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CHAPTER 1

The Quantitative Theory of Information

By Peter Harremoés and Flemming Topsge

1. Basic concepts of information theory

Information theory as developed by Shannon and followers is becoming more
and more important for a number of sciences. The concepts appear to be just
the right ones with intuitively appealing operational interpretations. Furthermore,
the information theoretical quantities are connected by powerful identities and in-
equalities. In this section we introduce codes, entropy, divergence, redundancy and
mutual information which are considered to be the most important concepts.

1.1. Shannon’s break-through. Shannon’s 1948 paper [35]: “A mathemat-
ical theory of communication” marks the birth of modern information theory. It
immediately caught the interest of engineers, mathematicians and other scientists.
Naturally, one had speculated before Shannon about the nature of information but
mainly at the qualitative level. Precise and widely applicable notions and tools did
not exist before Shannon.

Shannon focused on engineering-type problems of communication. Because of
the great impact for the economy, this is where the main interest from society lies.
But information theory captures fundamental aspects of many other phenomena
and has implications at the philosophical level regarding our understanding of the
world of which we are a part. More applied areas include the interrelated fields
communication theory, coding theory, signal analysis and cryptography.

1.2. Coding. Information is always information about something. The de-
scription of information must be distinguished from this “something”, just as the
words used to describe a dog are different from the dog itself. Description of in-
formation in precise technical terms is important since, in Shannon’s words it will
allow “reproducing at one point either exactly or approximately a message selected
at another point”. The descriptions in information theory are called codes.

An information source is some device or mechanism which generates elements
from a certain set, the source alphabet A. Table 1 shows a code-book related to
a source which generates a vowel of the English alphabet. The various code-words
may be taken as a way to represent, indeed to code, the vowels. Or we may conceive
the code-book as a strategy for obtaining information about the actual vowel from
a knowledgeable “guru” via a series of yes/no questions. In our example, the first
question will be “is the letter one of a, o, u or y?” . This corresponds to a “1” as
the first binary digit — or bit as we shall say — in the actual code-word. Continuing
asking questions related to the further bits, we end up by knowing the actual vowel.
The number of bits required in order to identify a vowel is the code-word length,
i.e. the number of bits in the corresponding code-word.
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4 1. THE QUANTITATIVE THEORY OF INFORMATION

vowel | code-word code-word
length

11
00
01
100
1010
1011 4
TABLE 1. Codebook for vowels in English.
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The term “bit” is used in two ways, as a rather loose reference to 0 or 1
(as above) and then, as a more precisely defined unit of information: A bit is
the mazimal amount of information you can obtain from a yes/no question . To
clarify, consider questions posed as above but with respect to a modified code-book
where 11, the code-word for a, is replaced by 111. If the two first questions are
both answered by “yes”, then, according to the new code-book, you should ask
a new question which you can of course do, but it gives no further information
as you already know that the actual letter must be a. The definition points to
classical logic with its reference to “yes/no” (or “1/0” or “true/false”). In Section
1.3 we shall follow up with a more precise mathematical treatment of the concepts
"amount of information".

To ensure unambiguous identification, we require that a code is prefia-free, i.e.
no code-word in the code-book is allowed to be the beginning of another. Denoting
code-word lengths by I, , z € A, Kraft’s inequality

(1.1) > 2k <i
TEA

must hold — indeed, the binary subintervals of the unit interval that correspond,
via successive bisections, to the various code-words must be pairwise disjoint, hence
have total length at most 1. And, in the other direction, if numbers [, are given
satisfying (1.1) then there exists a prefix-free code with the prescribed [,’s as code-
word lengths.

We may express Kraft’s inequality differently, as the property that any length
function = ~ [, must satisfy the lower bound restriction

(1.2) lg > —log, p, for all z € A

for some probability distribution P = (p)zca. Here and below, "log," denotes
logarithm to the base 2.

The case of equality in (1.1) corresponds to complete codes, i.e. codes where no
code-word can be added to the code-book without breaking the prefix-free property.

A guiding principle is to design codes that achieve efficient compression, i.e.
which have as short code-word lengths as possible, understood in some appropriate
way. Design criteria depend on the type of knowledge one has about the source.
If, in the example, we actually know nothing about the source, then “minimax” is
a suitable design criterion (and the code in Table 1 is not optimal as it is easy to
design a code with maximal code-word lengths equal to 3 rather than 4).

Consider another extreme where very detailed knowledge about the source is
available. We have chosen to look at Charles Dickens’ “A Tale of Two Cities”. It
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Letter frequency fixed length Huffman code ideal
word length | word length length

a 47064  8.07 % | 00000 5 1110 4 3.63
b 8140  1.40 % | 00001 5 101111 6 6.16
c 13224  2.27 % | 00010 5 01111 5 5.46
d 27485  4.71 % | 00011 5 0110 4 4.41
e 72883 12.49 % | 00100 5 000 3 3.00
f 13155  2.25 % | 00101 5 111100 6 5.47
g 12120  2.08 % | 00110 5 111101 6 5.59
h 38360 6.57 % | 00111 5 1000 4 3.93
i 39786  6.82 % | 01000 5 1010 4 3.87
j 622 0.11 % | 01001 5 1111111110 10 9.87
k 4635  0.79 % | 01010 5 11111110 8 6.98
1 21523  3.69 % | 01011 5 10110 5 4.76
m 14923  2.56 % | 01100 5 00111 5 5.29
n 41310  7.08 % | 01101 5 1101 4 3.82
o 45118 773 % | 01110 5 1100 4 3.69
p 9453  1.62 % | 01111 5 101110 6 5.95
q 655 0.11 % | 10000 5 1111111100 10 9.80
T 35956  6.16 % | 10001 5 0010 4 4.02
S 36772  6.30 % | 10010 5 1001 4 3.99
t 52396  8.98 % | 10011 5 010 3 3.48
u 16218  2.78 % | 10100 5 00110 5 5.17
v 5065 0.87 % | 10101 5 1111110 7 6.85
w 13835  2.37 % | 10110 5 01110 5 5.40
X 666  0.11 % | 10111 5 1111111101 10 9.77
y 11849  2.03 % | 11000 5 111110 6 5.62
z 213 0.04 % | 11001 5 1111111111 10 11.42
total = 583.426 100 % | mean = 5.00 mean = 4.19 | H = 4.16

TABLE 2. Statistics of letters in "A Tale of Two Cities" and two codebooks.

generates individual letters, spaces, punctuation marks etc. To simplify, we ignore
the finer details and only pay attention to the standard letters. We may then
summarize our knowledge about the source by listing the frequencies of letters, cf.
Table 2. It can be proved that the code listed in the table as a Huffman code is
optimal in the sense that it requires the smallest number of bits to encode the entire
novel. This smallest number is 2.444.253 bits or in average 4.19 bits for each of the
583.426 letters.

We stress that above we have only aimed at efficient coding of single letters. Our
success in compression can then be expressed by the one number 4.19 (bits/letter).
We can also consider the optimal code as a reference code and measure the per-
formance of other codes in relation to it. For instance, for the fized length code
which is also shown in Table 2, there is a redundancy of 0.81 bits/letter, express-
ing that these bits are superfluous when we compare with the optimally achievable
compression.

The situation could also be that originally, before we had detailed knowledge
about the statistics of the letters in the novel, we used the fixed length code and
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then the redundancy tells us how much we can save by switching to an optimal
code once we have obtained more detailed knowledge.

If we code the entire novel using the optimal code in Table 2, the coded string
starts off with

10100100111011101001010100000010111100
0100101011001111000101010001110001001

which is decoded as “itwasthebestoftimes” corresponding to the opening words in
Dickens’ novel.

What we have considered above is noiseless coding. If, however, errors can
occur, many new problems turn up. For instance, if the 19th bit (0) and the 52nd
bit (1) in the above string are transmitted incorrectly, decoding leads to the string
“itwalierfttltotimes” with an irritating period out of synchronization. We realize
the need to develop tools for detection and correction of errors. There is a huge
literature on these aspects. Here we only note that some redundancy is needed to
prevent corruption of the whole message caused by a few accidental errors. Indeed,
if we use the fixed length code of Table 2 instead of the optimal code, we are much
better protected against occasional bit flip errors.

Coding is partly of a combinatorial nature due to the requirement of integers as
code-word lengths. For theoretical discussions it is desirable to take the combinato-
rial dimension out of coding. This can be done by allowing arbitrary real numbers
as code-word lengths. We therefore define an idealized code over the alphabet A as a
map = N [, of A into the positive real numbers such that Kraft’s inequality holds,
i.e. such that

(1.3) > ok <1

€A
The I,’s are thought of as code-word lengths and the idealization lies in accepting
arbitrary real values for the [,’s. If equality holds in Inequality 1.3 then the code is
said to be compact. Apparently, there is a one-to-one relationship between compact
codes and probability distributions. It is given by the formulas

(1.4) ly = —10gy Py 3 P =272,
When these formulas hold, we say that the code & is adapted to P or that P matches
K.

We can then consider optimal idealized codes, in analogy with the notion of
ordinary (combinatorial) optimal codes. It turns out that an optimal idealized
code is unique. For the example chosen, the idealized code shown in Table 2 in
two-decimal precision is in fact the optimal one. If we use this code, and accept
the interpretation as lengths of idealized code-words, we should use 2.426.739,10
bits to encode the entire novel. If we allow idealized coding, the performance of
other codes should be measured relative to the optimal idealized code. Hence the
redundancy of the fixed length code in Table 2 should be 0.84 rather than 0.81
bits/letter and the redundancy of the Huffman code is 0.03 bits/letter.

1.3. Entropy. It is tempting to think of the relative frequencies in Table 2
as defining a probability distribution over the 26-letter alphabet. And in many
situations, either the setting is intrinsically probabilistic in nature or else may be
conceived as being so. Assume therefore, that we consider a source generating
symbols over an alphabet A according to a known probability distribution P =
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(pz)zea- The compression problem of the previous section gives rise to the definition
of the entropy H (P) of P as:

(1.5) H(P)= min Zmll7

€A
it being understood that the minimum is over all idealized codes s (with the I,’s
denoting the idealized code-word lengths). Thus, entropy is minimal average code-
word length understood in an idealized sense. A key result is the analytical identi-
fication of entropy:

THEOREM 1 (First main theorem of information theory). The entropy of P
defined by (1.5) can be expressed analytically as follows:

(1.6) H(P) ==Y pslog,ps.
rEeA

The relation of entropy to coding was emphasized by introducing the concept
of idealized codes. By Theorem 1, the idealized code adapted to P is the optimal
idealized code of a source governed by P. We will return to the duality expressed
by (1.4) in Section 3.

The idealization in Theorem 1 is a great convenience and no serious restriction.
To emphasize this, let us insist, for a moment, to use codes with integer lengths.
Then we can choose code-lengths [, close to —logp, and ensure in this way that
H(P) <> pul, < H(P)+1. Moreover, if we consider a source generating sequences
of letters independently according to the distribution P, then the minimum average
code-word length per letter when we consider longer and longer sequences of letters
converges to H(P).

Often, entropy is measured in natural units (“nats”) rather than in bits. In
(1.6) then, log, should be replaced by In and exponentiation should be with respect
to e rather than 2. Clearly, H in nats equals H in bits multiplied by In 2 ~ 0.6931.

1.4. Divergence and redundancy. Assume that you use an idealized code
K with code-word lengths [, ; x € A to represent data but realize — due to new
information obtained or otherwise — that it is better to change to another idealized
code, x with code-word lengths l;; x € A. Redundancy or divergence, which we
denote D(m, ||), measures the gain in bits that can be obtained by changing to the
new idealized code . The idea behind the definition is that the preference for «’
reflects the belief that this idealized code could be optimal, i.e. the distribution
matching it, P = (pz)zea, could be the “true” distribution. This suggests the
definition

(1.7) D(k k) = pele = > pal,, -

€A TEA
If @ = (¢z)zea denotes the distribution matching x (thus @ is the distribution
which you originally found best represented the data) we can express D(k ||x) in
terms of P and @ and write D(P||Q@) instead. This is the notation mainly found in

the literature. It is the Kullback-Leibler divergence, or just the divergence, between
P and @. We find that

(1.8) D(P|Q) = D(x'|lk) = > p. log, f;i.
TrEA z
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The quantity is of great significance for many theoretical studies and for ap-
plications. The interpretation focuses on a situation where you start with partial
knowledge and then, somehow, obtain information which makes you change behav-
ior. The properties of the logarithmic function implies 0 < D(P||Q) with equality
if and only if P = . This is the most basic inequality of information theory.

We find that

(1.9) Y puls = H(P) + D(P||Q),

i.e. actual average code length is the sum of minimal average code length and
divergence. We refer to (1.9) as the linking identity.

For several applications it is important that divergence makes sense also for
continuous distributions. Formally this can be achieved via a limiting process based
on the discrete case or one may define divergence directly as an integral. For the
present text we will base the exposition on the discrete case and rely on an intuitive
understanding when we comment on the continuous case.

1.5. Mutual information. It is important that key notions such as entropy
can be extended from dealing only with distributions to incorporate also random
elements. The entropy of a random element is defined as the entropy of the cor-
responding distribution. If the random element X is defined on a sample space
governed by the probability measure P and X takes values in A, then, denoting the
distribution of X by Px, we define the entropy of X by H(X) = H(Px), i.e

— Y Px(x)log, Px(x) = — > P(X =)log, P(X = ).
TEA TEA

As H(X) only depends on X through its distribution and as it is the actual
values of X which carry semantic information, one must admit that the extension
only contributes moderately to incorporate semantic aspects.

If several random elements are defined on the same probability space, joint
entropy such as H(X,Y') makes good sense. So does conditional entropy, H(X|Y),
defined in the natural way as the average of the entropies of the conditional distri-
butions (here indicated by XY =y or by Px|,):

H(X|Y) = ZIP’ H(X|Y =y) =Y Pr(y)H(Pxy,).

The conditional entropy H (X|Y') is also called the equivocation of X givenY . Tt
represents the uncertainty that remains about X after having obtained information
about Y.

Information theory operates with a number of intuitive identities and inequal-
ities. Here we mention what is often referred to as Shannon’s identity, 1.10, and
Shannon’s inequality, either (1.11) or (1.12) below:

(1.10) H(X,Y)=H(X)+ HY|X),
(1.11) H(X,Y) < H(X)+ H(Y),
(1.12) H(Y|X) < H(Y).

Equality holds in (1.11) and (1.12) if and only if X and Y are independent (assuming
that the involved entropies are finite). Regarding (1.11) and (1.12), a simple proof
depends on the basic inequality D > 0 in connection with (1.15) and (1.16) below.
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The availability of notions of entropy for random elements is a great help in
many situations. For instance, one may express development in time through a
series X1, Xo, -+ of random elements which could represent bits, letters, words or
other entities.

Consider two random elements, X and Y with our interest attached to X. To
begin with we have no information about X. Assume now that we can obtain
information, not about X, but about Y. Mutual information, I(X;Y’), measures
the amount of information in bits we can obtain about X by knowing Y. At least
three different ideas for a sensible definition are possible: Firstly, as uncertainty
removed, secondly, as average redundancy and thirdly, admittedly less intuitive, as
divergence related to a change of joint distributions. It is a surprising fact that all
suggested definitions give the same quantity. In more detail:

(1.13) I(X;Y) = H(X) — HX|Y)
(1.14) =Y P(Y =y)D(X|Y =y||X) =D Py(y)D(Px,| Px)

(1.15) =D(Pxy|Px ® Py).

In (1.15), Px ® Py denotes the distribution (z,y) ~ Px(z) - Py (y) corresponding
to independence of X and Y.
Rewriting (1.13) as

(1.16) H(X)=HX|Y)+I1(X;Y)
and combining with (1.13) and (1.10) we realize that
(1.17) I(X:Y)=I(Y;X).

This symmetry of mutual information has puzzled many authors as it is not
intuitively obvious that information about X, knowing Y quantitatively amounts
to the same as information about Y, knowing X.

Another significant observation is that we may characterize entropy as self-
information since, for Y = X, (1.13) shows that

(1.18) H(X)=I(X;X).

Previously we emphasized that information is always information about something.
So entropy of a random variable is a measure of information in the seemingly
weak sense that this something is nothing but the variable itself. Although this
interpretation is self-referential it has turned out to be very useful.

1.6. Data reduction and side information. If, when studying a certain
phenomenon, you obtain extra information, referred to as side information, this
results in a data reduction and you will expect quantities like entropy and divergence
to decrease. Sometimes the extra information can be interpreted as information
about the context or about the situation.

Shannon’s inequality (1.12) can be viewed as a data reduction inequality. There,
the side information was given by a random element. Another way to model side
information is via a partition of the relevant sample space. Recall that a partition
of a set A is a collection of non-empty, non-overlapping subsets of A with union A;
the subsets are referred to as the classes of the partition.

As an example, consider prediction of the two first letters x1, zo in an English
text and assume that, at some stage, you obtain information about the first letter,
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x1. As a model you may use the random element X; X with X; expressing the side
information. Or you may consider modeling based on the partition of the original
set of all 26 x 26 = 676 two-letter words into the 26 classes defined by fixing the
first letter.

Consider distributions over a general alphabet A and let § denote a partition
of A. Denote the classes of 8 by A; (with ¢ ranging over some appropriate index
set) and denote the set of classes by JA. In mathematics this is the quotient space
A/6. If P is a source over A, 9P denotes the derived source over OA given by
OP(A;) = P(A;). By the conditional entropy of P given the side information 6 we
understand the quantity

Z P(A;)H(P|A;)

with summation over all indices (which could be taken to be summation over 9A).
Similarly, if two sources over A are considered, conditional divergence under the
side information 6 is defined by

D(P|Q) = ZP D(P|Ai]|Q[A:) .

Simple algebraic manipulations show that the following data reduction identities
hold:

(1.19) H(P)= H(OP)+ H’(P),

(1.20) D(P||Q) = D(9P|0Q) + D*(P|Q).
Immediate corollaries are the data reduction inequalities
(1.21) H(OP) < H(P),

(1.22) D(0P|0Q) < D(P|Q),

as well as the inequalities under conditioning

(1.23) HY(P) < H(P),

(1.24) D(P|Q) < D(P||Q).

As a more special corollary of (1.22) we mention Pinsker’s inequality
1
(1.25) D(PIQ) > V(P Q)

where V(P,Q) = Y. |pz — ¢| denotes total variation between P and Q. This
inequality is important as the basic notion of convergence of distributions in an
information theoretical sense, called convergence in information and defined by the
requirement D(P,||P) — 0, is then seen to imply convergence in total variation,
V(P,, P) — 0 which is an important and well-known concept.

1.7. Mixing. Another important process, which applies to distributions is
that of mizing. Intuitively one should think that mixing results in more “smeared
out” distributions, hence should result in an increase in entropy. Regarding di-
vergence, the “smearing out” should have a tendency to bring distributions closer
together, hence in diminishing divergence.
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To be precise, consider a mixture, say a finite mixture

N
= E anpn
n=1

of N distributions over A (thus, the o’s are non-negative and add to 1).

Just as in the case of data reduction, certain natural inequalities suggest them-
selves and these can be derived from simple identities. In fact, from the linking
identity (1.9), you easily derive the following identities:

N N N
(1.26) H <Z anPn> = Z%H(Pn) +> " anD(P,||Ry),
= = n=1
(1.27) Zan (PnllQ) = <Z an Py, IQ> +Zan (PullPo) -
n=1 n=1 n=1

As corollaries we see that entropy P ~ H(P) is concave and divergence P
D(P||Q) convex for fixed Q:

N
(1.28) H (Z anPn>

N
(1.29) D (Z anPn||Q> Z D(P[|Q) -

The common term which appears in (1.26) and in (1.27) is of importance in
its own right, and has particular significance for an even mixture Py = %Pl + %Pg
when it is called Jensen-Shannon divergence. Notation and definition is as follows:

v
2] Mz

1 1
(1.30) JSD(P1, P) = §D(P1||Po)+§D(P2||P0)~

Jensen-Shannon divergence is a smoothed and symmetrized version of diver-
gence. In fact, it is the square of a metric, which metrizes convergence in total
variation.

1.8. Compression of correlated data. A basic theme has been compression
of data. This guided us via coding to key quantities of information theory. The
simplest situation concerns a single source, but the concepts can be applied also in
more complicated cases when several sources interact and produce correlated data.
This already emerged from the definitions involving conditioning.

As a more concrete type of application we point to compression of data in a
multiple access channel. To simplify, assume that there are only two senders and
one receiver. Sender 1 knows the value of the random variable X and Sender 2 the
value of Y. The random variables may be correlated. The same channel, assumed
noiseless, is available to both senders. There is only one receiver. If there is no
collaboration between the senders, Sender 1 may, optimally, compress the data to
the rate Ry = H(X) bits and Sender 2 to the rate Ry = H(Y') bits, resulting in a
joint rate of Ry + Ry = H(X)+ H(Y) bits needed for the receiver to know both X
and Y. This should be compared to the theoretically optimal joint compression of
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R,
separate coding
H(Y)
Slepian-Wolf coding
HYP)
N Rl
HXY)  H®

F1GURE 1. Compression region obtained by Slepian-Wolf coding.

the joint variable (X,Y"), which is
H(X)Y) = HX)+HY)-I(X;Y)
= HX)+HY | X)=HX|Y)+H(Y).

In fact, in a remarkable paper [36], Slepian and Wolf showed that it is possible
for Sender 1 to compress to H (X) bits and independently for Sender 2 to compress
to H (Y | X) bits, in such a way that the receiver is able to recover X and Y.
Similarly, Sender 1 can compress to H (X | Y) bits and Sender 2 to H (Y) bits,
and the receiver is still able to recover X and Y. As it is possible to introduce
timesharing between the two protocols described this leads to the following result:
The rates of compression R; and Ry are achievable if and only if

Ry > H(X|Y)
Ry > H (Y | X)
R1+RQZH(X,Y)

For a technically correct result, one has to consider multiple outcomes of X
and Y and also to allow a small probability of error when X and Y are recovered.

Note that the result does not tell which of the two protocols is the best one or
whether it is one of the timesharing protocols.

1.9. Other definitions of basic information theoretical quantities. The
key definitions of information theory are those rooted in Shannon’s work. There
are, however, many other ways of defining entropy and related quantities. Here
we shall introduce certain entropy and divergence measures going back to Rényi
[34]. These measures appear in many studies, cf. [9], [13] and [4]. Moreover, they
have operational definitions which relate directly to coding and as such may be
considered to be members of the “Shannon family” of information measures.

Previously, much attention was given to the axiomatic approach. In our opinion
this often hides essential aspects. When possible, an approach based on operational
definitions is preferable.

Consider two probability distributions P and ) over the discrete alphabet A
and a parameter « €]0,1[. Let A and « be the compact codes adapted to P and
@, respectively. If we want to express belief in P as well as in @), a possibility is to
consider the convex mixture kK = @A + (1 — «)y. Then & is also an idealized code
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but it is not compact except when A\ = . However, k¥ — d is a compact code with

d > 0 defined by
d=—1In (Z 2—“@)) :

TEA
The constant d is a measure of discrepancy between P and (). We define the
Rényi divergence of order a between P and @, denoted D, (P]|Q), to be ﬁd or,
in terms of P and Q,

1

(1.31) Do (P||Q) = —— logy (Z p?Qi“) :
€A

The chosen normaliization ensures that we regain the usual Kullback-Leibler di-
vergence as the limit of D, for @« — 1. Formally, (1.31) makes sense for all real
Q.

One may consider divergence as the most fundamental concept of information
theory. Then mutual information and entropy appear as derived concepts. For a
finite alphabet A, entropy differences may be defined directly from divergence using

the guiding equation

(1'32) Da(PHU) :Ha(U)_Ha(P)a

with U the uniform distribution over A. Then Rényi’s entropy of P of order « is
obtained if one adds the assumption that the entropy of a uniform distribution for

any sensible notion of entropy must be the Hartley entropy, the logarithm of the
size of the alphabet. Doing that, one finds that (1.32) leads to the quantity

1 (07
(1.33) Ho (P) = ——log, %pw.

It is arguably more satisfactory first to define mutual information and then to
define entropy as self-information, cf. (1.18). If one bases mutual information on
(1.14) one will end up with the Rényi entropy of order «, whereas, if one uses (1.15)
as the basis for mutual information, one ends up with Rényi entropy, not of order
« though, but of order 2 — . Thus, leaving the classical Shannon case, it appears
that entropy “splits up” in H, and Hs_,.

In certain parts of non-classical statistical physics the quantity obtained from
(1.33) by using the approximation Inu ~ u — 1 has attached much interest, but a
direct operational definition is not yet clear. For more on this form of entropy, the
Tsallis entropy, see the contribution on physics in this handbook.

The considerations in this section point to some difficulties when leaving purely
classical grounds. A complete clarification must depend on operational definitions
and has to await further progress.

2. Beyond Yes and No

Coding is used for storing, transmission and reconstruction of information.
If the information is carried by a continuous variable, such as a 2-dimensional
image or the result of a measurement of a physical quantity, perfect storage is
not possible in a digital medium. This poses serious technical problems for which
there is no universal solution. These problems are handled in rate distortion theory.
The interest for this Handbook lies in the fundamental problem of the nature of
the world. Discrete or continuous? Does modeling with continuous quantities
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Ficure 2. Two quantizers with partitions and reconstruction
points shown. It is far from obvious which of the quantizers is
the best one.

make sense? Though rate distortion theory does not contribute to answer the
philosophical questions it does give a clue to what is possible if you use modeling
by the continuous.

2.1. Rate distortion theory. Consider a continuous random variable X with
values in the source alphabet A and with distribution Px. In simple examples, A
is one of the Euclidean spaces R™ or a subspace thereof but more complicated
settings may arise, for instance in image analysis. The continuous character means
that ., Px(x) <1 (typically, this sum is 0).

The treatment of problems of coding and reconstruction of continuous data
builds on a natural idea of quantization. Abstractly, this operates with a finite
reconstruction alphabet B, and a quantizer ¢ : A — B which maps a € A into its
reconstruction point b = ¢(a). Considering, for each b € B, the set of a € A with
¢(a) = b we realize that this defines a partition of A. For simplicity we shall only
consider the case when B is a subset of A and ¢(b) = b for each b € B. The idea is
illustrated by Figure 2.

A rate-distortion code is an idealized code over B. Associated with a rate-
distortion code we consider the length function, which maps = € A to the length of
the “code-word” associated to ¢(z). The reconstruction points are used to define
the decoding of the code in an obvious manner. If we ignore the requirement
to choose reconstruction points, this construction amounts to the same as a data
reduction, cf. Section 1.6.

In order to study the quality of reconstruction we introduce a distortion measure
d defined on A (formally on A x A). This we may also think of as an expression of
the relevance — with a high degree of relevance corresponding to a small distortion.
The quantity of interest is the distortion d(z, &) with & = ¢(z). Maximizing over A
or taking mean values over A with respect to Px we obtain the mazimal distortion
and the mean distortion. In practice, e.g. in image analysis, it is often difficult to
specify sensible distortion measures. Anyhow, the set-up in rate distortion theory,
especially the choice of distortion measure, may be seen as one way to build semantic
elements into information theory.
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As examples of distortion measures on R we mention squared error distortion
d(z,2) = (z — 2)° and Hamming distortion, which is 0 if # = 2 and 1 otherwise.
Thus Hamming distortion tells whether a reproduction is perfect or not whereas
squared error distortion weighs small geometric errors as being of small significance.
Hamming distortion is the distortion measure used in ordinary information theory
and corresponds to the situation where one only distinguishes between "yes" and
"no" or "black" and "white".

By B (z,¢) we denote the distortion ball around x with radius €, i.e. the set of
y such that d(z,y) < e. The following result is analogous to Kraft’s inequality as
expressed by (1.2):

THEOREM 2. Let l: X — Ry be the length function of a rate distortion code

with mazimal distortion €. Then there exists a probability distribution P such that,
forall x € A,

l(z) = —logy (P (B (z,¢))) .

The converse is only partially true, but holds asymptotically if one considers
average length of length functions corresponding to long sequences of inputs. We
see that a small € corresponds to large code lengths. The inequality should be
considered as a distortion version of Kraft’s inequality, and it extends the duality
(1.4) to cover also rate distortion.

If a probability distribution on the source alphabet A is given, then the quan-
tizer induces a probability distribution on the reconstruction alphabet B. The rate
of the quantizer is defined as the entropy of the induced probability distribution,
i.e. as R = H(¢(Px)) (here, ¢(Px) denotes the distribution of ¢). A high rate
reflects a fine resolution. Consider, as above, a fixed continuous random variable
with distribution Px. In order to characterize the performance of any quantization
method as described above it is reasonable to use two quantities, the rate R and

the mean distortion D = E (d(X, X)) . The set of feasible values of (D, R) forms

the rate-distortion region for the distribution Px. If distortion is small, the rate
must be large. Therefore, not all points in R? are feasible. The borderline between
feasible and infeasible points is called the rate-distortion curve and is most often
expressed as the rate-distortion function, cf. Figure 3. It describes the optimal
trade-off between distortion and rate.

In special cases it is possible to calculate the rate distortion function exactly us-
ing Shannon’s celebrated Rate Distortion Theorem. For instance, let X be Gaussian
distributed with variance 2. Then the rate distortion function is given by

1 a? < g2
R(d) = 2log(d) d_a2
0 d>o

In other cases the rate distortion function can be approximated using numerical
methods. In cases where the rate distortion function can be determined the results
from the previous sections can be extended to a continuous setting. In practice
it has turned out to be quite difficult to implement these theoretical ideas. The
reason is that practical problems typically involve a high number of variables, and
it is very difficult to specify distortion measures and probability distributions on
these high-dimensional spaces.
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R(d)

FIGURE 3. Rate distortion function of the Gaussian distribution.

Let X be a random variable with probability density f. The differential entropy
of X is given by the formula

h () =~ [ 1 @)ogf @) da.

If we use squared error distortion, the rate distortion function is given, approxi-
mately, by

R(d)~h(X) - %10g(27re~d)

for small values of d. This also gives an interpretation of the differential entropy as
h(X)=~ R(d)+ %1og(27re~d) .

In fact, the right hand side converges to h(X) for d tending to zero.

2.2. Aspects of quantum information theory. Classical information the-
ory is based on natural concepts and tools from analysis and probability theory.
The first many years one did not take the physical dimension into consideration. It
was believed that the nature of the physical devices used as carriers of information
would not have any impact on the theory itself. In particular, it was expected
that the classical theory would carry over and apply to quantum systems without
essential changes as soon as the appropriate concepts had been identified. In the
70’ties and 80’ties studies looking into these questions were initiated and a number
of preliminary results established. However, it was not until the 90’ties that the
new quantum information theory really took off and gained momentum. This was
partly due to progress by experimental physicists.

Today, quantum information theory is a thriving field, but still containing con-
troversies and basic open questions. The theory is fundamentally different from the
classical theory. The new aspects are interesting from a mathematical, a physical
as well as a purely philosophical point of view. The theory brings us beyond the
“yes” and “no” tied to the classical theory and bound to the fundamental unit of
a bit.
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A quantum experiment provides a connection between the preparation of the
system and the possible measurements on the system. The focus on measurements
forms an extra layer between the system and the observer which is necessary in
order to enable meaningful statements about the system. The set-up may be con-
ceived as a “black box”, a “coupling” or an “information channel” between the
preparation and the measuring device. Two preparations represent the same state
of the system if the preparations cannot be distinguished by any available measure-
ment. Defined in this way, the set of all states, the state space, depends on the set
of possible measurements. If, therefore, an experiment involves a preparation and
a measurement on an electron and the state found is S, it will be misleading to say
that “the electron is in state S”. Instead, you may say that “our knowledge about
the electron is completely described by the state S”.

Usually, in quantum physics, the state space can be identified with a set of
density matrices (or operators). For the simplest quantum systems, the state space
consists of 2 X 2 density matrices, matrices of the form

Lia B+riy
(42 175,

where the real numbers «, 8 and -~y satisfy the relation
1
of + 47 +47 < 5

(with ¢ the complex imaginary unit)!. Geometrically, this state space is a ball.
States on the boundary of the state space are pure states whereas states in the
interior are mized states. The principle behind mixing is the following: Consider
two possible preparations. Construct a new preparation by flipping a coin and
choose the first preparation if the coin shows “head” and the second preparation
if the coin shows “tail”. In this way, the resulting preparation is constructed by
mixing. A mixed state can always be represented as a mixture of pure states.
In classical physics, the normal situation is that any state is a unique mixture of
pure states. A special feature of quantum physics is that a mixed state can always
be obtained in several ways as a mixture of pure states. This implies that, if one
observes a mixed state, it is theoretically impossible to infer which preparations were
involved in the mixing. This is a fundamental new feature of quantum information
theory.

The fact that the state space has a high degree of symmetry — as was the case
with the ball above — is no coincidence. In general, symmetries in the state space
reflect that physical operations like rotations have to leave the state space invariant.

A simple system as described by matrices of the form (2.1) is called a qubit.
Physically, a qubit may be implemented by a particle of spin 5 with a, § and ~
indicating directions of the spin.

The qubit is the unit of quantum information theory. This is a natural choice
of unit as one can device a protocol which, with high fidelity, transforms any quan-
tum information system into a system involving only qubits. Quite parallel to the
classical theory, main tasks of quantum information theory are then to represent
complicated quantum systems by qubits and to consider representation, transmis-
sion and reconstruction of states.

1
2

1A description in terms of vectors in Hilbert space is also possible, but the density matrices
express in a better way essential aspects related to mixing and measurements.
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It is easy to encode a bit into a qubit. By orthogonality of spin up and spin
down, one can perform a measurement which recovers the bit perfectly. In this way
a preparation described by the probability distribution (% + aé — «) is mapped

into the density matrix
1
5 + « 0 )
0 % -«

This shows how bits and, more generally, any classical information system can
be embedded in quantum systems. Thus quantum information theory contains
classical information theory. The two theories are not equivalent as there is no way
in which a qubit can be represented by classical bits.

In order to manipulate quantum information, we need a quantum computer.
Recall that a classical computer is based on gates which operates on one or two
bits. Similar gates can be constructed also for the manipulation of qubits but there
is an important restriction of reversibility on the gates in a quantum computer.
According to this restriction, to each quantum gate, there should correspond a
reverse gate which transforms the output into the input. For instance it is not
possible to transform two qubits into one qubit. Similarly it is not possible to
transform one qubit into two qubits. This is called the no-cloning theorem. Thus
quantum information cannot be created, copied or destroyed. In this sense quantum
information is physical and behaves somewhat like a liquid.

2.3. Entanglement. In order to explain, if only briefly, the important notion
of entanglement, consider a system composed of initially independent subsystems,
each of which with an associated observer who can prepare a quantum state. If
the observers are allowed to manipulate the states by local quantum operations
and classical communication, the states of the total system which are achievable
in this way are said to be separable. If the observers are allowed also to exchange
quantum information (via qubits or other non-local quantum operations) then the
joint system may be described by states which are not separable. These states are
said to be entangled.

The electrons in a Helium atom have total spin 0. This means that if one
of the electrons is measured to have spin up, the other must have spin down (if
measured in the same direction). The two electrons behave like one and such a
pair is called an Finstein-Podolsky-Rosen pair, an EPR-pair for short. This is the
simplest example of an entangled system.

Above, we saw that bits can be encoded into qubits, but qubits cannot be
encoded into bits with only classical resources available. If entanglement is avail-
able to Alice and Bob in a quantum communication system, this leads to special
possibilities. In this case two bits may be encoded into one qubit. This is called
super-dense coding. The two bits are encoded into 2 qubits in the sense that the
decoder (Bob) receives two qubits. The new thing is that the first qubit (which
is one of the particles in an EPR-pair) may be received by both Alice and Bob
before Alice knows which bit to send. Although the sharing of an EPR-pair does
not represent classical communication, it is a kind of communication that makes
the measurement apparatus more sensitive and enables measurements which would
not otherwise be possible.

If Alice and Bob shares an EPR-pair it is also possible to encode a qubit into
two bits. This process is called quantum teleportation. The reason for this name is
that our entire knowledge about the quantum particle is contained in the density
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matrix and at the output we receive a particle with exactly the same density matrix.
One may say that the particle was destroyed at the input and reconstructed at the
output, but nothing is lost by the destruction and reconstruction, so many physicists
use the terminology that the particle was teleported from the input to the output.
This leads to the physically and philosophically interesting question: Can a particle
be identified with the knowledge we have about the particle? Mathematically this
is not of significance because all calculations concern the knowledge we have about
the system as represented by its density matrix.

3. Duality between truth and description

It is important to distinguish between ontology, how the world is, and episte-
mology, observations of the world. Niels Bohr said that physics deals with what
can be said about nature, not how nature is. The positivists take another position.
Physics should uncover objective knowledge about nature. Ontology and episte-
mology are usually considered as opposed, but information theory offers a position
inbetween. Truth and description are different, but there is a duality between the
concepts. To any "true" model there exists an optimal description and, to any
description, there exists a model of the world such that the description is optimal
if the model is "true". Here the word true is in quotation marks because it makes
associations to ontology though objective truth is disputable. Instead of speaking
about "truth" we shall focus on observations — those already made and observations
planned for the future.

3.1. Elements of game theory. As a prelude to the subsections to follow
we provide a short introduction to certain parts of game theory.

In game theory situations are modeled where “players” interact in such a way
that the satisfaction of each player (or group of players) depends on actions, strate-
gies, chosen by all players. Typically, the players are individuals, but animals,
machines or other entities could also be considered. We shall only deal with static
games, games with no succession of strategic choices. The many variants of the
theory operates with different rules regarding the possible actions of the players
and the flow of information among them.

A central theme is the investigation of possibilities for rational behavior of the
players. Here, the notion of equilibrium comes in. The idea is that if, somehow,
the players can decide under the rules of the game to choose specific strategies this
is a sign of stability and features associated with such a collective choice can be
expected to be observed. For our treatment of game theory it is immaterial how
the decisions of the players are arrived at.

Assume that there are n players and that the cost or loss for player i is given
by a real-valued loss function (x1,--- ,2,) ~ ¢;j(x1,- -+ ,x,) where 1, - , T, T€p-
resents the strategic choices by the players. The set of strategies x1, - - - , x;, defines
a Nash equilibrium if no player can benefit from a change of strategy provided the
other players stick to their strategies. For example, for Player 1, no strategy x;
different from z; will yield a lower loss, so ¢1(af, @, -+ ,2,) > c1(x1, T, - ,Ty)
must hold in a Nash equilibrium. This notion of equilibrium is related to non-
cooperation among the players. It may well be that, for strategies which obey the
criteria of a Nash equilibrium, two or more of the players may jointly benefit from a
change of their strategies whereas a single player cannot benefit from such a change.
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scissors | paper | stone
§C18S0TS 0 -1 1
paper 1 0 -1
stone -1 1 0

TABLE 3. Loss function in the scissors-paper-stone game

A Nash equilibrium may not exist. However, a general result guarantees that a,
typically unique, Nash equilibrium exists if certain convexity assumptions regarding
the loss functions are fulfilled. These conditions normally reflect acceptance of mized
strategies or randomization.

ExAMPLE 1. Consider the two-person scissors-paper-stone game. The loss
function for, say, Player 1 is shown in Table 3. We assume that co = —c1. This
is an instance of a two-person zero-sum game, reflecting that what is good for the
one player is bad — and equally much so — for the other.

Clearly, there is no Nash equilibrium for this game, no set of strategies you can
expect the players to agree on. The game is psychological in nature and does not
encourage rational considerations. However, if the game is repeated many times
and we allow randomization and use averaging to define the new loss functions, we
find that there is a unique choice of strategies which yields a Nash equilibrium, viz.
for both players to choose among the three “pure strategies” with equal probabilities.

Games such as the psychologically thrilling scissors-paper-stone game are often
best treated by invoking methods of artificial intelligence, learning theory, non-
classical logic and psychology. We note that by allowing randomization, an initial
game of hazard is turned into a conflict situation which encourages rational behav-
iour, hence opens up for quantitative statements.

3.2. Games of information. Many problems of information theory involve
optimization in a situations of conflict. Among the relevant problems we mention
prediction, universal coding, source coding, cryptography and, as the key case we
shall consider, the mazimum entropy principle. The relevant games for these prob-
lems are among the simplest of game theory, the two-person zero-sum games, cf.
Example 1 of Section 1.

For these games of information one of the players represents “you” as a person
seeking information and the other represents the area you are seeking information
about. We choose to refer to the players as Observer and Nature, respectively. In
any given context you may prefer to switch to other names, say statistician/model,
physicist /system, mother/child, investor/market or what the case may be. Strate-
gies available to Observer are referred to as descriptors and strategies available to
Nature are called worlds. The set of strategies available to the two players are de-
noted D, respectively W. We refer to W as the set of possible worlds. Our preferred
generic notation for descriptors and worlds are, respectively x and P which, later,
will correspond to, respectively, idealized codes and probability distributions.

Seen from the point of view of Observer, the loss function (P,k) ~ ¢(P, k)
represents the cost in some suitable sense when the world chosen by Nature is P
and the descriptor chosen by Observer is k. One may conceive ¢(P, k) as a measure
of complexity. The zero-sum character of the game dictates that we take —c as
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the loss function for Nature. Then, the Nash equilibrium condition for a pair of
strategies (P*, k*) amounts to the validity of the saddle-value inequalities
(3.1) e¢(P,k*) < c(P* k") < c(P*,k) forall Pe W,k € D.

The risk associated with Observers choice kK € D is defined as the maximal
possible cost:
= P,
(@) = max c(P,x),

and the minimal risk is defined by

Tomin = {32%7“(@) .

A descriptor k € D is optimal if r(Q) = T'min.
Similar quantities for Nature are the gain

h(P) =minc(P, k),

KED
and the mazimal gain
Bmaz = Jg»leav}\() h(P).

The requirement of optimality for Nature therefore amounts to the equality h(P) =

hmaz~
Quite generally, the mini-max inequality
(32) hmaz < Tmin

holds. If there is equality in (3.2), the common value (assumed finite) is simply
called the value of the game. Existence of the value is a kind of equilibrium:

THEOREM 3. If a game of information has a Nash equilibrium, the value of the
game exists and Observer and Nature both have optimal strategies.

In fact, the existence of a Nash equilibrium is also necessary for the conclusion
of the theorem. The search for a Nash equilibrium is, therefore, quite important.
In some special cases, Nash equilibria are related to robust descriptors by which we
mean descriptors £ € D such that, for some finite constant h, ¢(P,x) = h for all
possible worlds P 2.

We now introduce an additional assumption of duality by requiring that every
world has a best descriptor. In more detail we require that to any possible world
Py, there exists a descriptor kg, the descriptor adapted to Py, such that

(3.3) min c(Py, k) = ¢(Po, ko) »

and further, we assume that the minimum is only attained for k = kg (unless
¢(Py, ko) = 00). The condition implies that the gain associated with Py is given
by h(Py) = c¢(Po, ko). Also note that the right hand inequality of the saddle value
inequalities (3.1) is automatic under this condition (with £* the descriptor adapted
to P*). It is easy to establish the following simple, yet powerful result:

THEOREM 4. Assume that P* is a possible world and that the descriptor x*
adapted to P* is robust. Then the pair (P*,k*) is the unique Nash equilibrium pair.

Thus, in the search for Nash equilibrium strategies, one may first investigate if
robust descriptors can be found.

2these strategies correspond closely to the exponential families known from statistics.
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3.3. The maximum entropy principle. Consider the set D of all idealized
codes k = (I;)zea over the discrete alphabet A and let there be given a set W of
distributions over A. Take average code length as cost function, i.e.

(3.4) o(Pk) = puls.

€A
By the linking identity (1.9), the duality requirements related to (3.3) are satisfied
and also, we realize that the gain associated with P € WV is nothing but the entropy
of P. Therefore, hy,qz is the mazimum entropy value given by

Hppow = Hmaa:(W) = sup H(P)
Pew

and an optimal strategy for Nature is the same as a mazimum entropy distribu-
tion, a distribution P* € W with H(P*) = H,,4,. In this way, game theoretical
considerations have led to a derivation of the maximum entropy principle — which
encourages the choice of a maximum entropy distribution as the preferred distrib-
ution to work with.

EXAMPLE 2. Assume that the alphabet A is finite with n elements and let VW be
the set of all distributions over A. Clearly, the constant descriptor £ = (logan)zea
is robust and hence, by Theorem 4 this descriptor is optimal for Observer and
the associated distribution, i.e. the uniform distribution, is the mazximum entropy
distribution.

ExAaMPLE 3. Let A = {0,1,2,---}, let A > 0 and consider the set W of all
distributions with mean value A. Let k = (Iy)n>0 be an idealized code. Clearly, if
is of the form

Knp =+ fn
then (P,k) = a + BA for all P € W, hence k is robust. The constant o can be
determined from (1.3) and by a proper choice of 5 one finds that the associated
distribution is one of the possible worlds. This then, again by Theorem 4, must be
the mazximum entropy distribution. Going through the calculations one finds that
for this example, the maximum entropy distribution is the geometric distribution
with mean value A, i.e. the distribution P* = (p})n>0 given by

N n - 1
(3.5) Dy = Dpq wzthp:l—q:m.
The length function for the optimal descriptor is given by

A+1
I, =logs(A+ 1) +nlog %

and the maximum entropy value is

A+1
(3.6) Hpas = logy(A + 1) + Alog, % .

The overall philosophy of information theoretical inference can be illuminated
by the above example. To do so, consider a dialogue between the statistician (S)
and the information theorist (IT):

S: Can you help me to identify the distribution behind some interesting data I am
studying?

IT: OK, let me try. What do you know?

S: All observed values are non-negative integers.
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IT: What else?

S: Well, T have reasons to believe that the mean value is 2.3.

IT: What more?

S: Nothing more.

IT: Are you sure?

S: T am!

IT: This then indicates the geometric distribution.

S: What! You are pulling my leg! This is a very special distribution and there are
many, many other distributions which are consistent with my observations.

IT: Of course. But I am serious. In fact, any other distribution would mean that
you would have known something more.

S: Hmmm. So the geometric distribution is the true distribution.

IT: I did not say that. The true distribution we cannot know about.

S: But what then did you say — or mean to say?

IT: Well, in more detail, certainty comes from observation. Based on your infor-
mation, the best descriptor for you, until further observations are made, is the one
adapted to the geometric distribution. In case you use any other descriptor there
is a risk of a higher cost.

S: This takes the focus away from the phenomenon I am studying. Instead, you
make statements about my behavior.

IT: Quite right. “Truth” and “reality” are human imaginations. All you can do is
to make careful observations and reflect on what you see as best you can.

S: Hmmmm. You are moving the focus. Instead of all your philosophical talk I
would like to think more pragmatically that the geometric distribution is indeed
the true one. Then the variance should be about 7.6. I will go and check that.

IT: Good idea.

S: But what now if my data indicate a different variance?

IT: Well, then you will know something more, will you not? And I will change
my opinion and point you to a better descriptor and tell you about the associated
distribution in case you care to know.

S: But this could go on and on with revisions of opinion ever so often.

IT: Yes, but perhaps you should also consider what you are willing to know. Pos-
sibly I should direct you to a friend of mine, expert in complexity theory.

S: Good heavens no. Another expert! You have confused me sufficiently. But
thanks for your time, anyhow. Goodbye!

There are interesting models which cannot be handled by Theorem 4. For some
of these, a Nash equilibrium is unattainable though the value of the game exists.
For these games Observer, typically, has a unique optimal strategy, say the idealized
code k*. Further, the world associated with x*, P*, is an attractor for Nature in the
sense that any attempt to define a maximum entropy distribution must converge
to P*. One will expect that H (P*) = Hyax but an interesting phenomenon of
collapse of entropy with H (P*) < Hyyax may occur.

Models with collapse of entropy appear at a first glance to be undesirable. But
this is not the case.

Firstly, for such models Nature may well have chosen the stategy P* (even
though a better match to the choice k* by Observer is possible). Since why should
Nature be influenced by actions available for the Observer, a mere human? Thus,
the circumstances do not encourage a change of strategies and may therefore be
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conceived as stable. A second reason why such models are interesting is that they
allow approximations to the attractor at a much higher entropy level than the level
of the attractor itself. This is a sign of flexibility. Thus, we do not only have stability
as in more classical models but also a desirable flexibility. An instance of this has
been suggested in the modeling of natural languages at the lowest semantic level,
that of words, cf. [20], [22].

We may summarize by saying that Nature and Observer have different roles
and the game is not so much a conflict between the two players understood in
the usual common sense but rather a conflict goverened by duality considerations
between Observer and Observers own thoughts about Nature.

3.4. Universal coding. Consider again the problem of coding the letters of
the English alphabet. If the source is Dickens “A Tale of Two Cities” and if we
consider idealized coding, we know how to proceed, viz. to adapt the idealized code
to the known data as shown in Table 2. But if we want to design an idealized code
so as to deal with other sources, perhaps corresponding to other types of texts, it
is not so clear what to do. We shall now show how the game theoretical approach
can also be used to attack this problem.

Let Py,---, Py be the distributions related to the possible sources. If we take
{P1,---, Py} as the set of possible worlds for Nature, we have a situation of hazard
similar to the scissors-paper-stone game, Example 1. We therefore randomize and
take instead the set of all distributions & = (@, )n<n over {Py,---, Py} as the
set W of possible worlds. As the set D of descriptors we here find it convenient,
instead of idealized codes to consider the corresponding set of distributions. Thus,
D is the set of all distributions @) over the alphabet. Finally, as cost function we
take ¢ defined by

cla, k) = Z an D(P Q).

n<N

This time, the duality requirements related to (3.3) are satisfied due to the
identity (1.27) which also identifies h(cx) with a certain mutual information. More
interesting for this game is the identification of r,,;, as the mini-mazx redundancy

rmin = Gig ey DE]Q)-

The identification of Nash equilibrium strategies can sometimes be based on
Theorem 4 but more often one has to use a more refined approach based on (3.1).

The interest here is mainly at Observers side. For a class of closely related
situations the interest will move to Natures side of the game.

3.5. Other games of information. The game theoretical approach applies
in a number of other situations. Of particular interest perhaps are games where,
apart from a descriptor as considered up to now, a prior world is also known to
Observer. The goal then is to find a suitable posterior world and in so doing one
defines an appropriate measure of the gain associated with updating of the prior.
For these games it is thus more appropriate to work with an objective function
given as a gain rather than a cost. The games indicated adopt a Bayesian view,
well known from statistics.
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3.6. Maximum entropy in physics. The word entropy in information the-
ory comes from physics. It was introduced by Clausius in thermodynamics. In
thermodynamics the definition is purely operational:

dQ
dsS = T
It is a macroscopic quantity you can measure, which is conserved during reversible
processes, but increases during irreversible processes in isolated systems. If the
entropy has reached its maximum, no more irreversible processes can take place.
Often one says that "entropy increases to its maximum" but the process may be
extremely slow so that the validity of this statement is of limited interest. Classical
equilibrium thermodynamics is only able to describe reversible processes in detail,
and irreversible processes are considered as a kind of black boxes. This presents
a paradox because reversible processes have speed zero and hence the entropy is
constant. In practice equilibrium thermodynamics is a good approximation to many
real world processes. Equilibrium thermodynamics can be extended to processes
near equilibrium, which solves some of the subtleties but not all.

EXAMPLE 4. An ideal gas is enclosed in a cylinder at an absolute temperature
T. The volume of the the cylinder is increased to k times the original volume using a
piston, and the temperature is kept fized. In order to measure the change in entropy
the piston should be moved very slowly. If the system is isolated this will result in
a decrease in temperature. Therefore you have to slowly add heat. This will result
in a entropy increase proportional to Ink.

Bolzmann and Gibbs invented statistical mechanics. In statistical mechanics
one works with two levels of description. The macroscopic level corresponding to
thermodynamics and the microscopic level corresponding to Newtonian (or quan-
tum) mechanics. For instance absolute temperature (a macroscopic quantity) is
identified with average kinetic energy. The main task then is to deduce macro-
scopic properties from microscopic ones or the other way round. This works quite
well but also introduces new complications. Typically, the macroscopic quantities
are identified as average values of microscopic ones. Thus thermodynamic variables
that were previously considered as deterministic quantities have to be replaced by
random variables. The huge number of molecules (typically of the order 10%?) im-
plies that the average is close to the mean value with high probability. Bolzmann
observed that

S ~1In(N)
where S denotes the entropy of a macro state and N denotes the number of micro
states that give exactly that macro state. Thus the maximum entropy distribution
corresponds to the macro state with the highest number of microstates. Normally
one assigns equal probability to all micro states. Then the maximum entropy
distribution corresponds to the most probable macro state.

ExaAMPLE 5. Consider Example 4 again. In the k-fold expansion, each of the
n molecules is now allowed in k times as many states as before. Therefore the
difference in entropy is proportional to

Ink™ =nlnk.

EXAMPLE 6. Assume that we know the temperature of a gas, hence the mean
kinetic energy. The energy of a molecule is 1/2 m ||[v||* where ||v|| is the length of
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the 3-dimensional velocity vector v. The maximum entropy distribution on velocity
vectors with given mean length is a 3-dimensional Gaussian distribution. Then the
probability distribution of the length ||v|| is given by the Mazwell distribution with
density
463/2 x2e—[3x2
712

Often it is convenient to work with (Helmholz) free energy A instead of entropy.

One can prove that

A—Aeg =kT - D (P||Pey),
where P is the actual state and P, is the corresponding equilibrium state. Hence
the amount of information we know about the actual state being different from the
equilibrium state can be extracted as energy. The absolute temperature tells how
much energy can be extracted if we have one bit of information.

Jaynes introduced the maximum entropy principle as a general principle [25].
Previously, the physicists tried to explain why entropy is increasing. Jaynes turned
the arguments upside down. Maximum entropy is a fundamental principle, so if we
know nothing else, we better describe a system as being in the maximum entropy
state. If we do not describe the system as being in its maximum entropy state this
would correspond to knowing something more, cf. Section 3.3. Then, the system
will be governed by the maximum entropy distribution among all distributions that
also satisfy these extra conditions. In a closed thermodynamical system we only
know the initial distribution. If the system undergoes a time evolution then our
knowledge about the present state will decrease. Thus, the number of restrictions
on the distribution will decrease and the set of feasible distributions will increase,
resulting in an increase of the entropy.

3.7. Gibbs conditioning principle. Apart from the considerations of Sec-
tion 3.3, there are some theorems, which support Jaynes’ maximum entropy prin-
ciple. Assume that we have a system which can be in one of k states. As a prior
distribution on the k states we use the uniform distribution. Let X be a random
variable with values in the set. Somehow we get the information that the mean
value of X is A which is different from the mean value when the uniform distribution
is used. We are interested in a new distribution that takes the new information into
account. Let C denote the set of feasible distributions, i.e. distributions for which
the mean value of X is A. Jaynes suggests to use the maximum entropy distribution
as the new distribution. One can also argue as follows. How can we actually know
the mean value of X7 Somehow we must have measured the average value of X.
Consider a number of independent identically distributed variables X7, Xo, ..., X,,.
Consider the set of events such that
(3.7) X1+ X0+ ...+ X, _

n
Now consider the distribution of X; given that (3.7) holds. If n is large, then the
distribution is close to the maximum entropy distribution. This result is called
the conditional limit theorem, Gibbs conditioning principle or the conditional law
of large numbers.

A

EXAMPLE 7. The mean number of eyes on a reqular die is 3.5. Take a large
number of dice and throw them. Assume that the average number of eyes in the
sample is 4 and not 3.5 as expected. If one counts the number of ones, twos,
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Number Prior Simulations Mazx. ent.
of eyes | probability | 1 | 10| 100 | 1000 | distribution
1 0.167 0| 0 12 102 0.108
2 0.167 0| 2 14 125 0.128
3 0.167 0| 2 11 147 0.146
4 0.167 1] 3 15 172 0.174
5 0.167 0| 0| 21 205 0.207
i) 0.167 0 8| 27| 249 0.247

TABLE 4. Simulation of 1, 10, 100 and 1000 outcomes of a die
under the condition that the average number of eyes is exactly 4.

etc. then with high probability the relative frequency of the different outcomes will
be close to the maximum entropy distribution among all distributions on the set

{1,2,3,4,5,6} for which the mean value is 4.

EXAMPLE 8. Assume that all velocity vectors of m molecules are equally prob-
able. Let v; denote the velocity of molecule i. Then the mean kinetic energy is

proportional to
1 2
= ll®
n

We can measure the mean kinetic energy as the absolute temperature. Assume that
we have measured the temperature. If n is huge as in macroscopic thermodynamic
systems then the probability distribution of ||v1]| is approxzimately the Mazwell dis-
tribution.

Example 7 can be used to analyze to which extent our assumptions are valid.
The first condition is that the uniform distribution is used as prior distribution.
Hence we cannot use the maximum entropy principle to argue in favor of the uniform
distribution. Some symmetry considerations are needed in order to single out the
uniform distribution at first hand. Next, according to our prior distribution it is
highly unlikely to observe that the empirical average is 4. From a classical statistical
point of view one should use the high value of the average to reject the uniform
distribution, but if the uniform distribution is rejected as being false then we will
not be able to calculate the a posteriori distribution. Hence if the conditional limit
theorem is used as an argument in favor of the maximum entropy principle then
we are forced to use a Bayesian interpretation of the prior probability distribution.
Many physicists find this problematic. Thermodynamic entropy increases, they
argue, independently of how we assign prior distributions of the system.

In order to single out the physical problems from the statistical ones, the con-
cept of sufficiency is useful. Consider an ideal gas in an isolated container of a
specific volume. At equilibrium the gas can be described by the number of mole-
cules and the temperature. Using the maximum entropy formalism we can calculate
for instance the velocity distribution and all other quantities and distributions of
interest. We say that the number of molecules and the temperature are sufficient.
Then one may ask: "why are number and temperature sufficient?" If the container
has an isolating division we have to know the number of molecules and the temper-
ature on each side of the division, and four numbers will be sufficient in this case.
Only the experienced physicists should be able to tell which statistics are sufficient
for the specific setup. Thus, we can formulate the following result:
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The mazimum entropy principle may be used as a general formalism, but it
tells little or nothing about which statistics are sufficient.

The conditional limit theorem can also be formulated for a prior distribution
different from the uniform distribution. Consider a distribution P and a (mathe-
matically well behaved) set C' of probability distributions. Then the probability of
observing the empirical distribution in C' satisfies

Pn (C) < 2—7LD(QHP)

where @ is the information projection of P into C, i.e. the distribution @ in C
that minimizes the divergence D (Q||P). Furthermore there is a high probability
that the empirical distribution is close to @) given that it belongs to C. If P is the
uniform distribution then the information projection equals the maximum entropy
distribution.

3.8. Applications in statistics. Statistical analysis is based on data gen-
erated by random phenomena. Actual data are used to make inference about
the statistical nature of the phenomena studied. In this section we assume that
X1, Xs,- -+, X, are independent random variables, distributed according to a com-
mon, unknown law (probability distribution) Q.

Assume that @ is discrete with point probabilities ¢1, g2, - - , ¢m . If the observed
frequencies in a sample w of size n are ny,na, « - - , Ny, then the empirical distribution
of size n, Emp, (w), is the distribution with point probabilities 21, =2 ... Zm The
likelihood ratio, a quantity of central importance in statistics, is the ratio between
the probability of the actually observed data, measured with respect to Emp,,(w),
respectively the theoretical distribution (). For the log-likelihood ratio we find the

expression
L (B (e (e
n ny no Mo,
a 42" dm

which we easily recognize as n times the information divergence D(Emp,, (w)||Q).
This simple observation is indicative of the relevance of information theory, espe-
cially the importance of information divergence, for statistics.

Let us have a closer look at hypothesis testing. Typically, the statistician consid-
ers two hypothesis, denoted Hy and H1, and called, respectively, the null hypothesis
and the alternative hypothesis. In classical statistics these hypothesis are treated
quite differently. According to Karl Popper, one can never verify a hypothesis.
Only falsification is possible. Therefore, if we want to give statistical evidence for
an alternative hypothesis — typically that something “special” is going on, the coin
is irregular, the drug has an effect or what the case may be — one should try to falsify
a suitably chosen null hypothesis, typically expressing that everything is “normal” .

Consider a test of the alternative hypothesis H; against the null hypothesis
Hy. In order to decide between Hy and Hy, the statistician chooses a partition
of the simplex of all probability distributions over the possible outcomes into two
classes, Ay and Ay, called acceptance regions. If the observed empirical distribution
Emp,(w) belongs to Ay, one accepts Hy (or rather, one does not reject it) whereas,
if Emp,(w) € Ay, one rejects Hy (and, for the time being, accepts Hy).

The acceptance regions generate in a natural way a decomposition of the n-
fold sample space of possible sequences w = (1,22, - ,Z,) of observed values of
X1,Xs, -+ ,X,,. The sets in this decomposition we denote by Aj and A}. For
example, Af consists of all w = (z1,x2, -+, 2y,) for which Emp,,(w) € Ag
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A type-I error occurs when you accept Hy though Hy is true (everything is “nor-
mal” ) and a type-II error occurs when you accept Hy though H; is true (something
“special” is happening).

In case Hy and H; are both simple, i.e. of the form Hy: Q = Py and Hy : Q =
P with Py and P; fixed, known distributions, we can use the product distributions
F§ and Pl to calculate the error probabilities, i.e. the probabilities of a type-I,
respectively a type-II error. With natural notation for these error probabilities, we
find the expressions

Pr(Ai|Ho) = Fg'(AY), Pr(AolHy) = Pi'(Ag).-

The quantity Pr(A;|Hp) is called the significance level of the test and 1 —
Pr(Ao|H1) the power of the test.

Under the simplifying assumptions we have made, the Neymann-Pearson lemma
often leads to useful tests. To formulate this result, consider, for any ¢ > 0, the test
defined by the region

Ay = {P|D(P|Py) < D(P||F) +t}

as acceptance region of H1. Then this test is a best test in the sense that any other
test at the same (or lower) significance level has power at most that of this special
test.

Hypothesis testing is used to gradually increase ones knowledge about some
stochastic phenomenon of interest. One starts with a null hypothesis everyone can
accept. Then, as one gains experience through observation, one reconsiders the
hypothesis and formulates an alternative hypothesis. If, some day, the null hypoth-
esis is falsified, you take the alternative hypothesis as your new null hypothesis.
The process is repeated until you find that you have extracted as much informa-
tion about the nature of the phenomenon as possible, given the available time and
resources.

Note the significance of quantitative information theory as a guide in the subtle
process of selection and falsification of hypothesis until you end up with a hypoth-
esis you are either satisfied with as final expression of your knowledge about the
phenomenon or else you do not see how to falsify this hypothesis, given the available
resources.

We now turn to more subtle applications of information divergence. We con-
sider fixed hypothesis Hy : Q = Py and Hy : Q = P, (with D(FPy||P;) < o0) and a
series A, of acceptance regions for Hy. The index n indicates that testing is based
on a sample of size n. Then, for mathematically well behaved regions,

(38) PT(An|H1) S eXp(_nD(anpl))

where @, is the information projection of P, on A,,. This upper bound on the type-
IT error probability is asymptotically optimal for a fixed significance level. Indeed,
if all tests are at the same significance level, then

1
(3.9) lim ——Pr(4,|Hi) = D(R|1P2).

n—oo

Note that this limit relation gives an interesting interpretation of information
divergence in statistical terms. The result was found by Chernoff [10], but is
normally called Stein’s Lemma. In 1947 Wald [39] proved a similar but somewhat
weaker result. This was the first time information divergence appeared, which is
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Ac,  AcAc

P,

FIGURE 4. Decreasing sequence of acceptance regions in the prob-
ability simplex.

one year before Shannon published his basic paper and five years before Kullback
and Leibler defined information divergence as an independent concept.

Among other applications of information theoretical thinking to statistics, we
point to the minimum description length principle, which is a variant of the principle
that among different possible descriptions one shall choose the shortest one. Thus
the parameters in a statistical model shall be chosen such that coding according
to the resulting distribution gives the shortest total length of the coded message.
So far all agree. The new idea is to incorporate not only the data but also the
description of the statistical model. In general, a model with three parameters
will give a better description than a model with only two parameters. On the other
hand the three-parameter model is more complicated, so there is a trade-off between
complexity of the model and the coding of the data according to the model.

A simple and well-known example is the description of a single real parameter.
How many digits shall be given? A rule of thumb states that the uncertainty shall
be at the last digit. The minimum description length principle tries to justify or to
modify such rules.

We refer to [15] for a review of the relations to statistics and further references.

3.9. Law of large numbers and central limit theorems. Inequality (3.8)
states that the probability of observing an empirical distribution far from the the-
oretical distribution is small. As a consequence we immediately get a law of large
numbers:

THEOREM 5. Let P be a probability distribution. Let A be a convexr set of
probability distributions not containing P. Then the probability that the empirical
distribution belongs to A converges to zero when the number of observations tends
to infinity.

We can also formulate this result for random variables.

THEOREM 6. Let X, Xo,... be a sequence of independent and identically dis-
tributed random variables. Assume that X; has mean value p. Then if n is chosen
sufficiently large,

X1+ Xo+ ...+ X,
n

is close to p with high probability.
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Inequality (3.8) gives more. The probability of getting a deviation from the
mean decreases exponentially. Therefore the sum of the probabilities of deviations
is finite. This has important applications. Let A be a set of probability measures
such that D (Q||P) > 1/2 for all Q@ ¢ A. Then the probability that the empirical
distribution belongs to A is upper bounded by 1/2". The probability that at least
one of the empirical distributions belong to A for n > N is upper bounded by

1 1 1 1 1 1
1

If N is large then this is small. The law of large numbers states that there is a high
probability that Empy (w) € A, but we even have that there is a high probability
that Emp,, (w) € A for all n > N. Thus most sequences will never leave A again.
This is formulated as the strong law of large numbers:

THEOREM 7. Let P be a probability distribution. Then the empirical distribu-
tion converges to P with probability one.

For random variables the theorem states that:

THEOREM 8. Let X, Xo,... be a sequence of independent and identically dis-
tributed random variables. Assume that X; has mean value u. Then

Xi+Xo+ ..+ X,
n

converges to p with probability one.

We have seen that W is close to p with high probability. Equiva-

lently,
(Xi—p)+(Xo—p)+...+ (X — )
n
is close to zero. If we divide with a number smaller that n we get a quantity not
as close to zero. In order to keep the variance fixed we divide by n'/? instead. Put
(Xi—p+ X —p+..+ (X —p)
nl/2 :

Thus E (S,) =0 and Var (S,) = Var (X;1). Let P, be the distribution of S,. Let
® denote the distribution of a centered Gaussian random variable. The differential
entropy of P, satisfies

Sp =

Thus we see that the differential entropy of P, is less than or equal to the differ-

ential entropy of Gaussian distribution. The central limit theorem in its standard
formulation states that P, converges to a Gaussian distribution.

THEOREM 9. If there exists n such that h (P,) < oo then h(P,) increases and
converges to its mazimum, which equals h (®) . Equivalently, D (P, ||®) decreases to
zero.

In this formulation the central limit theorem corresponds to the second law of
thermodynamics, which states that the entropy of a physical system increases and
converges to its maximum. Here the variance turns out to be sufficient. We see
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| Alice |~ Encoding - Channel | Decoding = Bob |

Noise

F1GURE 5. Shannon’s model of a noisy channel.

that addition of random variables gives a "dynamics" which supports the maxi-
mum entropy principle in that it explains a mechanism behind entropy increase. It
turns out that all the major theorems of probability theory can be formulated as
maximum entropy results or minimum information divergence results.

4. TIs capacity only useful for engineers?

4.1. Channel coding. We consider a situation where Alice sends information
to Bob over a noisy information channel. Alice attempts to encode the information
in such a way that it is tolerant to noise, yet at the same time enabling Bob to
recover the original message.

A simple error-correcting protocol is to send the same message several times.
If the message is sent three times and a single error has occurred, then two of the
received messages are still identical and Bob concludes that these must be identical
to the original message. Another simple protocol is possible when feedback is
allowed. Alice sends the message. Bob sends the received message back again. If
Alice receives what she sent, she can be quite certain that Bob received the original
message without error, and she can send a new message. If she receives a different
message from the one sent, she sends the original message again. These protocols
are simple but they are not always efficient. More complicated codes are possible.

EXAMPLE 9. In this example a message consisting of three bits is encoded into
seven bits. Let X1, Xo and X3 be the three bits. We shall use the convention that
14+1=0. Put

Xi2=X1+X»
Xoz = Xo+ X3
X3 =X3+ X3

X3 = X1 + Xo + X5.

See Figure 6. Now transmit the code-word X1 XoX3X19X23X13X123. If the
recetved code-word Y1YoY3Y19Yo3Y13Y 103 is identical with X1 X2 X3X12X03X13X123,
then the received code-word satisfies the following parity check equations

Y1+ Yo +Yi3+ Y23 =0
Yo + Y12 + Yoz + Y123 =0
Y3 + Y13 + Yoz + Y123 = 0.

If a single bit has been corrupted then one or more of the parity check equations
will not hold. It is then easy to identify the corrupted bit and recover the original
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ELNNAUN

FIGURE 6. The code in Example 9 is constructed such that the sum
of bits inside any circle is zero. The right diagram corresponds to
the codeword 101.

message. Indeed, as the reader will realize, this can be done by considering the
faulty equations and the domain they represent.

4.2. Capacity. Let X € A denote the input to an information channel and
Y € B the output. Then, if X can be (almost perfectly) reconstructed from the
output Y, H (X | Y) is small and then by (1.13),

H(X)~I(X;Y).

Hence, if Alice wants to send a lot of information through the information chan-
nel she wants I (X;Y") to be big. Alice can choose which input symbols to send
frequently and which to send less frequently. As Alice controls the distribution of
the input letters, we define the capacity C of the information channel to be the
maximum of the mutual information I (X;Y) over all distributions on the input
letters.

Consider the binary symmetric channel where A = B = {0,1} and where
QY =1]X=0=Q¥ =0|X=1)=¢c€[0;1/2] is called the tranmission
error. Here, the uniform input distribution P*(0) = P*(1) = 5 is optimal and the

capacity is
C = log2—H(Q(-|0) =log2 - H(Q(-| 1))
= D((e;1-9)[I(1/2,1/2)).

As is natural, capacity is the largest, 1 bit, if ¢ = 0 and the smallest, 0 bits, if
1

€=3.

\QNe note that determination of the capacity of a channel can be viewed as
a game. In fact, the game is identical — but with different interpretations and
emphasis — to the game related to universal coding, cf. Section 3.4.

Before Shannon most people believed that a lot of redundancy or feedback
is needed in order to ensure a high probability of correct transmission. Shannon

showed that this is not the case.

THEOREM 10 (Second main theorem of information theory). If X is an infor-
mation source and H (X) < C then the source can be transmitted almost perfectly
if the channel is used many times and complicated coding schemes are allowed.
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Shannon also showed that feedback does not increase capacity. In order to
prove the theorem Shannon introduced the concept of random coding where code-
words are assigned to messages at random. A code-book containing all these code-
words is enormous, and Alice has to provide Bob with the code-book before the
transmission starts. A lot of bits are thus used just to transmit the code-book, but
Alice only needs to transmit the code-book once. Therefore, even if a large code-
book is used and this code-book saves just one bit compared to a simpler code-book
then, if sufficiently many transmissions are performed, the saved bits will exceed
the number of extra bits in the big code-book. Since Shannon published the second
main theorem of information theory it has been a challenge to construct codes
which are both simple and efficient.

It turns out that the repetition code is inefficient except if the capacity is very
small. It also turns out that feedback does not increase capacity. One may ask why
these codes are so widely used when they, according to the first main theorem of
information theory, are inefficient. Actually, Shannon-type coding does not seem
to be used among humans or animals. Instead much more primitive codes are used.
There are, apparently, several reasons for this.

The first is that efficient coding is complicated. Thus efficient coding schemes
will only evolve if there is a high selective pressure on efficient communication.
Often there is a high selective pressure on getting the message across, but if the
transmission cost is low there is no reason to develop sophisticated coding schemes.
It is known that the simple coding schemes are efficient in a very noisy environment,
so if there is uncertainty about the actual noise level it may be better to be on the
safe side and transmit "too much".

The human language is highly structured. In logic, semantics and linguistics
one studies the relation between the more formal structures inside the language
and the world outside the language. Many grammatical structures work to some
extent as a kind of error correction in the language (but may have other functions
as well). But we know that it is very hard to learn a language with a complicated
grammar. If the language used some of the coding techniques used by engineers, a
lot of new "grammatical rules" had to be introduced. In a sentence like "The man
has a box" the word "man" can be replaced with "woman", "boy", "girl", "friend"
etc. and the word "box" can, independently, be replaced by "ball", "pen", "stick"
etc. Each of the sentences would make sense and correspond to a scenario which is
true or false, possible or impossible, probable or improbable. In our simple example
the sentence may be compressed to "man box" and we can still replace the words
and recover the original structure. If the sentence was coded using Shannon coding
there would not be the same possibility of restructuring the sentence, because error
correcting codes introduce dependencies which were not there before. In this sense:

Data compression emphasize structure, and channel coding smudges structure.

4.3. Transmission of quantum information. The key to the success of
Shannon’s theory lies to a great extent in the quantitative results regarding pos-
sibilities for faithful transmission of classical information. When we turn to the
similar problems regarding transmission of quantum information, new phenomena
occur. Technically, it is even difficult to get started on the investigations as it is not
clear what the proper notion of a channel should be in the quantum setting. This
concerns questions about the type of input and output allowed (classical and/or
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quantum), the necessary attention to the handling of sequential input (where en-
tanglement has to be taken into consideration) and finally, it concerns questions
about feedback.

Considering the various options, one is lead to more than twenty different types
of quantum channels, and even for the simplest of these, basic properties are not yet
fully developed®. The many possibilities indicate that quantum information theory
is not just a simple extension of the classical theory. For instance, when sender
and receiver in a quantum communication share an EPR-pair, then, though this in
itself cannot be used for transfer of information, it can facilitate such transfer and
raise the capacity of the communication system. Thinking about it, such new pos-
sibilities raise qualitative philosophical questions about the nature of information.
New emerging ideas, which are only partly developed today, may well change our
understanding of the very concept of information in radical ways.

5. Multi-user communication

In the kind of problems we have discussed information is something Alice sends
to Bob. Thus there have only been one sender and one receiver. In many situations
there are more senders and receivers at the same time. A television signal is sent
from an antenna to a large number of receivers. This is a so-called broadcast system.
In a multiple access system there are many senders and only one receiver. An
example of a multiple access system is a class room where the teacher wants some
information from the pupils. If all pupils speak at the same time the teacher
will just receive a lot of noise. Timesharing, a common solution to this problem,
dictates that one pupil speaks at a time. An important example of a multi-user
system is the internet where the servers send signals to each other. Timesharing
for the whole internet is possible but very inefficient. The main problem of multi-
user information theory is to find more efficient protocols than timesharing, and to
determine theoretical bounds on the efficiency of the protocols. A special example
of a multiuser system is a cryptographic system where Alice sends a message to
Bob, but a second potential receiver is Eve who wiretaps the system or tries to
disturb the message.

The engineers have developed many sensible protocols, but there are only few
theoretical results, so, in general, it is not known if the protocols are optimal. Here
we shall describe some well understood problems and indicate the more general
ones. We shall see the kind of results one may dream of for more complicated
systems.

5.1. The multiple access channel. Consider a noisy multiple access channel
with two senders. The senders send variables X and Y and the receiver receives a
variable Z. The channel is given in the sense that we know the distribution of Z
given the input (X,Y). Consider a specific input distribution on (X,Y). We are
interested in which pairs (R;, R2) have the property that Sender 1 can send at rate
R; and Sender 2 can send at rate Rs. Assume that Sender 1 and the receiver knows
Y. Then Sender 1 can send information at a rate

(5.1) R <I(X;Z|Y),

3This concerns, in particular, the so-called additivity conjecture related to properties of one
of the notions of quantum capacity.
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FIGURE 8. Intersection of capacity and compression region.

which gives the rate pair (I (X;Z|Y),0). If X is known to Sender 2 and to the
receiver then Sender 2 can send information at a rate

(5.2) Ry <1(V:Z]X),

which gives the rate pair (0,1 (Y;Z | X)). By timesharing, the senders can send
at rates which are combinations of (I (X;Z|Y),0) and (0,I(Y;Z | X)). But one
can achieve a better performance. If the two senders both know X and Y they can
send at rate

(5.3) Ri+ Ry <I((X,Y):;2).

It turns our that the three conditions (5.1), (5.2) and (5.3) are necessary and
sufficient for the rate pair to be achievable.

Therefore, correlated variables can be sent over a multiple access channel if and
only if the compression region and the capacity region intersect. In order to achieve
a rate pair in this intersection, the source coding should be adapted to the channel
and the channel coding should be adapted to the correlations in the source. Thus
source and channel coding cannot be separated in multi user information theory.

5.2. Network coding. We shall start with an example. Consider a network
with two senders A; and A5 and two receivers By and By and intermediate nodes
C and D as illustrated in Figure 9. Assume that A; want to send one bit of
information to By and A, wants to send one bit of information to By. Assume that
each edge has capacity one bit. If A; sends her bit along the path A;CDBs then
it is not possible at the same time for A, to send her bit along the path AsCDB;.
The solution is that A; sends her bit to By and C, and A, sends her bit to Bs
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FicURE 9. Network where network coding makes it possible for

A; to send one bit to By and for As to send one bit to B; though
each of the edges only has capacity one bit.

A

2

and C. Then C should send the sum of the received bits to D, which should send
the received bit to By and B;. Now, By will be able to reconstruct the bit sent
from As from the two received bits and, similarly, B, will be able to reconstruct
the message sent from A;. This is the simplest example of network coding, and was
given in [1].

Since year 2000 a lot of remarkable results in network coding have been ob-
tained. The theory works well as long as the noise is by deletions, i.e. a symbol
can disappear during transmission, but it cannot be altered. A simple protocol is
obtained when each node transmits a random mixture of the received signals. The
original message is reconstructed by comparing the received mixed noisy signals.
If transmission of a message from one node to another is possible by any protocol,
then it is also possible with this simple random protocol, if the transmission is re-
peated sufficiently many times. These new results should both have practical and
philosophical implications.

A review of the subject and further references can be found in [40].

5.3. Broadcast problems. In a broadcast system there is one sender and a
number of receivers. The broadcast problem is to determine the capacity region,
assuming the distributions of the received signals given the sent signal are known.
There would be a tremendous number of applications of such a result, and therefore
it is considered as one of the major open problems in information theory.

A special kind of broadcast system is an identification system. An example
is call-outs in an airport. There is a special message for a single passenger. The
speaker can address the message to all passengers, but this is clearly inefficient
because most passengers are not interested. Therefore the speaker starts saying
” A message for Mr. Bob Johnson...” After hearing this introduction all passengers
except Bob Johnson can choose not to listen to the last part. The speaker may
even choose to say "Mr. Bob Johnson, please, go to the information desk”. If
there is a lot of noise the speaker may choose to repeat the sentence or introduce
error-correction by some other method. This is called an identification problem,
because the main problem is to identify who should receive the message. One may
argue that this is not transmission of information. First of all there is no message
in the ordinary sense. Secondly it is hard to call the passenger Mrs. Alice Brown
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FiGURE 10. Channel with an eavesdropper.

a receiver. After hearing the word "Mr." she knows that there is no reason to the

listen to the rest. The situation is sometimes termed information transfer rather
than information transmission.

5.4. Cryptography. Consider a crypto-system where Alice wants to send a
message to Bob but at the same time she wants to prevent an eavesdropper Eve
from picking up the message. This can sometimes be done if Alice and Bob shares
a secret code-word, Z, called the key. Using the key Z, Alice encrypts the plain
text X into a cipher text Y.

For this to work consider the following three conditions:

(1) X is independent of Z,
(2) Y is determined by X and Z,
(3) X is determined by Y and Z.

The first condition is that the key is chosen independently of the message Alice
wants to communicate to Bob. The second condition is the possibility of encryption
and the third condition is the possibility of decryption.

A crypto-system is said to be unconditionally secure if X is independent of Y,
i.e. knowledge of the cipher-text gives no information about the plain-text.

EXAMPLE 10 (The one-time pad). Consider a plain-text X1Xs...X,, of bits.
Alice and Bob share a secret key Z1Zs...Z,, consisting of bits generated in such a way
that the bits are independent and each of them with a uniform distribution. Alice
constructs a cipher-text Y1Y5...Y,, by adding the key, i.e. by putting Y; = X; + Z;.
Here she uses the convention that 1+1 = 0. Bob decrypts the received cipher-text by
subtracting the key. Here he uses the convention that 0 — 1 = 1. Thus Bob recovers
the plain-text. Remark that with the conventions used adding a key or subtracting
the key gives the same result. The method is called the one-time pad because each
bit in the key is used only once during the encryption procedure.

The one-time pad requires very long keys. If a file of size 1 Gb has to be
encrypted the key has to be 1 Gb as well. One may ask if a key can be used in a
more efficient way such that shorter keys can be used.

Various inequalities can be derived from these conditions. The most important
is the following result:

THEOREM 11. For an unconditionally secure crypto system, H (X) < H (Z)
where X denotes the plain text and Z the key.

If H (X) is identified with the length of the (compressed) plain text and H (Z)
is identified with the length of the (compressed) key, we see that the key must be
at least as long as the plain-text if we want unconditional security. In everyday life
much shorter keys and passwords are used. The theorem shows that they cannot
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FI1GURE 11. A crypto system with a public and a secret channel.

be unconditionally secure. If Eve had a sufficiently strong and fast computer she
would in principle be able to recover most of the plain-text from the cipher-text.
This was exactly what happened to the ciphers used during the second world war.
When modern ciphers using short keys are said to be (conditionally) secure there
is always a condition/assumption that the eavesdropper has limited computational
power.

One of the most important problems in implementing cryptographic systems is
key distribution as it involves both technical and social problems.

Both Alice and Bob have to know the key, but it shall be secret to Eve. Hence
we have to introduce a secret channel used to send the key to Bob. This may
for instance be a courier. Then Theorem 11 states that the amount of secret
information that Alice can send to Bob is bounded by the capacity of the secret
channel. This kind of thinking may be extended to scenarios where the information
channels are noisy and Eve is only able to wiretap part of the communication
between Alice and Bob. We are interested in how many secret bits Alice is able to
transmit to Bob and we can define the least upper bound as the secrecy capacity of
the system. Even in systems involving only three users there are open mathematical
problems.

6. Conclusions

The quantitative theory of information as developed by Shannon and his suc-
cessors, provides powerful tool that allow modeling of a wide range of phenomena
where information in one sense or another plays the central role. Modeling is rooted
in interpretations, which captures basic philosophical aspects of information. This
is especially apparent in the duality between truth and description, which we have
put much emphasis on.

Duality allows you to switch back and forth between modeling based on distrib-
utions and modeling based on codes. Though formally a one-to-one correspondence,
the importance lies in the asymmetries, and the different points of view attached to
the two possibilities. This interplay is important technically as well as for a proper
understanding,.

A technical development of information theory is under way, which will put
concepts related to uncertainty, information and knowledge on a more firm theo-
retical footing and, apart from the philosophical impact, this is believed to result
in a change of paradigm and a better understanding of certain parts of science,
especially probability theory and statistics.
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