Combinatorics related to continued

fractions

Flemming Topsøe
University of Copenhagen
topsoe@math.ku.dk
Prepared for presentation at ICM2006 Support by
Danish Natural Science Research Council
(overheads used are posted on www.math.ku.dk/~topsoe)

Continued fractions, a reminder

Finite continued fractions are expressions of the form

$$
b_{0}+\frac{a_{1}}{b_{1}+} \frac{a_{2}}{b_{2}+} \cdots \frac{a_{n}}{b_{n}} .
$$

When possible, understood, e.g., for $n=3$ as

$$
b_{0}+\frac{a_{1}}{b_{1}+\frac{a_{2}}{b_{2}+\frac{a_{3}}{b_{3}}}} .
$$

The a 's and b 's are the elements (partial numerators and partial denominators). Preferred notation:

$$
K\left(\begin{array}{ccccc}
- & a_{1} & . & . & a_{n} \\
b_{0} & b_{1} & . & . & .
\end{array} b_{n}\right)=\frac{A_{n}}{B_{n}} .
$$

Precisely, (canonical) numerators and denominators:

$$
\frac{A_{n}}{B_{n}}=\frac{A_{0}^{n}}{B_{0}^{n}}=b_{0}+\frac{a_{1}}{\frac{A_{1}^{n}}{B_{1}^{n}}}=\frac{b_{0} A_{1}^{n}+a_{1} B_{1}^{n}}{A_{1}^{n}}
$$

$\frac{A_{n}}{B_{n}}=C_{n}$, the n 'th approximant. Infinite continued fraction converges to C if $\lim _{n \rightarrow \infty} C_{n}=C$.

An observation

Problem: Formulas for A_{n} and B_{n} ?
One possible solution: By recurrence relations!
A better solution, illustrated by an example:
$A_{8}=\cdots+a_{1} a_{4} a_{7} b_{2} b_{5} b_{8}+\cdots$, (a sum of 55 terms), $B_{8}=\cdots+a_{2} a_{4} a_{8} b_{5} b_{6}+\cdots$, (a sum of 34 terms).
... apparently connected with families of mothers, daughters and free women! Look here:

First family, say ω, has $M(\omega)=\{1,4,7\}$, $D(\omega)=\{0,3,6\}$ and $F(\omega)=\{2,5,8\}$.

Populations

$\Omega_{i}^{j}=$ population of all families over $[i, j]$ with
mothers (α 's), daughters (γ 's) and free women (β 's)
as members according to the rules:

- a family $\omega \in \Omega_{i}^{j}$ contains one member of each age-class i, \cdots, j,
- every mother has only one daughter, and she is ...
- ... one age-class younger than the mother,
- youngest member (of age i) is not a mother.

Put $M(\omega), D(\omega), F(\omega)=$ sets of mothers, daughters and free women, respectively, identified by age.

A cut-point in ω allows split of the family in a "young" and an "old" part. Opposite process: concatanation. Special cases: $\Omega_{i}^{i-1}=\{\emptyset\}, \Omega_{i}^{i-2}=\emptyset$.

partition functions

Given $\left(\alpha_{n}\right)_{n \geq 1},\left(\beta_{n}\right)_{n \geq 0},\left(\gamma_{n}\right)_{n \geq 0}$, define, for an interval $[i, j]$, the pointwise partition function, $Z_{i}^{j}(\omega)$, and the (accumulated) partition function, Z_{i}^{j}, by:

Definitions:

$$
\begin{aligned}
Z_{i}^{j}(\omega) & =\prod_{\nu \in M(\omega)} \alpha_{\nu} \prod_{\nu \in D(\omega)} \gamma_{\nu} \prod_{\nu \in F(\omega)} \beta_{\nu}, \\
Z_{i}^{j} & =\sum_{\omega \in \Omega_{i}^{j}} Z_{i}^{j}(\omega) .
\end{aligned}
$$

(special cases: $Z_{i}^{i-1}=1, Z_{i}^{i-2}=0$).

By mother \leftrightarrow daughter coupling, may assume $\gamma_{\nu} \equiv 1$. Intention: $\alpha_{n}=a_{n}, \beta_{n}=b_{n}$ of continud fraction.

Example: If $\alpha_{\nu} \equiv 1, \beta_{\nu} \equiv 1$, then $Z_{0}^{n}=\# \Omega_{0}^{n}=$ F_{n+2}, F for Fibonacci. Clearly, also $=\sum\binom{n-\nu}{\nu}$.

fundamental identities

basic identities:

$$
\begin{align*}
& Z_{i}^{j}=\alpha_{\nu} Z_{i}^{\nu-2} Z_{\nu+1}^{j}+Z_{i}^{\nu-1} Z_{\nu}^{j}, \tag{1}\\
& Z_{i}^{j}=\alpha_{j} Z_{i}^{j-2}+\beta_{j} Z_{i}^{j-1}, \tag{2}\\
& Z_{i}^{j}=\alpha_{i+1} Z_{i+2}^{j}+\beta_{i} Z_{i+1}^{j} . \tag{3}
\end{align*}
$$

Proof. (1): Is there a mother of age ν or is there not?
(2) and (3): Take $\nu=j$ or $\nu=i+1$.

Cor. For continued fractions: $A_{n}=Z_{0}^{n}, B_{n}=Z_{1}^{n}$.

Proof. Start is OK, induction (recursion) too.
determinant identity With

$$
\begin{gathered}
\Delta_{i, j}^{k, l}=\left|\begin{array}{cc}
Z_{i}^{k} & Z_{i}^{l} \\
Z_{j}^{k} & Z_{j}^{l}
\end{array}\right| \\
\Delta_{i, j}^{k, l}=(-1)^{k-j} \alpha_{j}^{k+1} Z_{i}^{j-2} Z_{k+2}^{l}
\end{gathered}
$$

the swopping lemma

Determinant identity follows by a simple combinatorial argument. Idea: two (or more) families with a common cut-point may split their families (in "young" and "old" parts) and swop parts. A general formulation:

swopping lemma

Given $\left(\Omega_{i_{t}}^{j_{t}}\right)_{t \in T}$ and permutation $t \curvearrowright \sigma(t)$ of T,
let $\mathbb{Z}=\sum_{\left(\omega_{t}\right)} \Pi_{t} Z_{i_{t}}^{j_{t}}\left(\omega_{t}\right)$, summation being over all $\left(\omega_{t}\right)_{t \in T} \in \Pi_{t} \Omega_{i_{t}}^{j_{t}}$ which have a common cut-point. Let \mathbb{Z}^{σ} be the corresponding quantity related to the populations $\left(\Omega_{i_{t}}^{j_{\sigma(t)}}\right)_{t \in T}$. Then $\mathbb{Z}=\mathbb{Z}^{\sigma}$.

Proof. Swop!

The determinant identity is derived as a corollary ...

the extended partition function diagram

 (see separate OH)Theorem Under the non-vanishing condition ($\alpha_{n} \neq 0, n \geq 1$), basic identities continue to hold in (i, j)-range $[0, \infty[\times[-2, \infty[$ with complementary definition

$$
Z_{i}^{j}=\frac{(-1)^{i-j-1}}{a_{j+1}} Z_{j+2}^{i-2} \text { for } i \geq j+2
$$

- "Usual" results known from continued fraction theory regarding linear dependence and relations rows \leftrightarrow columns continue to hold for the extended diagram.
- The determinant identity too extends in a natural way.
- Further, if α 's and β 's are all positive, quotients corresponding to a fixed pair of rows converges iff all such quotients converge iff the continued fraction converges.

further possibilities

- under the positivity assumption, α_{n}, β_{n} all >0, natural probabilities can be assigned to families in Ω_{i}^{j} :

$$
P_{i}^{j}(\omega)=\frac{Z_{i}^{j}(\omega)}{Z_{i}^{j}}
$$

Limit models for fixed i as $j \rightarrow \infty$ exist iff the continued fraction is convergent and if so defines (non-stationary) Markov chains (special issues: ergodicity ...)

- Relations to Padé tables and Frobenius identities can be established (study initiated)
- More speculatively: Can the γ 's be useful, say as scalars whereas α 's and β 's could be operators ... e.g. in expressions like

$$
b_{0}+\gamma_{0} \frac{a_{1}}{b_{1}+} \quad \gamma_{1} \frac{a_{2}}{b_{2}+} \cdots \gamma_{n-1} \frac{a_{n}}{b_{n}} ?
$$

In any case:

Conclusion (claims!)

- combinatorial structure is "just the right one"...
- and may be taken to lie behind fundamental constructs of basic continued fraction theory
- apparently, the combinatorial dimension has been overlooked since the times of the old masters.
- the new ideas mainly lead to well known results and as such contribute to a broadening of our understanding
- in addition, the combinatorial approach does offer new opportunities:
- a close connection to certain non-stationary Markov chains
- ???

