Sylvestor problem (prediction)

Assume: \(X \subseteq \text{convex}, D: X \times X \rightarrow \mathbb{R}_+ \) satisfies compensation identity (e.g. \(D = \| x - y \| \), \(D = \sum_i \ln \frac{x_i}{y_i} \)).

Problem: Find \(y^* \) s.t. \(R(y^*) = R_{\min} (= \inf_y R(y)), R(y) = \sup D(x, y) \).

Introduce: \(\hat{X} = \{ \alpha = (\alpha_x)_{x \in X} \mid \text{prob. dist. over } X \text{ w. finite supp} \} \), \(\alpha \sim \hat{\alpha} = \text{barycenter } (\sum_x \alpha_x \cdot x) \), \(\Phi(\alpha, y) = \sum_x \alpha_x D(x, y) \).

Then: \(\Phi(y, y) = H(\alpha) + D(\alpha, y) \) with \(H(\alpha) = \Phi(\alpha, \hat{\alpha}) = \sum_x \alpha_x D(x, \hat{\alpha}) \) and \(D(\alpha, y) = D(\hat{\alpha}, y) \) and,

From theorem: \(H_{\max} = R_{\min} \) (note: new \(R(y) = \sup \Phi(\alpha, y) = \sup \sum_x \alpha_x D(x, y) = \sup D(\alpha, y) = R(y) \)).

Furthermore: Kuhn–Tucker criterion. Given \(\alpha^*, y^* \in \mathbb{R} \) such that \(y^* = \hat{\alpha}^*, D(x, y^*) \leq R \) for all \(x \in X \), \(D(x, y^*) = R \) for every anchor (i.e. an \(x \) with \(\alpha_x > 0 \)). Then \(\alpha^* \) and \(y^* \) are optimal.

(identification, 2nd case)

Illustration of \(H(\alpha) \), in information theory = information transition rate. Then \(H_{\max} = \text{capacity} \).

Proof. For any \(y \), \(R(y) = \sum_x \alpha_x^* R(y) \)
\[\geq \sum_x \alpha_x^* D(x, y^*) = \sum_x \alpha_x^* D(x, y^*) + D(y^*, y) \]
\[= R + D(y^*, y) \]. Result follows as \(R(y) = R \).