The complexity game

Introduce the Φ -game, $\gamma(\Phi)$, with X and Y as strategy sets with [X] (nature) as maximizer and [Y] (man) as minimizer. This leads immediately to the abstract MaxEnt principle since, for each x, $\min_y \Phi(x,y) = H(x)$, hence $\max_x \min_y \Phi(x,y) = H_{max}(X)$, the maximum entropy value. Consider also minimum risk $R_{min} = \inf_y R(y)$ with $R(y) = \sup_x \Phi(x,y)$.

Assume [diag, con, top, dom] and $H_{max} < \infty$. Then game is in equilibrium [Y] has an optimal strategy of the form $y^* = \hat{x^*}$, x^* is attractor and strong inequalities hold for $x \in X$, $y \in Y$:

$$H(x) + D(x, y^*) \le H_{max}$$

$$R_{min} + D(x^*, y) \le R(y)$$

 x^* attractor: For every sequence $(x_n) \subseteq X$ such that $H(x_n) \to H_{max}$ it holds that $x_n \to x^*$.

