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Abstract: The philosophy behind game-theoretical modelling of conflict situations
between “man” , attempting to describe the world, and “nature” trying, so it seems,
to conceal the “truth” is discussed. An analysis of instances of such games related
to the Maximum Entropy Principle is discussed. The possibility of entropy loss, a
phenomenon related to distributions with ultra heavy tails is discussed.
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1 Philosophy

A substantial portion of science deals with the situation indicated in the figure.
The real world – a suitable part of it – is looked upon by the observer. We view the
situation as one of conflict between two “players” : The real world, personified as
NATURE, GOD, THE SYSTEM, THE DEVIL or some other choice according to
individual taste, and then a more easily understandable person: THE OBSERVER,
“YOU” . Neutrally, we refer to the players as “Player I” and “Player II” .

We assume that the players have opposing goals, hence the conflict. It is easy
to understand what Player II is striving for, typically efficiency of observation,
enabling extraction of as much information about the system as possible. It is
more questionable to attach a deliberate intent to Player I, to NATURE. And even
if we do, why should NATURE interfere with the activities of Player II and bother
to make things difficult for man? Has not NATURE once and for all fixed the
“laws of NATURE” , so that nothing can be changed, no influence on the outcome
of the game exercised as opposed to the situation in a normal conflict between real
persons?

In an attempt to answer these questions, consider Player II. As the observer,
Player II should take all available information into account but otherwise be neutral
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to the possibilities and be prepared for any eventuality. Thinking about it, you
realize that though you may well believe in some absolute truth, it is you who
model what is going on – well, could be going on – at Player I’s end and, therefore,
modelling of the behaviour of Player I is not so much modelling of an absolute
but really something that reflects your knowledge about the system under study.
Thus, Player I is often best thought of as an expression for another side of yourself
and you have the schizophrenic situation that you, Player II, are in conflict with
another side of yourself, the side expressing knowledge, or perhaps rather absence
of knowledge.

To sum-up: Player II is you as the observer who can choose any available tool
you can think of in fighting your own ignorance, personified as Player I.

As a final philosophical remark, we note that there is a pronounced asymmetry
between the players. Typically, this manifests itself by the fact that Player II has
an optimal strategy to follow whereas this need not be the case for Player I.

2 History

Some hints to the development which reflects the philosophy outlined in Section 1
are in place.

The ideas of Section 1 point to game theory, especially the theory of two-person
zero-sum (non-cooperative) games, a theory initiated in a famous paper by John
von Neumann from 1928, [27]. More recent general references include [24] and [16].

The further study of the type of games we have in mind has statistical physics,
information theory and mathematical statistics as major sources of inspiration. In
particular, the concepts of information theory with their convincing interpretations
and the by now well developed general results enable a rather complete study of
games of great significance for theory as well as for applications.

The influence from information theory starts, not surprisingly, with Shannons
celebrated contribution from 1948, [23], where a new way of thinking was born
together with associated key concepts, notably that of Shannon entropy (below
just entropy). In 1951, Kullback and Leibler introduced one further basic concept,
Kullback-Leibler divergence (below just divergence), cf. [21]. Kullback also demon-
strated the potential of information theoretical thinking for statistical inference in
his monograph [20] from 1959. Of special significance here is Kullback’s minimum
divergence principle.

Regarding influences from physics, our views are consistent with views brought
forward in 1957 by Jaynes, [14], see also [15]. As with other sources mentioned,
Jaynes’ writings basically focus on what goes on at Player I’s end. In the foreground
here is Jaynes Maximum Entropy Principle. The significance of this principle for a
large range of theoretical and applied fields is widely recognized, cf. Kapur, [17],
for example. Another important contribution, [13] by Ingarden and Urbanik from
1962, is the first example of a phenomenon of collapse of the entropy function or
loss of entropy which we shall deal with in Section 4.
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In Čencov [2] from 1972, and Csiszár [3] from 1975, these authors, indepen-
dently of each other, focus on key elements of information theoretical optimization
techniques. A special role is played by the Pythagorean inequality and Csiszár’s
notion of I-projection. Again, the focus is on Player I. Later developments, notably
initiated by Csiszár discuss the significance for statistical inference. The reader
may consult the recent paper [4] by Csiszár and Matus, and references there.

The game theoretical thinking, focusing also on Player II, originated in indepen-
dent studies by Pfaffelhuber, [22] from 1972, and by the author, [25] from 1979. The
latter builds on and expands Csiszárs results. Later studies, partly re-discoveries,
are Kazakos [18] and Haussler [12]. A thorough study from 2004 with emphasis
on statistical inference based on the game theoretical approach is due to Grünwald
and Dawid, [9].

Since 1998, the author and Peter Harremoës have researched the area further.
Suffice it here to point to [10], [11] and to [26] and references to be found there.
These papers demonstrate the wide applicability of the game theoretical approach.
For instance, it follows from Lemma 1 of [26] that the Pythagorean inequality – as
well as a reverse Pythagorean inequality (relevant at Player II’s side of the game)
– are general game-theoretical principles which are not necessarily tied to special
information theoretical concepts. The generality of the game theoretical approach
is also emphasized in [9].

We should also mention research on the minimum description length principle
initiated by Rissanen. The overall philosophy is independent of, but related to that
of the game theoretical approach. For details, see [1].

3 Maximum entropy, the basics

Taking the example of the arguably most important information theoretical game,
the code length game which is the game behind the maximum entropy principle, we
show here and in Section 4 a quick route to the key results.

By A we denote a countable set, the alphabet, by M 1
+(A) the set of probability

measures over A with the topology of pointwise convergence and by K(A) the set
of (idealized) codes over A, i.e. the set of mappings κ : A → [0,∞] such that
∑

i∈A
exp(−κi) = 1. We say that κ ∈ K(A) is adapted to P ∈ M 1

+(A) or that
P is ideal for κ if, for all i ∈ A, κi = − ln pi, equivalently, pi = exp(−κi). For
P = (pi)i∈A and Q = (qi)i∈A in M1

+(A), divergence between P and Q is defined as
usual, i.e., observing standard conventions, as

D(P‖Q) =
∑

i∈A

pi ln
pi

qi

. (1)

From the identity

D(P‖Q) =
∑

i∈A

pi

(

ln
pi

qi

− (1 −
qi

pi

)
)

(2)
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we realize that divergence is well-defined, non-negative on all of M 1
+(A) × M1

+(A)
and only vanishes on the diagonal P = Q. Furthermore, (2) implies that divergence
– as a sum of non-negative lower semi-continuous functions – is itself lower semi-
continuous, even jointly. Divergence between P ∈ M 1

+(A) and κ ∈ K(A) is defined
by

D(P‖κ) = D(P‖Q) with Q ideal for κ . (3)

A preparation is a non-empty subset P of M 1
+(A). If P ∈ P we call P a

consistent distribution. By γ(P) we denote the two-person zero-sum game with
consistent distributions as strategies for Player I and codes over A as strategies for
Player II. As objective function, taken as a cost to Player II, we take average code
length

〈κ, P 〉 =
∑

i∈A

κipi . (4)

By the general minimax-inequality,

sup
P∈P

inf
κ∈K(A)

〈κ, P 〉 ≤ inf
κ∈K(A)

sup
P∈P

〈κ, P 〉 . (5)

The game γ(P) is in equilibrium if equality holds in (5) and if the common value,
the value of the game, is finite. Optimal strategies are defined in the usual way, e.g.
P ∗ is an optimal strategy for Player I if P ∗ ∈ P and if infκ∈K(A)〈κ, P ∗〉 coincides
with the left hand side of (5).

The infimum on the left hand side of (5) is interpreted as minimum description
length (description obtained via coding). This is what we understand by entropy.
It is more conventional to define entropy by the familiar formula

H(P ) = −
∑

i∈A

pi ln pi . (6)

Then, by the following simple, but crucial identity, the linking identity

〈κ, P 〉 = H(P ) + D(P‖κ) , (7)

we realize that entropy is indeed minimum average code length. Accordingly, an
optimal distribution for Player I is the same as a maximum entropy distribution, a
consistent distribution of maximal entropy. Thus, we are led to Jaynes maximum
entropy principle from our game theoretical considerations. The findings so far also
justify the notation Hmax(P) for the left hand side of (5). Further, we put

R(κ|P) = sup
P∈P

〈κ, P 〉 (8)

and consider this quantity as a risk to Player II associated with the strategy κ. We
denote the right hand side of (5) by Rmin(P). Then, an optimal strategy for player
II, an optimal code, is a code κ for which R(κ|P) = Rmin(P).
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Theorem 3.1 (optimal codes). For every preparation P, Player II has an optimal
strategy. In case Rmin(P) < ∞, this strategy, the optimal code, is unique.

Proof. We may assume that Rmin(P) < ∞. Let K(A) denote the set of functions
κ on A with

∑

i∈A
exp(−κi) ≤ 1 in the topology of pointwise convergence (equiva-

lently, K(A) is the closure of K(A)). Extend the definitions (4) and (8) to be valid
also for κ ∈ K(A). Note that the extended function R(·|P) is lower semi-continuous
on the compact set K(A). It therefore assumes its minimal value. The minimum
must be assumed for a κ ∈ K(A) since otherwise we could subtract a positive con-
stant from κ and decrease the risk. Finally, the uniqueness follows by applying the
geometric-arithmetic mean inequality to a mixture of two postulated optimal codes
(the mixture is in K(A) but only in K(A) if the codes are identical).

Natural questions to look into concern the existence of optimal strategies, also
for Player I, and the problem of equilibrium. We start with the second question.
First note that there are simple examples, say with preparations consisting of de-
terministic distributions or of small perturbations of such distributions, which show
that these games (with Rmin(P) < ∞) are not always in equilibrium. Also, equi-
librium may fail even when Player I too has a unique optimal strategy.

The discussion of what equilibrium really amounts to involves once more con-
siderations of the compact and convex set K(A). Denoting “convex hull” by co we
find:

Theorem 3.2 (equilibrium). Assume that Hmax(P) < ∞. Then a necessary and
sufficient condition that γ(P) is in equilibrium is that entropy cannot be increased
by taking mixtures in the sense that

Hmax(coP) = Hmax(P) . (9)

Proof. If γ(P) is in equilibrium, then

Hmax(coP) ≤ Rmin(coP) = Rmin(P) = Hmax(P) (10)

and (9) follows.
Then assume that (9) holds. The essential thing to prove is that coP is in

equilibrium. Assume for convenience that P itself is convex. Note that the map
(κ, P ) y 〈κ, P 〉 of K(A) × M1

+(A) into [0,∞] is affine in each variable and lower
semi-continuous in the first variable. By Kneser’s minimax theorem, a classical
result, cf. [19], it follows that

sup
P∈P

min
κ∈K(A)

〈κ, P 〉 = min
κ∈K(A)

sup
P∈M1

+
(A)

〈κ, P 〉 ∗ (11)

∗Originally Kneser’s theorem assumes embedding in topological vector spaces and real-valued
mappings. It is, however, easy to extend the result, assuming only embedding in topological cones
(hence K(A) is embedded in [0,∞]A) and to allow mappings which may assume the value ∞.
Alternatively, one may use Ky Fan’s result [6] (which only needs a minor adjustment to cover our
set-up). For a discussion of these results, see [8].
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By arguments as in the proof of Theorem 3.1, we realize that in (11), K(P) may
be replaced by K(P). Thus, γ(P) is in equilibrium.†

Games which are in equilibrium have nice properties. We need two concepts:
A sequence (Pn)n≥1 ⊆ P is asymptotically optimal for P if H(Pn) → Hmax(P).
Further, P ∗ ∈ M1

+(A) is the maximum entropy attractor of P (or just the attractor)
if D(Pn‖P ∗) → 0 for every asymptotically optimal sequence (Pn). The attractor
need not exist, but when it does, it is unique and, by Pinsker’s inequality, any
asymptotically optimal sequence converges to it in the topology of total variation.
Note that the attractor need not belong to the preparation under study.

Theorem 3.3 (properties under equilibrium). Assume that γ(P) is in equilibrium
and denote by κ∗ the optimal code. Then γ(P) has a maximum entropy attractor,
viz. the ideal distribution P ∗ for κ∗. Furthermore, for every P ∈ P,

H(P ) + D(P‖P ∗) ≤ Hmax(P) (12)

and, for every code κ,
Rmin + D(P ∗‖κ) ≤ R(κ|P) . (13)

Proof. Let P ∈ P . Then 〈κ∗, P 〉 ≤ Rmin(P) = Hmax(P), and (12) follows by the
linking identity (7). And from (12) we see that P ∗ is the attractor.

Now, let κ ∈ K(A) and consider any asymptotically optimal sequence (Pn).
Then, R(κ|P) ≥ 〈κ, Pn〉 = H(Pn) + D(Pn‖κ). Going to the limit, (13) follows.

Theorems 3.1 and 3.2 suffer from the usual defect of pure existence results.
We turn to a simple, yet very useful criterion for equilibrium which allows, at
the same time, to identify the optimal objects, assuming that suitable candidates
are available. Some definitions: The code κ is robust for P if 〈κ, P 〉 is finite and
independent of P ∈ P ; and P ∈ M1

+(A) is essentially consistent for P if there
exists (Pn)n≥1 ⊆ P such that D(Pn‖P ) → 0; finally, the attractor P ∗ for P is the
essential maximum entropy distribution if H(P ∗) = Hmax(P).

Theorem 3.4 (identification). Let P be a preparation, κ∗ a code and P ∗ the ideal
distribution for κ∗.

(i). If R(κ∗|P) ≤ H(P ∗) < ∞ and if P ∗ is essentially consistent, then γ(P)
is in equilibrium, κ∗ is the optimal code and P ∗ the essential maximum entropy
distribution for γ(P).

(ii). If κ∗ is robust for P and if P ∗ is consistent, then γ(P) is in equilibrium
and both players have unique optimal strategies, viz. P ∗ for Player I (thus P ∗ is
the unique maximum entropy distribution of P) and κ∗ for Player II.

†in [25] a direct proof was given together with a hint that a deeper general minimax result
could have been applied (this had Ky Fan’s paper [7] in mind). However, all that is needed is
Kneser’s theorem (note the elegant and elementary proof in [19]) or the related result by Ky Fan,
in [6]. This was pointed out recently to the author by Gabor Kassay, who also assisted with other
advice regarding game theory and minimax theorems.
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Proof. (i): Choose (Pn)n≥1 ⊆ P such that D(Pn‖P ∗) → 0. By assumption,

Rmin(P) ≤ R(κ∗|P) ≤ lim sup
n→∞

〈κ∗, Pn〉 = lim sup
n→∞

H(Pn) + D(Pn‖P
∗) = Hmax(P)

which is finite and we realize that γ(P) is in equilibrium with κ∗ as optimal code. By
Theorem 3.3, P ∗ is the maximum entropy attractor. Clearly, H(P ∗) = Hmax(P).

(ii): This is an easy corollary to part (i).

4 Collapse of the entropy function

In order to enable a more familiar formulation of the results to follow, and to
simplify notation we now assume that A = N, the set of natural numbers.

If P ∗ is the maximum entropy attractor for a game γ(P) in equilibrium (now
with P ⊆ M1

+(N)), then H(P ∗) ≤ Hmax(P) by lower semi-continuity. The inequal-
ity may be strict, cf. [13] and results to follow. If so, we talk about collapse of the
entropy function or loss of entropy (at P ∗) , whereas, if equality holds, P ∗ is the
essential maximum entropy distribution.

A distribution P ∗ ∈ M1
+(N) has potential entropy loss if it is the maximum

entropy attractor for some model P in equilibrium with collapse of the entropy
function: H(P ∗) < Hmax(P). This phenomenon is only possible for attractors with
ultra heavy tails. First define a distribution P ∗ ∈ M1

+(N) to be power-dominated if,
for some a > 1, p∗n ≤ n−a for all n sufficiently large. If P ∗ is not power-dominated,
we say that P ∗ is hyperbolic.

Theorem 4.1 (collapse of entropy). The necessary and sufficient condition that
P ∗ ∈ M1

+(N) has potential entropy loss is that P ∗ is hyperbolic and H(P ∗) finite.

Proof. Assume first that P ∗ is power-dominated. Clearly then, H(P ∗) < ∞. Con-
sider some game γ(P) which is in equilibrium and has P ∗ as maximum entropy
attractor. For the purpose of an indirect proof, assume that H(P ∗) < Hmax(P).

Consider the code κ∗ adapted to P ∗ and the Dirichlet series ‡

Z(x) =
∑

n∈N

exp(−xκ∗
n) . (14)

Denote by Qx the distribution with point masses exp(−xκ∗
n)/Z(x); n ∈ N whenever

Z(x) < ∞.
It is easy to see that as P ∗ is power-dominated, the abscissa of convergence of the

series (14) is less than 1. Note that H(P ∗) = 〈κ∗, Q1〉. Then, as, by assumption,
H(P ∗) < Hmax(P), 〈κ∗, Qx〉 will be less than Hmax(P) for x’s less than, but
sufficiently close to 1. Therefore, we can choose β < 1 such that H(P ∗) < h <
Hmax(P) with h = 〈κ∗, Qβ.

‡the results we shall use about Dirichlet series are summarized in the appendix of [11].
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Consider the preparation

Ph = {P ∈ M1
+(N)|〈κ∗, P 〉 = h} . (15)

By construction, Ph 6= ∅. We shall show that Ph is in equilibrium with P ∗ as
attractor. To this end, consider an asymptotically optimal sequence (Pk)k≥1 such
that H(Pk) > h for all k ≥ 1. Then, as 〈κ∗, P ∗〉 is less than and 〈κ∗, Pk〉 is larger
than h, we can, for each k ≥ 1, find a convex combination, say Qk = αkP ∗ + βkPk,
such that Qk ∈ Ph. By convexity of D(·‖P ∗) and as D(Pk‖P ∗) → 0, we conclude
from the linking identity (7) applied to 〈κ∗, Qk〉 that limk→∞ H(Qk) = h, hence
Hmax(Ph) ≥ h. On the other hand, by the definition of Ph, R(κ∗|Ph) = h. It
follows that γ(Ph) is in equilibrium with κ∗ as optimal code, hence with P ∗ as
attractor. However, by robustness, part (ii) of Theorem 3.2, also Qβ is attractor
for this preparation. As Qβ 6= P ∗, we have arrived at a contradiction and conclude
that there cannot be entropy loss for any preparation with P ∗ as attractor.

Now assume that P ∗ is hyperbolic and H(P ∗) < ∞. Fix a finite h > H(P ∗)
and consider Ph defined by (15). Then Ph 6= ∅ (consider suitable distributions with
finite support). By reasoning as in the first part of the proof, P ∗ is the attractor
of Ph and Hmax(Ph) = h. Thus, the entropy function collapses at P ∗.

As examples of hyperbolic distributions with finite entropy, we mention those
with point probabilities proportional to n−1(ln n)−K (for n > 2) with K > 2.

5 Discussion

Our technical results are, basically, contained in [11]. The interest here is the overall
philosophy, cf. Section 1, the arrangement of the proofs, the new proof of Theorem
3.2 via standard minimax results and then the proof of Theorem 4.1 where some
inaccuracies in [11] are corrected (in Section 8 of [11] the statements regarding Ph

when h = Hmax(P) are erroneous). Technically and philosophically, there are good
reasons for the focus on codes, somewhat at the expense of distributions. As an
indication, note that for the setting of Section 3, the exponential family related to
models P = {P |〈E, P 〉 = constant} (“E” for energy), is better understood, not as
a family of distrivbutions, but rather as the corresponding family of robust codes.

In [25] and [11] some further results are found, in particular of a topological
nature.

The author expects that the mixed game- and information theoretical ideas
will be integrated in central parts of probability theory and statistics, perhaps also
in other areas. The references (and the homepages of Peter Harremoës and the
author) serve to document the trend.

Key emphasis should be attached to Theorem 4.1. It demonstrates a potential
for “generation” of entropy, almost contradicting the law of energy preservation.
In fact, if a phenomenon is governed by a hyperbolic distribution P ∗, this requires
only finite “energy” , H(P ∗) = 〈κ∗, P ∗〉, but does lead to preparations (15) which
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operate at as high an “energy level” Hmax we wish. In [11] this was applied to
Zipf ’s law and used to explain that a stable, yet flexible language is possible with a
potential for unlimited expressive power. Note that, typically, phenomena modelled
by hyperbolic or other heavy-tailed distributions all seem to require high energies
for their emergence (creation of a language, of the internet, of large economies,
of the universe (!) etc.). Regarding the difficulties in handling these phenomena
statistically, see [5]. One could even speculate that, in some precise sense, it may
be impossible to handle statistically data generated by a hyperbolic distribution.
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[24] J. Szép and F. Forgó. Introduction to the Theory of Games. Akadémiai Kiadó,
Budapest, 1985.

[25] F. Topsøe. Information Theoretical Optimization Techniques. Kybernetika,
15:8–27, 1979.

[26] F. Topsøe. Two General Games of Information. In Proceedings of the Interna-
tional Symposium on Information Theory and its Applications, Parma, pages
1410–1415, 2004. [ONLINE: http://www.math.ku.dk/ topsoe].

[27] J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100:295–
320, 1928.

Flemming Topsøe: University of Copenhagen, Department of Mathematics, Uni-
versitetsparken 5, Copenhagen, 2100, Denmark, topsoe@math.ku.dk


