# Combinatorics of continued fractions 

Flemming Topsøe University of Copenhagen
topsoe@math.ku.dk
Colloquium at DTU, Danish technical University
29.03, 2006

## Continued fractions, some basics

Finite continued fractions are expressions of the form

$$
b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \cdots \frac{a_{n}}{b_{n}} .
$$

When possible, understood, e.g., for $n=3$ as

$$
b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}}}} .
$$

The $a$ 's and $b$ 's are the elements (partial numerators and denominators). Preferred notation:

$$
K\left(\begin{array}{ccccc}
- & a_{1} & . & . & a_{n} \\
b_{0} & b_{1} & . & . & .
\end{array} b_{n}\right)=\frac{A_{n}}{B_{n}} .
$$

Precisely, (canonical) numerators and denominators:

$$
\frac{A_{n}}{B_{n}}=\frac{A_{0}^{n}}{B_{0}^{n}}=b_{0}+\frac{a_{1}}{\frac{A_{1}^{n}}{B_{1}^{n}}}=\frac{b_{0} A_{1}^{n}+a_{1} B_{1}^{n}}{A_{1}^{n}}
$$

$\frac{A_{n}}{B_{n}}=C_{n}$, the $n$ 'th approximant. Convergence for infinite continued fractions means $\left(C_{n}\right)_{n \geq 0}$ converges!

## An example

Why bother? Many reasons (number theory, computation, ...). An example: Lamberts expansion (1770): $\ln (1+x)$
$=\frac{x}{1}+\frac{1^{2} x}{2}+\frac{1^{2} x}{3}+\frac{2^{2} x}{4}+\frac{2^{2} x}{5}+\frac{3^{2} x}{6}+\frac{3^{2} x}{7}+\cdots$
$=K\left(\begin{array}{ccccccccc}- & x & 1^{2} x & 1^{2} x & 2^{2} x & 2^{2} x & 3^{2} x & 3^{2} x & \cdots \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots\end{array}\right)$

It converges for all $x>-1$ ! Here are the first 7 approximants to $\ln 2=0.693147180 \cdots$ :
1
0.7000
0.6933
0.69315
0.6667
0.6923
0.69312

To obtain the same precision from the Taylor series expansion you need more than 100000 terms!

## An observation

Problem: Formulas for $A_{n}$ and $B_{n}$ !
One possible solution: By recurrence relations!
A better solution, illustrated by an example:
$A_{8}=\cdots+a_{1} a_{4} a_{7} b_{2} b_{5} b_{8}+\cdots$, (a sum of 55 terms), $B_{8}=\cdots+a_{2} a_{4} a_{8} b_{5} b_{6}+\cdots$, (a sum of 34 terms).
... apparently connected with families of mothers, daughters and free women!! Look here:


Later: First family, say $\omega$, has $M(\omega)=\{1,4,7\}$, $D(\omega)=\{0,3,6\}$ and $F(\omega)=\{2,5,8\}$.

## Populations

$\Omega_{i}^{j}$ is the population of all families over $[i, j]$ which only consist of females, viz.

> mothers ( $\alpha$ 's) daughters ( $\gamma$ 's) and free women $(\beta$ 's $)$
according to the rules:

- a family $\omega \in \Omega_{i}^{j}$ contains one member of each ageclass $i, i+1, \cdots, j$,
- every mother has only one daughter,
- a daughter is one age-class younger than the mother,
- no daughter can be a mother,
- the youngest member (of age $i$ ) cannot be a mother.

Put $M(\omega), D(\omega), F(\omega)=$ sets of mothers, daughters and free women, respectively, identified by age.

A cut-point in $\omega$ allows split of the family in a "young" and an "old" part. Opposite process: concatanation. Special cases: $\Omega_{i}^{i-1}=\{\emptyset\}, \Omega_{i}^{i-2}=\emptyset$.

## partition functions

Add analytical elements through three series:
$\left(\alpha_{n}\right)_{n \geq 1},\left(\beta_{n}\right)_{n \geq 0}$ and $\left(\gamma_{n}\right)_{n \geq 0}$ and define, for an interval $[i, j]$, the pointwise partition function by

$$
Z_{i}^{j}(\omega)=\prod_{\nu \in M(\omega)} \alpha_{\nu} \prod_{\nu \in D(\omega)} \gamma_{\nu} \prod_{\nu \in F(\omega)} \beta_{\nu}
$$

and the (accumulated) partition function by

$$
Z_{i}^{j}=\sum_{\omega \in \Omega_{i}^{j}} Z_{i}^{j}(\omega)
$$

(special cases: $Z_{i}^{i-1}=1, Z_{i}^{i-2}=0$ ).
Assume for simplicity and without loss of generality that $\gamma_{\nu} \equiv 1$ and think of the "continued fraction case".

Theorem 1. $A_{n}=Z_{0}^{n}, B_{n}=Z_{1}^{n}$.
Proof. Start is OK, recursion too.
Example: If $\alpha_{\nu} \equiv 1, \beta_{\nu} \equiv 1$, then $Z_{0}^{n}=$ number of families in the population $\Omega_{0}^{n}=0,1,1,2,3,5, \cdots$, the Fibonacci numbers. Clearly, also $=\sum\binom{n-\nu}{\nu}$.

## reflection

An example of an identity with varying sequences:

## Theorem 2.

$$
\begin{aligned}
& Z\left(\begin{array}{ccccccc}
- & \alpha_{i+1} & \cdot & \cdot & \alpha_{j-1} & \alpha_{j} \\
\beta_{i} & \beta_{+1} & \cdot & \cdot & \cdot & \beta_{j-1} & \beta_{j} \\
\gamma_{i} & \gamma_{i+1} & \cdot & \cdot & \cdot & \gamma_{j-1} & -
\end{array}\right) \\
&=Z\left(\begin{array}{cccccc}
- & \alpha_{j} & \cdot & \cdot & \alpha_{i+2} & \alpha_{i+1} \\
\beta_{j} & \beta_{j-1} & \cdot & \cdot & \beta_{i+1} & \beta_{i} \\
\gamma_{j-1} & \gamma_{j-2} & \cdot & \cdot & \cdot & \gamma_{i} \\
-
\end{array}\right) .
\end{aligned}
$$

Proof. Use the fact that $\Omega_{i}^{j}$ is equivalent with itself under the map $\omega \curvearrowright \tilde{\omega}$ which corresponds to the reflection determined by

$$
\begin{aligned}
& i \curvearrowright \text { never mind (!), } \\
& i+1 \curvearrowright j, \\
& \cdots, \\
& j \curvearrowright i+1 .
\end{aligned}
$$

Now, contributions to first term from $\omega$ matches contributions to second term from $\tilde{\omega}$.

## basic identities

Special notation: $c_{i}^{j}=c_{i} \cdot c_{i+1} \cdots c_{j}$ with $c_{i}^{i-1}=1$.
Theorem 3 (basic identities).

$$
\begin{align*}
Z_{i}^{j} & =\alpha_{\nu} Z_{i}^{\nu-2} Z_{\nu+1}^{j}+Z_{i}^{\nu-1} Z_{\nu}^{j},  \tag{1}\\
Z_{i}^{j} & =\alpha_{j} Z_{i}^{j-2}+\beta_{j} Z_{i}^{j-1},  \tag{2}\\
Z_{i}^{j} & =\alpha_{i+1} Z_{i+2}^{j}+\beta_{i} Z_{i+1}^{j},  \tag{3}\\
Z_{i}^{j} & =\beta_{i}^{j}+\sum_{\nu=i+1}^{j} \beta_{i}^{\nu-2} \alpha_{\nu} Z_{\nu+1}^{j},  \tag{4}\\
Z_{i}^{j} & =\beta_{i}^{j}+\sum_{\mu=i+1}^{j} \alpha_{\mu} \beta_{i}^{\mu+1} Z_{i}^{\mu-2} . \tag{5}
\end{align*}
$$

Proof. (1): Is there a mother of age $\nu$ or is there not? (2) and (3): Take $\nu=j$ or $\nu=i+1$.
(4) and (5): Consider youngest, respectively oldest mother.
(2) is the primary identity, (3) the adjoint identity Both are three-term recurrence relations.

## the extended partition function diagram



Theorem 4. Primary and adjoint identities hold with

$$
Z_{i}^{j}=\frac{(-1)^{i-j-1}}{a_{j+1}} Z_{j+2}^{i-2} \text { for } i \geq j+2
$$

Columns / rows are linearly independent solutions of the primary/ adjoint recurrence relation. For the "natural" isomorphism between the two solution spaces the $i$ 'th column corresponds to the $i-2$ 'th row.

Quotients corresponding to a fixed pair of rows converges iff all such quotients converges iff the continued fraction converges.

## the determinant formulas

Theorem 5 (the swopping identity). Given populations:

$$
\left(\Omega_{i_{t}}^{j_{t}}\right)_{t \in T}
$$

and a permutation $t \curvearrowright \sigma(t)$ of $T$. Let

$$
\mathbb{Z}=\sum_{\left(\omega_{t}\right)} \prod_{t} Z_{i t}^{j_{t}}\left(\omega_{t}\right)
$$

summation being over all $\left(\omega_{t}\right)_{t \in T} \in \prod_{t} \Omega_{i_{t}}^{j_{t}}$ which have a common cut-point. Let $\mathbb{Z}^{\sigma}$ be the corresponding quantity related to the populations $\left(\Omega_{i_{t}}^{j_{\sigma(t)}}\right)_{t \in T}$.

Then $\mathbb{Z}=\mathbb{Z}^{\sigma}$.

Proof. Swop!
Corollary 1 (determinant formula). Put

$$
\Delta_{i, j}^{k, l}=\left|\begin{array}{cc}
Z_{i}^{k} & Z_{i}^{l} \\
Z_{j}^{k} & Z_{j}^{l}
\end{array}\right|
$$

Then

$$
\Delta_{i, j}^{k, l}=(-1)^{k-j} \alpha_{j}^{k+1} Z_{i}^{j-2} Z_{k+2}^{l}
$$

## introducing randomness

Assume $a_{i}$ 's and $b_{i}$ 's all $>0$. With weight of $\omega \in \Omega_{i}^{j}$ proportional to $Z_{i}^{j}(\omega)$ you define probability distributions $P_{i}^{j}$ and natural random elements $X_{\nu} ; \nu \in[i, j]$. For example,

$$
P_{i}^{j}\left(X_{\nu}=\alpha\right)=\alpha_{\nu} \frac{Z_{i}^{\nu-2} Z_{\nu+1}^{j}}{Z_{i}^{j}} .
$$

Theorem 6. The probability distributions can be extended in a natural way to probability distributions over infinite families iff the continued fraction is convergent.

Define the demographic constants $\lambda_{i}$ as

$$
\lim _{j \rightarrow \infty} \frac{E_{i}^{j}(|\omega|)}{j-i+1}
$$

with $|\omega|$ denoting the number of mothers in $\omega$.
Conjecture $\lambda_{i}=\lim _{\nu \rightarrow \infty} \lim _{j \rightarrow \infty} P_{i}^{j}\left(X_{\nu}=\alpha\right)$.
Example In simple examples this is OK. For the Fi bonacci case, $\lambda_{i}=\frac{5-\sqrt{5}}{10}=\frac{\rho}{\sqrt{5}} \approx 0.2764$.

