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Abstract— Based on philosophical considerations, interpre-
tations which connect concepts from the cognitive universe are
presented. The resulting abstract theory is downward compatible
with basic elements of Shannon Theory. Though philosophically
based, the theory is quantitative and besides pragmatic with a
multitude of possible applications, some of which are indicated.

Major attention is payed to the concept of inference. Techni-
cally, this is based on two-person zero-sum games and notions
of equilibrium play a central role. This will lead us to abstract
versions of the Pythagorean theorems, thereby uniting classical
geometric results rooted in antiquity and probabilistic results on
information projections which are well known to the information
theory community. Concepts of equilibrium also lead to a notion
of core which is closely related to that of exponential families as
known from the the theory of statistical inference.

I. INTRODUCTION

We present an abstract quantitative theory addressing cog-
nitive elements such as truth, belief, knowledge, information,
perception and inference. Emphasis is placed on philosophi-
cally based interpretations. Certain interrelated aspects such
as description, methods of observation and a notion of control
are resting somewhat hidden in the background. They are not
given concrete form but, somewhat speculatively, postulated
as important elements in any concrete and more complete
instance of the abstract theory. For classical Shannon Theory,
initiated in [15], coding provides substance to these concepts.

Much of the extensive research related to cognition is “only
philosophical” and not accessible to quantitative analysis.
Other parts are hard to apply and mainly of theoretical interest.
The aim here is to develop the beginnings of a quantitative
theory which is easy to apply. A more complete account than
given here will be submitted for publication shortly.

Prompted by the guidelines issued by the ISIT 2011 orga-
nizers, let us end the introduction by arguing about the merits
of the present contribution.

(i): “what are the papers main contributions?”
The main insight gained from the present contribution is that

several key elements of Shannon Theory can be developed in
an abstract setting. Accordingly, there is no reference to the
notion of probability and yet, it is possible to give abstract
formulations of several concepts and results from standard
probabilistic information theory.

As an important instance of this, we mention Pythagorean
theorems (inequalities as well as equalities) which contain, on

the one hand, classical geometric results rooted in antiquity
and, on the other, well known results from Shannon Theory
connected with information projections. The fact that unifying
results like this can be formulated and proved without much
difficulty appears to the author as a convincing argument that
the abstract theory suggested is “on the right track” and worth
pursuing.

(ii): “why are the contributions of interest?”
In recent years, the information theory community has

shown an interest to “go beyond Shannon” as witnessed by
several initiatives (e.g. workshops such as “Facets of Entropy” ,
Copenhagen, October 2007, and “Information Beyond Shan-
non ” , Venice, December 2008). Many directions are pursued,
e.g. related to networking, brain research, bio-informatics, in-
formation geometry, statistical physics, quantitative linguistics
and certain areas of psychology. If present findings will be of
a more lasting value is hard to predict, but the mere possibility
of this is a strong reason why the research should be of interest,
also for research groups outside information theory proper.

Some of the results developed or indicated are promising
in relation to future research, e.g. regarding duality theory
and mathematical programming (inference for feasible prepa-
rations, see Section IV, appears relevant in this connection).
In general, there seems to be a wide basis for future research
in a number of directions for which the present research could
serve as a source of inspiration.

When successful, abstraction gives double benefit to the
researcher: Previous concrete results – here within Shannon
Theory – are cast in a new light and given perspective and,
secondly, new applications are enabled. With abstraction you
focus on the esentials whereas before, it might have been
difficult to “see the wood for the trees” .

(iii): “how does the new contribution relate to prior work?”
There are many relations and we outline some major ones.
The idea that it could be meaningful to develop an ab-

stract quantitative theory of information without reference to
probability originated, as far as the author is aware, in works
by Ingarden and Urbanik, cf. [10] where the authors write
“... information seems intuitively a much simpler and more
elementary notion than that of probability ... [it] represents
a more primary step of knowledge than that of cognition of
probability ...”. We also point to Kolmogorov, who in [13] (but
going back at least to 1970 it seems) stated that “Information



theory must preceed probability theory and not be based on
it”. Those who followed these guidelines either based their
research on logic or on the the theory of computing. Here
we follow a different and more pragmatic approach which is
closely related to works of the statisticians associated with the
notion of score functions, cf. Good [7] and other sources of
this concept pointed to in [5].

The role of description is emphasized in the present ap-
proach. This is done in a way independent of the minimum
description length principle, but the reader may want to
compare with this well known principle, see e.g. Barron,
Rissanen and Yu, [1] or Grünwald [8]. The latter reference
discusses many issues central to the present research, including
the maximum entropy principle due to Jaynes, cf. [11].

Game theory (two-person zero-sum games) will be our main
technical tool. The relevance of game theory to problems of
inference as here studied was first pointed out by Pfaffelhuber
[14] and, independently, by the author [16]. The author has,
alone or in collaboration with others, continued this research
in several papers, see e.g. [9]. Also note the study [8] by
Grünwald and Dawid.

The Pythagorean theorem(s) of information theory origi-
nated with Čencov and Csiszár, cf. [2] and [3]. The notion
of information projection goes back to these sources and have
received much attention since then. Suffice it here to mention
[4] and the more recent study [6] by Csiszár and Matús.
Note that work initiated by Csiszár on information projections
(including work in the pipeline, the author understands) uses
convex analysis as the main technical tool. It is of interest
to compare this with the game theoretical approach which is
pursued here. In this connection, Theorem 2 is indicative of
the role of convexity assumptions. Also note [18] where, as
in [6], a generalized notion of projection, not studied here, is
taken into consideration.

Applications of the abstract theory, mainly with a view
towards statistical physics, have recently been published by
the author, cf. [17] and [19].

II. PHILOSOPHY OF COGNITION, A SKETCH

Nature and Observer interact in a world whenever Observer
is exposed to situations from the world. Nature does not have
a mind and cannot act but is the holder of “truth”. Observer
seeks the truth but is restricted to belief. Observer is guided
by a creative mind which is exploited to obtain knowledge
as effortlessly as possible through experiments and associated
observations. Knowledge often comes in the more loose form
of perception of situations from the world.

“Belief is a tendency to act”1. Thus one should be aware
of possibilities to transform belief to more action-oriented
objects. Such objects we call controls. Description is the key
to control through the design of experiments. An experiment
involves a preparation which entails a limitation of the states
– possible truth instances – available to Nature. Theoretically
possible but unrealistic preparations should be distinguished

1a quotation from Good [7].

from feasible preparations. Feasible preparations determine
the knowable, thus provide limitations to what can be known,
hence to obtainable information.

Description entails an effort which depends on the state as
well as on Observers belief. This is the key to quantitative
considerations. Insight into the knowable also comes from
description. Indeed, it appears that the knowable reflects
possible beliefs by Observer and limitations on the associated
description effort.

To be operational, description effort should satisfy the
perfect match principle, viz. that effort, given the state, is
the least under a perfect match, i.e. when belief equals truth.
The minimal effort, given the state, is called entropy, and the
excess effort, taking also belief into consideration, is called
divergence.

Interaction in any situation takes place as if Nature and
Observer are players in a two-person zero-sum game with
description effort as objective function, Nature as maximizer
and Observer as minimizer. Ideally, one should not only aim
at equilibrium but also at bi-optimality, i.e. the identification
of optimal strategies which provides Observer not only with
insight about what can be infered but also on how.

III. TECHNICAL MODELLING AND BASIC NOTIONS

Given are sets X , the state space, and Y ⊇ X , the belief
reservoir, as well as a relation X ⊗ Y ⊆ X × Y , domination.
Notation: y � x for (x, y) ∈ X ⊗ Y . If y = x, (x, y) is a
perfect match. The relation X⊗Y is assumed to contain every
perfect match. Also convenient is the assumption that there
exists y which dominates every state x. Often, X⊗Y = X×Y .

Pairs in X ⊗ Y represent atomic situations. More compli-
cated situations involve non-empty subsets of X , preparations.

Among the two players indicated in Section II, Observer is
assumed to have some initial and very limited information,
implying that in a situation with preparation P , Observer
always chooses a belief instance y which dominates every state
in P (notation: y � P).

A non-empty set Ydet ⊆ Y determines certain beliefs.
Quantitative considerations are enabled through a function

Φ : X ⊗ Y →] − ∞,∞], the description. This function
determines the necessary effort by Observer in any atomic
situation. We assume that Φ(x, y) = 0 if y ∈ Ydet and –
the central assumption of our modelling – that Φ satisfies
the perfect match principle, that Φ(x, y) ≥ Φ(x, x). More
precisely, we assume that there are functions H : X →
] − ∞,∞], called entropy, and D : X ⊗ Y → [0,∞],
called divergence, such that, for all (x, y) ∈ X ⊗ Y , firstly,
Φ(x, y) = H(x)+D(x, y) (the linking identity) and, secondly,
D satisfies the fundamental inequality (of information theory),
which dictates that D(x, y) ≥ 0 with equality if and only if
y = x. The assumptions made are also expressed by saying
that (Φ,H,D) is an (effort-based) information triple. A triple
(U,M,D) for which (−U,−M,D) is an information triple
after this definition is a utility-based information triple with
U as utility function (or pay-off) and M as maximal utility (as
before, D is the divergence).



Sometimes, Φ is considered to determine the net effort.
Then the gross effort is obtained by adding the overhead,
typically representing the cost of implementing the method
of description.

Two descriptions which differ only by a positive scalar are
equivalent. The choice among equivalent descriptions amounts
to a choice of unit. In probabilistic models, this can be done
by setting the overhead to unity.

Often, effort is measured relative to some standard. A
particularly important instance of this occurs when Observer
has fixed a prior y0 ∈ Y and wants to update his belief by
replacing y0 with a posterior y. For example, if Observer
obtains the information “x ∈ P” for some preparation P ,
he may want to replace the prior by a posterior y ∈ P . The
associated updating gain is defined, when not of the form
∞−∞, by

U|y0(x, y) = D(x, y0)−D(x, y) , (1)

an expression more likely to be well defined than the otherwise
natural expression Φ(x, y0)−Φ(x, y) in which prior effort Φy0

is compared to posterior effort Φy . 2

If Dy0 < ∞, then (U|y0 ,D
y0 ,D) is a utility-based in-

formation triple. Note that triples which occur in this way
do not require the full description Φ. It suffices to start out
with a divergence function D which satisfies the fundamantal
inequality in order for the construction to make sense.

Next, let us identify those preparations which can represent
realistic information. Given y ∈ Y and a level h < ∞, we
first define the level set Py(h) and the sublevel set Py(h↓) by

Py(h) = {Φy = h} ; Py(h↓) = {Φy ≤ h} . (2)

By a basic strict, respectively basic slack preparation
we understand, respectively a level set and a sublevel set
(when non-empty). A general strict, respectively general slack
preparation is a finite non-empty intersection of basic strict,
respectively basic slack preparations. The preparations thus
identified are those we consider as feasible.

If y= (y1, · · · , yn) are elements of Y and h= (h1, · · · , hn)
are real numbers, we denote by Py(h), respectively Py(h↓),
the sets

Py(h) =
⋂
i≤n

Pyi(hi) ; Py(h↓) =
⋂
i≤n

Pyi(h↓i ) . (3)

By Py we denote the preparation family consisting of all
preparations of the form Py(h) for some choice of h.

Somewhat speculatively we assume that there is a bijective
correspondance between Y and a set, W , the action space.
Elements in W are called controls. They point in a more direct
way than belief instances to possible actions by Observer. We
find that “describtion ” and “control” are related concepts, the
one often leading to the other. For the models related to Tsallis
entropy which are considered in [19], it is evident how controls
(there termed “descriptors” ) are derived from description. For

2for a bivariate function f = f(x, y), we denote by fy the marginal
function x 7→ f(x, y) and by fx the marginal function y 7→ f(x, y).

the present study, we have chosen to focus on belief instances,
except for just a few remarks on controls.

IV. INFERENCE

Consider partial information “x ∈ P”. In practice, P will
be a feasible preparation, but we need not assume so for the
basic results.

The process of inference concerns the identification of
“sensible” states in P – ideally only one such state, the infered
state. This will be achieved by game theoretical methods
involving the previously indicated two-person zero-sum game
with Φ as objective function. As it turns out, this will result
in “double inference” where also belief instances will be
identified. The game considered is denoted γ(P) (or γ(Φ,P)).

An infered state, say x∗, tells Observer how “close” in some
sense he can get to the truth. On the other hand, an infered
belief instance y∗ is more of an instruction to Observer on how
best to act regarding the set-up of experiments. Accordingly,
y∗ is really best thought of as the corresponding control. In
short, double inference gives Observer information both about
what can be infered about truth and how.

The choice of strategy for Observer may be a a real choice,
whereas, for Nature, it is more appropriate to have a fictive
choice in mind, reflecting Observers thoughts about what the
truth could be.

Following standard notions of game theory, the value of
γ(P) for Nature is

sup
x∈P

inf
y�x

Φ(x, y) = sup
x∈P

H(x) , (4)

the MaxEnt-value, Hmax(P). Defining risk by

Ri(y|P) = sup
x∈P

Φ(x, y) ,

the value for Observer is the MinRisk-value of the game:

Rimin(P) = inf
y�P

Ri(y|P) . (5)

An optimal strategy for Nature is a strategy x∗ ∈ P with
H(x∗) = Hmax(P). An optimal strategy for Observer is a
strategy y∗ � P with Ri(y∗|P) = Rimin(P).

The game is in equilibrium if Hmax(P) = Rimin(P) < ∞.
By ctr(P), the centre of P , we denote the set of x ∈ P which
dominate P .

Lemma 1: If γ(P) is in equilibrium and both players have
optimal strategies, then these strategies are unique, coincide
and belong to the centre of P .

Proof: Let x∗ ∈ P be any optimal strategy for Nature and
y∗ � P any optimal strategy for Observer. By assumption,
such strategies exist. Then Φ(x∗, y∗) ≥ H(x∗) = Hmax(P) =
Rimin(P) = Ri(y∗|P) ≥ Φ(x∗, y∗), hence Φ(x∗, y∗) =
H(x∗) and we conclude that y∗ = x∗ as desired.

For a game in equilibrium with optimal strategies for both
players, the common unique strategy secured by Lemma 1 is
the bi-optimal strategy. In spite of the identity of the optimal
strategies in such cases, we often use different notation,



typically with x∗ when we focus on optimality for Nature
and with y∗ when we focus on optimality for Observer.

For results about existence of the bi-optimal strategy, see
[18]. Here we focus on identification of the bi-optimal strategy.

Theorem 1: [Identification] Let y∗ = x∗ ∈ ctr(P) with
H(x∗) < ∞. Then the following conditions are equivalent:

(i) γ(P) is in equilibrium and has x∗ as bi-optimal strategy;
(ii) For all x ∈ P , Φ(x, y∗) ≤ H(x∗);
(iii) P ⊆ Py∗(h↓) with h = H(x∗).
When these conditions are satisfied, the Pythagorean in-

equality as well as the dual Pythagorean inequility holds, i.e.

∀x ∈ P : H(x) + D(x, y∗) ≤ Hmax(P) , (6)
∀y � P : Rimin(P) + D(x∗, y) ≤ Ri(y|P) . (7)

Proof: We present an outline. The equivalence of (i) and
(ii) follows as one of the saddle-value inequalities of game
theory 3 holds by the perfect match principle, and the other is
the inequality of (ii). The reformulation of (ii) given in (iii) is
evident.

Now assume that (i)-(iii) hold. The Pythagorean inequality
(6) is another reformulation of (ii) and the dual Pythagorean
inequality (7) holds since, for y � P , Rimin(P)+D(x∗, y) =
H(x∗) + D(x∗, y) = Φ(x∗, y) ≤ Ri(y|P).

The role of the sublevel sets is contained in Theorem 1.
This is best illuminated by changing the setting, asking which
preparations can have a given state as bi-optimal strategy:

Corollary 1: Let x∗ be a state with finite entropy h =
H(x∗). Then γ(P) is in equilibrium with x∗ as bi-optimal
strategy if and only if {x∗} ∈ P ⊆ Px∗(h↓). In particular, the
largest such preparation is the sublevel set Px∗(h↓).

One may think of a bi-optimal strategy as a kind of
“uniform” state over P . In case P = X , we are led to
the notion of the uniform state (over X). This is a state x∗,
necessarily unique, with h = H(x∗) < ∞ and Px∗(h↓) = X .

When, under the condition of equilibrium, we combine the
direct and the dual Pythagorean inequality we find that

H(x) + D(x, x∗) + D(x∗, y) ≤ Ri(y|P) , (8)

whenever x ∈ P, y � P . This is the combined Pythagorean
inequality. It contains both Pythagorean inequalities. The
inequality applied with y = x appears especially attractive
(it involves an abstract version of Jeffrey’s divergence).

The Pythagorean inequalities have implications of a geo-
metric/topological nature. Indeed, for strategies approaching
the optimum, respectively H(xn) → Hmax(P) (with xn’s in
P) and Ri(yn|P) → Rimin(P) (with the yn’s dominating
P), the relevant divergences converge to zero, respectively
D(xn, y∗) → 0 and D(x∗, yn) → 0. This behaviour can be
extended to cases when optimal strategies do not exist, cf.
[16], [9] and [18].

3typically associated with Nash’ name but in this setting – two persons and
zero sum – going back to von Neumann, see [21] or the account in [12].

Under special circumstances, the Pythagorean inequalities
hold more generally than stated in Theorem 1:

Theorem 2: [Inference under convexity] Assume that X is
a convex topological space, that the marginal functions Φy

with y ∈ X are concave and that the marginal functions Dx

with x ∈ X are lower semi-continuous on X . Let P be a
convex preparation and assume that y∗ = x∗ ∈ ctr(P) has
finite entropy. Then, the condition H(x∗) = Hmax(P) is not
only necessary, but also sufficient for γ(P) to be in equilibrium
with x∗ as bi-optimal strategy, hence also for (6) and (7) to
hold.

Proof: Assume that H(x∗) = Hmax(P). Then, for any
convex combination of states, say y =

∑
αixi,

H(x∗) ≥ H
( ∑

αixi

)
= Φ

( ∑
αixi, y

)
≥

∑
αiΦ(xi, y)

=
∑

αi H(xi) +
∑

αi D(xi, y) .

To establish (ii) of Theorem 1, consider x ∈ P and apply the
inequality above to yε = (1−ε)x∗+εx. You find that H(x∗) ≥
(1−ε) H(x∗)+ε H(x)+ε D(x, yε), hence H(x)+D(x, yε) ≤
H(x∗). Letting ε tend to 0, H(x)+D(x, y∗) ≤ H(x∗) follows.
As x ∈ P was arbitrary, the desired result follows.

One may criticise the result as you cannot apply it to
feasible preparations in case the marginals Φy are strictly
concave, since then the feasible preparations will, typically,
not be convex. Rather than reacting negatively towards this
observation, we take it as a strong indication that really useful
modelling requires that the marginals Φy are in fact affine.

Finally, we turn to situations when the Pythagorean inequal-
ity holds with equality.

Theorem 3: [Robustness] If x∗ ∈ P ⊆ Px∗(h) and h < ∞,
then h = H(x∗) and γ(P) is in equilibrium with x∗ as bi-
optimal strategy. Furthermore, for x ∈ P ,

H(x) + D(x, y∗) = Hmax(P) . (9)

This follows directly from Theorem 1 and the linking
identity. The equality (9) is the Pythagorean equality, here
in a quite abstract version.

The crucial property P ⊆ Py∗(h) we refer to as robustness
and say, provided h < ∞, that y∗ is robust for γ(P) with h
as level of robustness. The set of all robust strategies for γ(P)
is called the core of γ(P) and denoted C(P). For a family P
of preparations the core of the family is the intersection of the
individual cores:

C(P) =
⋂
P∈P

C(P) . (10)

The notion of core is closely related to that of exponential
families as indicated in [17] (and further discussed in a
forthcoming publication). The notion is particularly useful for
preparation families of the form Py. The core for such a family
is denoted Cy.



Theorem 4: [Core and inference] Consider a preparation
family Py with y = (y1, · · · , yn). Let x∗ be a state, put y∗ =
x∗ and assume that y∗ ∈ Cy. Further, put h = (h1, · · · , hn)
with hi = Φ(x∗, yi) for i = 1, · · · , n and assume that these
constants are finite. Then γ

(
Py(h)

)
is in equilibrium and

has x∗ as bi-optimal strategy. In particular, x∗ is the MaxEnt
strategy for Py(h).

At times it is advantageous to translate this result to one
dealing with controls rather than truth instances.

The notion of robustness has not received much attention
in a game theoretical setting. It is implicit in [3] and in [16].
Apparently, the existence of suitable robust strategies is a
strong assumption. However, for typical models appearing in
applications, the assumption is often fulfilled when optimal
strategies exist. Results from[9] point in this direction.

V. PROBABILISTIC AND GEOMETRIC APPLICATIONS

Important discrete probabilistic models may lead either to
the theory of Shannon or to that explored in particular by
Tsallis, cf. [20]. Very briefly, one takes states and belief
instances to be discrete probability distributions over some
alphabet A: x = (xi)i∈A, y = (yi)i∈A, possibly allowing
y’s to be incomplete (

∑
yi ≤ 1). Domination y � x means

that yi > 0 if xi > 0. Certain beliefs are modeled by deter-
ministic distributions. For Shannon theory one takes Kerridge
inaccuracy

∑
xi ln 1

yi
as description. Controls are then of the

form w = (wi)i∈A with wi = ln 1
yi

. Standard entropy and
divergence emerges. To see how Tsallis-type quantities arise,
we ask the reader to consult [19].

For further applications, first consider general abstract
problems of updating. Given is a divergence function D, a
preparation P and a prior y0 for which Dy0 < ∞. The
game γ(U|y0 ,P) is analogous to the previously considered
type of games. It has U|y0 as objective function, Nature as
minimizer and Observer as maximizer. A state x∗ ∈ P with
D(x∗, y0) = infx∈P D(x, y0) is the I-projection of y0 on P if
x∗ is unique with these properties.

From previous results applied to the game γ(−U|y0 ,P) we
deduce the following result:

Theorem 5: [I-projection] With assumptions as above, let
x∗ ∈ P . Then a necessary and sufficient condition that
γ(U|y0 ,P) is in equilibrium with x∗ as bi-optimal strategy
is that, for every x ∈ P , the Pythagorean inequality holds, i.e.

D(x, y0) ≥ D(x, x∗) + D(x∗, y0) . (11)

In case X is a convex topological space, P convex, the y-
marginals of U|y0 affine when y ∈ X and the x-marginals of
D lower semi-continuous on X for x ∈ X , then the above
condition is satisfied if only x∗ is the I-projection of y0 on P .

The classical Pythagorean inequality of Shannon theory
follows from Theorem 5. For this, one applies Theorem 5
with Kullback-Leibler divergence for D.

The classical geometric inequalities associated with
Pythagoras name and the connection with standard geometric

projections can be obtained, say in an Euclidean space, by
considering D given by D(x, y) = ‖x− y‖2.

In the Euclidean setting or even in the abstract setting
above one may embark on a closer geometric study of the
games γ(U|y0 ,P) – also those not in equilibrium. To give an
indication, note that the largest divergence ball with centre
y0, i.e. set of the form {Dy0 < r}, which can be placed in
the complement of P determines Natures value in the game.
Similarly, if one looks for “large” halfspaces, sets of the form
{Dy0 −Dy < a}, which you can place in the complement of
P , you are led to visual geometric expressions for Observers
value in the game.
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