

Now Künneth theorem gives

H2X2 ∼= H2K(π1X ,1)⊕H2K(π2X ,2)∼= H2K(π2X ,2)

given that π1X ∼= Z/2 has trivial H2. As H2K(π2X ,2)∼= π2X , we obtain that

H2Ω
∞
0 Mn−1 ∼= π2Ω

∞
0 Mn−1 ∼= π2Mn−1,

which reduces the question to stable homotopy theory as above. When n is odd, the homotopy cofibre
sequence (5.1) only shows that this group is of order 4. We need a further computation to identify the
group.

Let us assume that n ≡ 3 mod 4. Then n−1 is even but not divisible by 4, and we can use the cofibre
sequence

M(n−1)/2 −→Mn−1 −→M2
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from the octahedral axiom to see that π2Mn−1 ∼= π2M2, and this is known to be cyclic (of order 4). One
way to see this is to note that the unit S→ KO of the real topological K-theory spectrum KO induces
an isomorphism

π2Mn ∼=KO2Mn ∼=KO0
ΣMn

for any n because πiS→ KOiS is an isomorphism for i = 1,2. Now KO0
ΣM2 is the 0-th reduced

real K-theory of the real projective plane, which is cyclic of order 4.

Lastly, if n≡ 1 mod 4, then n−1 is divisible by 4. The factorization 4k= 2k ·2 gives a map j : M2→M4k

that has even degree on the bottom cell and odd degree on the top cell. Analyzing the diagram

· · · KO0(ΣS)∼= Z/2oo KO0(ΣM2)∼= Z/4oo KO0(Σ2S)∼= Z/2oo · · ·oo

· · · KO0(ΣS)∼= Z/2oo

0

OO

KO0(ΣM4k)∼= ?oo

j∗

OO

KO0(Σ2S)∼= Z/2oo

∼=

OO

· · ·oo

shows that j∗ cannot be zero or epi, so that KO0
ΣM4k must split into Z/2 summands.

6.2 Acyclicity results

We now deduce global results about the homology of the groups Vn,r.

The following result has been suggested by Brown [Bro92, Sec. 6].

Theorem 6.4. For all r > 1, the Thompson group V∼= V2,r is integrally acyclic:

Hd(V) = Hd(V2,r) = 0

for all d 6= 0.

Proof. For n = 2 multiplication by n−1 = 1 is homotopic to the identity, so that it is a self-equivalence
of the sphere spectrum. Then the homotopy cofiber, the Moore spectrum M1, is contractible, and the
homology of the infinite loop space vanishes.

Theorem 6.5. For all n > 3 and r > 1, the group Vn,r is rationally but not integrally acyclic:

Hd(Vn,r)⊗Q= 0

for all d 6= 0, but
H2p−3(Vn,r) 6= 0

for any prime p such that p divides n−1.
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Proof. For n > 2 multiplication by n− 1 is a rational equivalence, so that the Moore spectrum Mn−1

is rationally contractible, and the rational homology groups vanish. This proves the first part of the
statement. The second part of the statement is given by Proposition 6.2.

Remark 6.6. In the case n = 2, rationally acyclicity of the Thompson group has earlier been shown
by Brown [Bro92, Thm. 4], where the author also indicates that his proof can be adapted to prove the
case n > 3. The case n = 2, still only rationally, was later reproved by Farley in [Far05].

We end by mentioning a consequence of our work for the commutator subgroups. When n is
odd, Proposition 6.1 implies that the commutator subgroup V+

n,r of Vn,r is an index-two subgroup.
Let Ω̃∞

0 K(Cantor×A ) denote the universal cover of the space Ω∞
0 K(Cantor×A ). Shapiro’s Lemma, The-

orem A and Theorem 3.6 applied to the twisted coefficients M = ZH1(Vn,r)∼= ZH1(Ω
∞
0 K(Cantor×A ))

give the following:

Corollary 6.7. There are homology isomorphisms

H∗(V+
n,r)
∼= H∗(V+

n,∞)
∼= H∗(Ω̃∞

0 K(Cantor×A )).

In particular, the groups V+
n,r and V+

n,∞ are not acyclic when n is odd.

Proof. See Sections 3.1 and 3.2 of [R-WW].

This answers a question of Sergiescu.
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