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Categories Cat 1.1

Categories

1. Categories.

(1.1). Here are a few concepts from the jungle of categories. Explain what they mean.
Identity; morphism, isomorphism, endomorphism, automorphism; monomorphism, epi-

morphism; subobject, quotient object; initial object, final object, zero object; equalizer or ker-
nel, coequalizer or cokernel; sum, product; fibered productor pullback diagram, amalgamated
sum or pushout diagram; opposite categoryCop of a categoryC; functor and contravariant
functor; transformation of functors;

(1.2) Examples.Fundamental are the categoriesSetsof sets andAb of abelian groups.
Basic examples from set theory and combinatorics: the category Sets0 of pointed (based)

sets, the categoryFiniteSetsof finite sets; the categoryPOSof partially ordered sets (with
strictly increasing maps as morphisms); the categoryCat of small categories (with functors
as morphisms).

Basic algebraic examples: the categoryGr of groups; the categoryRings of (unital)
commutative rings; the category (kAlg of k-algebras (of some given fixed type, for instance
associative and unital (also, fork = Z called noncommutative rings), or Lie, or Jordan, or
. . . ); the categoryRMod of R-modules.

Basic geometrical examples: the categoryTop of topological spaces, the categoryTop0)
of pointed topological spaces, the categoryMfld of manifolds (of some given fixed type, for
instance topological manifolds, pl-manifolds, algebraicmanifolds (over a given field),C∞-
manifolds (real or complex), analytic manifolds,. . . ); the categorySchemesof schemes
(possibly over a fixed base scheme).

Some very small examples: the category∅ with no objects; the category0 (or ∗) with one
object and the identity as the only morphism; the category0→→ 1 with two objects, say 0 and
1, and two morphisms 0→ 1 (and two identities).

Every setM defines adiscrete category:its objects are the elements ofM and the only
morphisms are the identities. An additional category derived fromM has the same objects,
and exactly one morphismi → j for any pair of elements(i, j) inM.

Every pre-ordered set(M,4) defines a category, denotedM: its objects are the elements
ofM, and for elementsi, j ∈ M there is a single morphismi → j if i 4 j , and no morphism
otherwise. In fact, a pre-ordered sets may be indentified with a categories in which, for any
pair of objectsi, j , there is at most one morphismi → j .
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Cat 1.2 Categories

(1.3) Example. For every nonnegative integern, denote by [n] the finite set,

[n] = {0, 1, . . . , n}.

Three important categories,s, ss, andsss, have as objects the set of nonnegative integers
0, 1, 2, . . . ; the sets of morphisms,

Homs(p, q), Homss(p, q), Homsss(p, q),

are the sets of all maps [p] → [q] that are, respectively, arbitrary, weakly increasing, or
strictly increasing.

(1.4) Diagram categories.A quiverD is an oriented multigraph. It consists of a setV of
vertices, a setE of edgesor arrows, and two mapsb, e : E → V . Foru, v ∈ V andα ∈ E,
we writeα : u→ v for the statementb(α) = u ande(α) = v.

If D is a quiver, then aD-diagramin the categoryC is functionF associating with every
vertexv ofD an objectF(v) of C and with every arrow ofD a morphismF(α) of C such that
if α : u→ v thenF(α) : F(u)→ F(v). There is an obvious categoryCD of D-diagrams of
C.

The path categoryP(D) of a quiverD has as objects the set of vertices ofD and as
morphisms the set of all strings,

(u, α1, . . . , αn, v),

whereu, v are vertices ofD and theαi aren arrows ofD and eithern = 0 andu = v,
or n > 0 andu = e(α1), b(αi) = e(αi+1) for 1 6 i < n, b(αn) = v. Composition of
composable morphisms is essentially concatenation.
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Exact categories Cat 2.1

2. Exact categories.

Fix a categoriA.

(2.1) Definition. An object ofA is called azero object, and usually denoted 0, if it is both a
final and initial object ofA. If A has a zero object, then for any pairA,B of objects, thezero
morphism,

0= 0AB : A→ B,

is the compositionA→ 0→ B. It behaves like a zero in the sense thatf0= 0 and 0g = 0
for morphismsf : B → B ′ andg : A′→ A.

(2.2) Definition. Assume thatA has a zero object. Letf : A → B be a morphism. By
definition, akernelfor f , denoted Kerf , is an equalizer for the pairf, 0:A→ B,

Ker(f ) := Ker(f, 0),

and aCokernelfor f , denoted Cokf , is a coequalizer for the pairf, 0.
In other words, a morphismK → A is a kernel off , if and only if K → A → B is

the zero morphism and, for every morphismh : A′ → A such thatA′ → A → B is the
zero morphism, there exists a unique morphismh′ : A′ → K such thath is the composition
A′ → K → A. The morphismh′ is said to beinducedby h. Clearly, there is a dual
description of the cokernel, and a similar notation ofinducedmaps. The setup is indicated
in the following diagrams:

A′

h 0

K A
f

B

A B C

0

B

Note that the kernel as a morphismK → A is monic, unique up to canonical isomorphism;
hence, equivalently, we may think ofthe kernelof f : A → B as a subobjectK of A with
the canonical injectionK →֒ A. Dually, we may think ofthe cokernelas a quotientC of B
with the canonical projectionB →→ C.

Note that ifK is the kernel off : A→ B, andu : B → B ′ is a monomorphism, thenK is
also the kernel ofuf : A→ B ′. Dually, if C is the cokernel off : A→ B andv : A′→ A is
epic, thenC is also the cokernel off v : A′→ B.

(2.3) Definition. Assume thatA has a zero object, and kernels and cokernels. Letf : A→ B

be a morphism inA. Thenthe imageof f , denoted Imf , is the kernel ofB → Cokf , and
the coimageof f , denoted Coimf , is the cokernel of Kerf → A.

There is an induced morphism, called thecanonical morphism, making the following
diagram commmutative:

A Coimf

f f̃

B Im f .
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Cat 2.2 Categories

Inded, use the definition of Coimf as a cokernel to obtain the map̂f of the first of the
following diagrams; the composition Coimf → B → Cokf is the zero morphism, and the
definition of Imf as a kernel yields̃f .

Kerf A Coimf

0 f
f̂

Cokf B Im f ,

Kerf A Coimf
0 f

f̂
f̃

Cokf B Im f .

Note. It is easy to see that all three morphismsA→ B,A→ Coim, andA→ Im f have
Kerf as kernel. Dually, all three morphismsA → B, Coimf → B, and Imf → B have
Cokf as cokernel.

(2.4) Definition. The categoryA is anexact categoryif it has a zero object and kernels and
cokernels, and if for every morphismf : A → B the canonical morphism̃f : Coimf →
Im f is an isomorphism.

(2.5) Proposition. Assume thatA is an exact category, and letf : A→ B be a morphism in
A. Then:

(1) f is monic, iff Kerf = 0, iff A→ Im f is an isomorhism.
(2) f is epic, iff Cokf = 0, iff Im f → B is an isomorhism.
(3) f is isomorphic, ifff is monic and epic, iffKerf = Cokf = 0.

Moreover, for a given factorization off :

C

u v

A
f

B.

(4) If u is monic andv is epic, thenA u
C is a kernel ofv, iff C v

B is a cokernel
of u.

(5) If u is epic andv is monic, thenC = Im f = Coimf .

Proof. (1) If A → Im f is an isomorphism, then it is in particular monic; hence, so is the
compositionA→ Im f → B, that is,f is monic. Clearly, iff is monic, then Kerf = 0.
Finally, if Kerf = 0 thenA → Coimf is an isomorphism and hence, by the exactness
propertyA→ Im f is an isomorphism.

The proofs of the remaining assertions are similar.

Note. The property (4) produces a bijective correspondance between the subobjectsA of C
and the quotient objectsB of C. The quotient object corresponding to the subobjectA of C
is usually denotedC/A.

(2.6) Definition. Assume thatA is an exact category. A sequence of morphisms ofA,

· · · Xn−1 f n−1

Xn
f n

Xn+1 · · · ,

10



Exact categories Cat 2.3

is a complexor a zero sequence, if f nf n−1 = 0 or, equivalently, Imf n−1 ⊆ Kerf n,
for all n. For a zero sequence, then’th cohomologyH n is the cokernel of the morphism
Xn−1→ Kerf n, or, equivalently, the quotient quotient object:

H n := Kerf n/ Im f n−1;

it may also be described as the kernel of the morphism Cokf n−1→ Xn+1. The sequence is
called anexact sequenceif it is a zero sequence andH n = 0 for all n.

The word ‘complex’ is reserved for an infinite sequence as indicated in the notation, but
otherwise the definitions apply with obvious modifications to finite sequences. A diagram is
called anexact diagramif every sequence formed by consequtive, composable morphism on
a stragth line in the diagram is exact.

Note the following cases:
The sequence 0→ A→ A′ is exact, iffA′→ A is monic.
The sequence 0→ A′→ A

u
B ′′ is exact, iffA′→ A is a kernel ofu.

The sequenceA′ u
A

f
B v B ′ is exact, iff it is a zero sequence and the induced

map Coku→ Kerv is an isomorphism.

(2.7) Note. Clearly, for any commutative diagram inA,

A A′

f f ′

B B ′,

there is a unique (induced) morphism Kerf → Kerf ′ making the following diagram com-
mutative:

Kerf Kerf ′

A A′.

Similarly, the given diagram induces morphims between the cokernels, the images and the
coimages.

(2.8) The 3-lemma.Assume thatA is an exact category. Consider inA an exact, commutative
diagram,

0 A′ A A′′

f ′ f f ′′

0 B ′ B B ′′.

(∗)

Then: (1) The induced sequence of kernels0→ Kerf ′→ Kerf → Kerf ′′ is exact.
(2) If f ′′ is monic, the induced mapCokf ′→ Cokf is monic.

Proof. (1) It suffices to note that Kerf ′→ Kerf is a kernel of Kerf → Kerf ′′.

11



Cat 2.4 Categories

(2) Assume thatf ′′ is monic. Clearly, to prove (2), we may replace in the diagramthe
objectA′′ with Im(A→ A′′). So we may assume thatA→ A′′ is epic. In an obvious choice
of notation, let 0→ C ′ → C → C ′′ be the induced sequence of images of thef ’s. It fits
into a commutative diagram,

0 C ′ C C ′′

i′ i i′′

0 B ′ B B ′′.

(∗̄)

We will prove that the top row of (̄∗) is exact. Note first that withK ′ := Kerf ′,K := Kerf ,
andK ′′ := Kerf ′′, the sequenceC ′→ C → C ′′→ 0 is the sequence of cokernels induced
from the following commutative diagram,

K ′ K K ′′ 0

A′ A A′′ 0.

(#)

The rows of (#) are exact. Indeed, in the top row we haveK ′′ = 0, and so exactness follows
from (1); the bottom row is exact since we assumed thatA → A′′ is epic. So, by the dual
assertion (1)∗, the sequenceC ′ → C → C ′′ → 0 is exact. Moreover, in the commutative
diagram (̄∗), the injectionC ′ → B ′ and the morphismB ′ → B are monic. HenceC ′ → C

is monic. Therefore, the top row of (∗̄) is exact.
So thecommutativediagram (∗̄) is exact. Thevertical morphisms of (∗̄) aremonic, and their

cokernels are the same as those of the original diagram (∗), So we may assume in the original
diagram (∗) that all thevertical morphisms aremonic. Under this assumption it is easy to verify
that the morphismf ′ : A′→ B ′ is a kernel of the compositionh := (B ′→ B → D), where
D := Cokf . So Cokf ′ is the coimage, and hence equal to the image, ofh. As an image, it
injects intoD. So the morphism Cokf ′ = Im h→ D = Cokf is a monomorphism. Hence
(2) has been proved.

(2.9) The 4-Lemma.Assume thatA is an exact category, and consider an exact commutative
diagram,

A0 A′ A A′′

f ′ f f ′′

B0 B ′ B B ′′

If A0→ B0 is epic, thenKerf ′→ Kerf → Kerf ′′ is exact.

Proof. Split the diagram into two commutative diagrams:

A0 A′ Ā

f ′ f̄

B0 B ′ B̄,

0 Ā A A′′

f̄ f f ′′

0 B̄ B B ′′,
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Exact categories Cat 2.5

wheref̄ : Ā→ B̄ is the induced morphism of images.
The two diagrams are exact. Therefore, by Assertion (2.8)(1), the sequence 0→ Ker f̄ →

Kerf → Kerf ′′ is exact, and by the assertion dual to (2.8)(2), the morphismKerf ′→ Ker f̄
is epic. The assertion of the Proposition is a consequence.

(2.10) The Ker-Coker sequence of a composition.Assume thatA is exact. Then, for two
composable morphismsf : A→ B andg : B → C, there is an exact sequence,

0→ Kerf → Kergf → Kerg→ Cokf → Cokgf → Cokg→ 0.

Proof. Apply the 4-lemma (2.9) three times to parts of the followingdiagram:

0 0 Kerf A
f

B Cokf

gf g

0 0 0 C ==== C 0,

to obtain the exact sequence,

0→ Kerf → Kergf → Kerg→ Cokf.

Conclude by duality.

(2.11) Corollary. The second Noether Isormorphism Theorem. Assume thatA is exact.
Then for subobjectsC0 ⊆ C ⊆ A of an objectA, there is a canonical isomorphism,

C/C0
∼−→ Ker(A/C0→ A/C).

(2.12) The Snake Lemma.Assume thatA is an exact category. Then an exact commutative
diagram inA,

0

A0 A′ A A′′ A0

f0 f ′ f f ′′ f 0

B0 B ′ B B ′′ B0

0,

induces an exact sequence,

Kerf ′ Kerf Kerf ′′ δ Cokf ′ Cokf Cokf ′′.

13



Cat 2.6 Categories

More precisely, setK := Ker(A → B ′′) andL := Cok(A′ → B). Then the induced
morphismK → Kerf ′′ is epic, the induced morphismCokf ′ → L is monic, andδ is the
uniqe morphism making the following diagram commutative:

K Kerf ′′

δA

B

Cokf ′ L,

Proof. LetC → B ′′ be the kernel ofB ′′ → B0. Then the morphismA→ B ′′ lifts uniquely
to a morphismA→ C having kernelK, and fitting into a commutative, exact diagram,

A0 A′ A A′′ A0

0 0 C B ′′ B0,

Apply The 4-Lemma (2.9) twice to obtain the first of the following exact sequences:

A′ K Kerf ′′ 0, 0 Cokf ′ L B ′′. (*)

The second exact sequence is obtained by the dual argument. Since the compositionsA′ →
K → L andK → L → B ′′ are zero morphisms, the existence and uniqueness ofδ are
obtained from the exactness in (*). By the 4-Lemma (2.9) and duality, to prove that the long
sequence of kernels and cokernels is exact, we need only to prove that the following sequence
is exact:

Kerf Kerf ′′ δ Cokf ′;

as the morhism Cokf ′ → L is a monomorphism, it suffices to prove that the following
sequence is exact:

Kerf Kerf ′′ L (2.12.2)

is exact. Apply the 4-Lemma (2.9) to the following diagram:

A′ K Kerf ′′ 0wwwww
A′ B L 0.

It follows that the morphism Ker(K → B)→ Ker(Kerf ′′ → L) is an epimorphism. This
epimorphism factors through the morphism Kerf → Ker(Kerf ′′ → L). Hence the latter
morphism is an epimorphism as well. Therefore, (2.12.2) is exact.

14



Exact categories Cat 2.7

(2.13) Definition. In the setup of the Snake Lemma, the exact sequence of kernelsand
cokernels will be called thesnake sequence, and the morphismδ will be called thesnake
morphismor theconnecting morphism.

(2.14) The 5-Lemma.Under the hypotheses of the Snake Lemma(2.13), if the morphisms
f ′ andf ′′ are isomorphisms, then so isf . In particular, the middle morphismf is an
isomorphism if the otherf vertical morphisms are isomorphisms.

Proof. Exactness of the snake sequence yields Kerf = Cokf = 0.

(2.15) The Push-out Lemma.Assume thatA is exact. Consider at push-out diagram,

A
α

A′′

f f ′′

B
β

B ′′.

(1) The induced morphismCokα→ Cokβ is an isomorphism.
(2) If f or α is an epimorhism, thenKerα→ Kerβ is an epimorphism.

Proof. (1) Let α′′ : A → A0 be the cokernel ofα : A → A′′. Then, by the assumed push-
out properties, applied toα′′ and the zero morphismB → A0, there is a unique morphism
β ′′ : B ′′ → A0 such thatβ ′′f ′′ = α′′ andβ ′′β = 0. Now check thatβ ′′ : B ′′ → A0 is a
cokernel ofβ : B → B ′′.

(2) Assume thatα is epic. We have to prove that both induced morphisms Kerα→ Kerβ
and Kerf → Kerf ′′ are epic. First, it follows from (1) thatβ is epic. Therefore, completing
the given diagram with the kernels ofα andβ, we obtain an exact, commutative diagram,

0 A′ A
α

A′′ 0

f ′ f f ′′

0 B ′ B
β

B ′′ 0.

By the Snake Lemma there is an induced exact sequence,

Kerf Kerf ′′ δ Cokf ′ → Cokf → Cokf ′′.

If suffices to prove thatδ is the zero morphism. Indeed, ifδ = 0, then it follows that the
first morphism Kerf → Kerf ′′ in the sequence is epic; moreover, as the last morphism in
the sequence is an isomorphism by (1), it follows that Cokf ′ = 0, that is, the morphism
f ′ : Kerα→ Kerβ is epic.

Now, by the Snak Lemma,δ is induced by the composition,

Ker(A→ B ′′)→ A→ B → Cok(A′→ B).

It follows from the assumed push-out properties thatβ : B → B ′′ is a cokernel ofA′ → B.
Soδ is induced by the zero morphism, and hence equal to zero.
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Cat 2.8 Categories

(2.16) Proposition.Let F : A→ B be a functor between exact categories.

(1) If F is faithfull then it reflects zero object, zero morphisms, and exact sequences.
(2) The functorF preserves exact sequences, if and only if for every short exact sequence

in A,
0 A′ A A′′ 0,

the following sequence is exact inB,

0 FA′ FA FA′′ 0,

Proof. (1) The zero object 0 ofA is the only object for which End(0) consists of single
morphism. Therefore, ifFA = 0, thenA = 0.

Assume forα : A → A′ thatF(α) = 0. The zero morphism 0AA′ is the composition
0AA′ = α0AA. Therefore,F(0AA′) = 0FAFA′F(0AA) = 0. In particular,F(α) = F(0AA′).
Therefore,α = 0AA′ .

Assume for sequences

A′
α′

A
α
A′′ and FA′

F(α′)
FA

F(α)
FA′′

that the last sequence is exact. First, sinceF(αα′) = F(α)F (α′) = 0, it follows thatαα′ = 0;
hence the first sequence is a zero sequence. Consider the two diagrams,

Kerα

0

A′
α′

A α A′′,

0

Cokα′

F(Kerα)
0

FA′
F(α′)

FA
F(α)

FA′′,

0

F(Cokα′).

[Why is F(0) : F(Kerα)→ F(A′′) equal to the zero morphism inB???]
It follows thatF(Kerα)→ F(Cokα′′) is the zero morphism. Hence Kerα→ Cokα′ is

the zero morphism. Consequently,A′→ A→ A′′ is exact.
(2) The proof of the second assertion is immediate.

(2.17) Exercises.
1. Let A be a category with a zero object 0, and letB = AZ be the category of allZ-indexed
families of objectsX = (Xi) from A. For any objectA ∈ A and any integern, letA(−n)
denote the family withA(−n)n = A andA(−n)i = 0 for i 6= n. Prove for any familyX ∈ B

that the two natural morphisms are isomorphisms:

⊕

n∈Z

Xn(−n) = X =
∏

n∈Z

Xn(−n),

[Hint: don’t assume in advance the existence of the product and the coproduct.]
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Additive categories Cat 3.1

3. Additive categories.

Let A be a category.

(3.1) Definition. The categoriA is said tohave a semi-additive Hom-structureif there is given,
for any pair of objectsX, Y in A, a structure on HomA(X, Y ) as a commutative (additive)
monoid such that composition of morphisms,

HomA(Y, Z)× HomA(X, Y )→ HomA(X,Z),

isbi-additive, that is, a homomorphism of monoids in each variable. The monoid composition
in HomA(X, Y ), calledaddition, is denoted(f, g) 7→ f + g, and the neutral element in
HomA(X, Y ), called thezero morphism, is denoted 0XY or simply 0. Note that it is part of
the definition of bi-additivity, and not a consequence of thedefinition, that any composition
with a zero morphisms yields a zero morphism.

(3.2) Definition. Assume that the categoryA has finite products. Then we say thatfinite
products are finite sums, if the following two conditions hold:

(add 1) The final object ofA is also initial (and hence a zero object, denoted 0).
(add 2) For every pair of objectsX, Y of A, the diagram,

X
(10)

X × Y
(01)

Y,

is a direct sum ofX andY .

More symmetrically, the two conditions hold ifA has finite products, finite sums, a zero-
object, and if for all objectsX, Y the morphism,

X ∨ Y
(1 0

0 1) X × Y, (3.2.1)

from the sum to the product, is an isomorphism.
If the conditions hold, it is common to denote byX ⊕ Y both the sum and the product

under the canonical isomorphim. It comes with four morphisms:

X1
in1

X1⊕X2
in2

X2wwwww
X1

pr1 X1⊕X2
pr2 X2

such that pri inj =

{
0, if i 6= j,

1. if i = j.

We use the well known matrix-notation to describe morphismsbetween direct sums: A
morphismfrom a direct sum is given by a row, a morphiminto a direct sum is given by a
column; accordingly, a morhism from a direct sum to a direct sum is given by a column of
rows (or a row of columns), that is, by a matrix.

17



Cat 3.2 Categories

(3.3) Proposition. The following two conditions on the categoryA are equivalent:
(i) A has finite products, and finite products are finite sums in the sense of(3.2).
(ii) A has finite products and a semi-additive Hom-structure.
Assume that the conditions are satisfied. Then the Hom-structure is unique: The sum of

two morphismsf, g : X→ Y is determined by the equations,

f + g = ∇Y

(
f

g

)
= (f, g)1X = ∇Y

(
f 0
0 g

)
1X. (3.3.1)

Moreover, the maps of the diagram in(3.2) satisfies the equationpr1 in1+ pr2 in2 = 1.
Finally, a diagram,

A1
π1

P
π2

A2,

is a product ofA1 andA2, if and only if there is a diagram,

A1
ι1 P

ι2 A2,

such that

πiιj =

{
0, if i 6= j,

1. if i = j,
andι1π1+ ι2π2 = 1.

Proof. Assume first that there is given a semi-additive Hom-structure onA. Then the last
assertion of the Proposition holds. Indeed, it is well-known that the assertion holds in the
category(SemiAb) of commutative semigroups with zero element. By applying the special
case to the semigroups HomA(X,A1), HomA(X,A2), and HomA(X, P ), for an arbitrary
object ofA, it follows in particular that the induced map of semigroups,

HomA(X, P )→ HomA(X,A1)× HomA(X,A2),

is a bijection. WhenceP is the product ofA1 andA2.
Let us note in addition that the existence of a semi-additiveHom-structure onA implies

that a final object 0 is also initial. Indeed, assume that 0 is afinal object. There is only
one element i End(0). So the identity of 0 is equal to the zero element of End(0). Hence it
follows from the bi-aditivity of composition that the zero element in Hom(0, Y ) is the unique
element in Hom(0, Y ). It follows that the object 0 is also an initial object, and the composition
X→ 0→ Y is the zero element in Hom(X, Y ).

Now assume Condition (ii) onA. Then, first, there is a final object 0 ofA, and as we have
just noted, this object is also initial. Hence Condition (3.3)(add 1) holds. Consider Condition
(3.3)(add 2), by definition of the morphism ini , it follows that pri ini = 1 and that pri inj = 0
wheni 6= j . Moreover, we have the equation in1 pr2+ in2 pr2 = 1 in End(A1×A2). Indeed,
to verify the equation, we have to prove that the two endomorphisms are equalized by pr1
and by pr2, and this follows from the first equations and bi-additivity:

pr1(in1 pr1+ in2 pr2) = pr1 in1 pr1+ pr1 in2 pr2) = 1 pr1+0 pr2 = pr1,
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with a similar computation for pr2. Therefore, by the assertion dual to the last assertion of the
proposition, the diagram is a direct sum ofA1 andA2. Thus Condition (3.2)(add 2) holds.

In particular, we have seen that Condition (i) holds. Moreover, for two morphisms
f, g : X → Y it follows with A1 = A2 = X that in1 pr1+ in2 pr2 = 1. Moreover
(f, g) in1 = f etc, and prj 1X = 1. Hence,

(f, g)1X = (f, g)(in1 pr1+ in2 pr2)1X = (f, g) in1 pr11X + (f, g) in2 pr21X = f + g.

The remaining equations of (3.3.1) are proved similarly.
Conversely, assume Condition (i). It is easy to see that the composition on the Hom-sets

defined by the equation above is a semi-additive Hom-structure onA.

(3.4) Definition. The categoryA is said to besemi-additiveif the equivalent conditions of
(3.3) hold. It is called anadditive categoryif, under the semi-additive Hom-structure, each
Hom-set is a commutative group, that is, every morphismf : X→ Y has an additive inverse
−f , such thatf + (−f ) = 0. It suffices that the identity 1X, for any objectX, has an additive
inverse.

If A andB are categories with a semi-additive Hom-structure, a functor F : A → B is
said to be aHom-additive functor, if the maps,

HomA(X, Y )→ HomB(FX, FY),

induced by the functor, are homomorphisms of monoids. It is easy to see that if the categories
A andB are semi-additive categories, then a functorF : A → B is Hom-additive, if and
only if it is right or left additive (Recall that the functorF is right additiveif it commutes
with finite direct sums, andleft additiveif it commutes with finite products, andadditiveif it
is both right and left additive.)

(3.5) Proposition. A semi-additive categoryA is additive, if and only if for every objectX
of A, the following morphism is an isomorphim:

X ⊕X
(1 1

0 1)
X ⊕X.

In particular, an exact, semi-additive category is additive.

Proof. A left inverse is necessarily of the form

(
1 f

0 1

)
, wheref + 1= 0.

It is easy to the see that the morphism has kernel and cokernelequal to zero. Hence, ifA
is exact, the morphism is an isomorphism.

(3.6) Proposition. Let F : A→ B be a functor between semi-additive categoriesA andB.
Assume thatF has a left adjoint functorG : B→ A. ThenF andG are additive functors,
and the adjunction bijection is an isomorphism of commutative monoids,

u : HomA(GX, Y )
∼−→ HomB(X, FY).
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Proof. The functorF is left exact, because it has a left adjoint. In particular,F is left additive.
Hence, as observed in (3.4),F is Hom-additive and right additive. Similarly, the functorG
is additive.

It follows from the description of addition in Proposition (3.3) that the bijection is a
homomorphism of monoids.
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4. Abelian categories.

Fix a categoriA.

(4.1) Definition. The categoryA is said to beabelian if it is exact and has finite products
and finite coproducts.

Proposition. An abelian category is additive.

Proof. Assume thatA is abelian. LetA,B be objects ofA. Consider the commutative
diagram,

0 A
in1 A ∨ B

(0,1)
B 0wwwww (1 0

0 1)

wwwww
0 A

(10)
A× B pr2

B 0.

Its rows are easily seen to be exact. Hence, by the Five-lemma, A is semi-additive. By
Proposition (3.5),A is additive.

(4.2) Definition. Let Q be a subclass of objects in an abelian categoryA.
The classQ is said tothick, if it contains the zero object and the following condition holds:
Given any exact sequence inA,

0→ Q′ → Q→ Q′′→ 0, (4.2.1)

thenQ ∈ Q if and only ifQ′,Q′′ ∈ Q.

The classQ is said to be (right)densein A if for every objectA ∈ A there exists a
monomorphismA ←֓ Q into an objectQ ∈ Q.

The classQ is called a+class, if for any exact sequence (4.2.1), ifQ′,Q ∈ Q, then
Q′′ ∈ Q.

The classQ is said to be of (right) dimension6 n if it is additive and the following
condition holds:

for any exact sequence inA,

Q0→ Q1→ Q2→ Qn−1→ Q→ 0,

if Q1, . . . ,Qn ∈ Q, thenQ ∈ Q.

The categoryA is said to be of dimension6 n if the class of injective objects is right dense
and of dimension6 n.
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(4.3) Exercises.
1. LetA ∂

A′
∂ ′

A′′ be a a zero-sequence. It is said to besplit if there are morphisms
s : A′ → A and s ′ : A′′ → A′ such that∂s + s ′∂ ′ = 1A′ . SetB := Im ∂ ⊆ A and
B ′ := Im ∂ ′ ⊆ A′′, and denote bȳ∂ : A → B and∂̄ ′ : A′ → B ′ the induced epimorphisms.
Show that if the sequence is split, then there is a natural isomorphismA→ B ⊕ B ′ making
the following diagram commutative:

A
∂

A′
∂ ′

A′′wwwww ≀
wwwww

A
(∂̄0)

B ⊕ B ′
(0 ∂̄ ′)

B ′;

Conclude in particular, that the sequence is exact.
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5. Triangulated categories.

(5.1) Setup.Fix an additive categoryK. When an additive automorphism6 : K→ K is given,
we will often writeX(k) := 6kX for the powers of6, and for a morphismu : X → Y , we
write simplyu : X(k)→ Y(k) for the morphismu(k) = 6k(u). A triangle (with respect to
the given automorphism6) is a 6-tuple(X, Y, Z; u, v, w) of three objectsX, Y, Z and three
morphismsu : X → Y , v : Y → Z, andw : Y → X(1). We will indicate by the notation
f : U V thatf is a morphismf : U → V (1). In this notation, a triangle may be pictured
by diagrams,

X
u
Y v Z w X,

X u Y v Z w X(1),
or

Z

w v

X
u

Y.

Note that a triangle induces an infinite sequence,

· · · → X(−1)→ Y(−1)→ Z(−1)→ X→ Y → Z→ X(1)→ Y(1)→ Z(1)→ · · · .

A morphism of triangles(X, Y, Z; u, v, w)→ (X′, Y ′, Z′; u′, v′, w′) is a triple(x, y, z) of
morphismsx : X→ X′, y : Y → Y ′, andz : Z→ Z′ such that the obvious squares commute:

Y
y

Y ′

v u v′

u′Z
z

Z′

w w′

X x X′.

(5.2) Definition. The additive categoryK is said to betriangulated if there is given an
additive automorphism6 of K, called theshift functor (or the translation functoror the
suspension functor), and a class of triangles (with respect to6), called theexact triangles(or
thedistinguished triangles), such that the following conditions hold:

(TR 1) (a) Any triangle isomorphic to an exact triangle is exact.
(b) Any morphismu : X→ Y embeds in an exact triangle(X, Y, Z; u, v, w).
(c) For any objectX, the triangle(X,X, 0; 1, 0, 0) is exact:

0
0 0

X =======X.

(TR 2) (Rotation Axiom). A triangle(X, Y, Z; u, v, w) is exact, if and only if the triangle
(Y, Z,X(1); v,w,−u) exact:

Z

w v

X u Y,

Z

w v

X(1)
−u

Y.
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(TR 3) (Prism Axiom). For any two triangles(X, Y, Z; u, v, w) and(X′, Y ′, Z; u′, v′, w′)
and morphismsx : X → X′ andy : Y → Y ′ such thatu′x = yu, there exists a morphism
z : Z→ Z′ such that(x, y, z) is a morphisms of triangles:

Y
y

Y ′

v u v′

u′Z
z

Z′

w w′

X x X′.

(TR 4) (Octahedron Axiom). Consider two composable morphismsu : X → Y and
v : Y → Z, and the compositionw = vu : X→ Z. Assume that the morphisms are embedded
in exact triangles(X, Y, U ; u, u′, u′′), (Y, Z, V ; v, v′, v′′), and(X,Z,W ;w,w′, w′′). Con-
sider the compositionu′v′′ : V → Y(1)→ U(1). Then there are two morphismsa : U → W

andb : W → V such that
(i) the triangle(U,W, V ; a, b, u′v′′) is exact, and
(ii) the following equalities hold:w′′a = u′′ : V → X(1), bw′ = v′ : Z → V , au′ =

w′v : V → W , anduw′′ = v′′b : W → Y(1).
The morphisms in the axiom may be pictured as the edges in the following diagrams:

W

w′′ w′

U
u′v′′

V

u′′ u′ v′′ v′

X u Y v Z,

W

w′′

a b

w′

U
u′v′′

V

u′′ u′ v′′ v′

X u Y v Z,

or as the edges of the following octahedron (withw :== vu on a separate edge):

W

a

w′′

b

w′

X w Z

u′′ u
v′

vU
u′v′′

V

u′
v′′

Y.
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Of the eight faces of the octahedron, four are exact triangles and four are commutative
triangles; of the three diagonal squares, two are commutative, and in the third squareUXZV
the composition of any two consecutive morphisms is equal tozero.

A functor T : K → K′ between triangulated categories is said to betriangular or exact,
if it commutes with the shifts and transforms exact triangles to exact triangles. A functor
H : K → A from a triangulated category to an ablian category is said tobecohomological
or exact, if it transforms exact triangles to exact sequences, that is, if for any exact triangle
(X, Y, Z; u, v, w) in K the sequenceH(X)→ H(Y)→ H(Z) is exact inA.

(5.3). In the rest of this section we assume that a triangulation inK is given. Letu : X→ Y

be a morphism. By Axiom (5.2)(1)(b), the morphismv embeds into an exact triangle,

Z

w v

X
u

Y.

(5.3.1)

In analogy with the case of complexes we will often say that the triangle (5.3.1) is acone
for the morphismu, or sometimes even that the top vertexZ is a conefor u. If a second
cone foru is given, then by the Prism Axiom, applied withX = X′ (x = 1X) andY = Y ′

(y = 1Y ), there exists a morphismz : Z → Z′ such that(1X, 1Y , z) is a morphism of
triangles(X, Y, Z)→ (X, Y, Z′). It follows from Corollary (5.7) below thatz : Z → Z′ is
necessarily an isomorphism. So, a cone ofu is determined up to isomorphism. But it should
be emphasized that the isomorphism is not unique, and, strictly speaking, no triangle should
be calledthecone ofu.

If two of the three morphism in a triangle are multiplied by−1, then the resulting triangle
is isomorphic to the original triangle. Indeed, an isomorphism is determined by multipliction
by−1 in one of the three vertices. In particular, if the originaltriangle is exact, then so is the
resulting triangle. If the exact triangle (5.3.1) is rotated three times as described in Axiom
(TR 2), then the result is the exact triangle with the three vertices shifted 1, and the three
morphisms multiplied by−1. The resulting triangle is also exact if two of its morphisms are
again multiplied by−1, leaving a sign change on only one of the original morphisms. So the
following triangle is a cone for the shifted morphismu : X(1)→ Y(1):

Z(1)
−w v

X(1) u
Y(1).

(5.3.2)

(5.4) Lemma. Let (X, Y, Z; u, v, w) be an exact triangle. Then a morphismf : Y → A

extends to a morphism̃f : Z→ A, if and only iff u = 0. Similarly, at morphismg : B → X

lifts to a morphismg̃ : B → Z(−1), if and only ifug = 0:

Z

w v
f̃

X u Y
f

A.

Z(−1)
g̃ w

−v

B g X u Y.
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Proof. To prove the only if part it suffices to prove thatvu = 0. The vanishing follows
by applying the prism axiom to the triangles(X,X, 0; 1, 0, 0) and(X, Y, Z; u, v, w), with
x := 1:X→ X andy := u : X→ Y .

Conversely, assume thatf u = 0. The extensionf̃ is obtained by applying The Prism
Axiom to the triangles(X, Y, Z; u, v, w) and(0, A,A; 0, 1, 0) (the latter is exact by axioms
1(b) and 2), withx := 0:X→ 0 andy := f : Y → A.

(5.5) Comment. The coneZ = Conf of a morphismf : X→ Y in a triangulated category
may in many ways be seen as a (poor) substitute for the kernel/cokernel pair of a morphism
in an abelian category. For instance, (5.4) shows that the coneZ has the “versal” property of
a cokernel ofu and thatZ(−1) has the versal property of a kernel. For a compositiongf ,
part of the octahedron axiom asserts the exactnes of a triangle,

Cong

Conf Congf.

It should be seen as the analogue of the exact kernel–cokernel sequence of a composition in
an abelian category.

(5.6) Proposition. For any exact triangle(X, Y, Z; u, v, w) and any objectA, the following
two long sequences are exact:

· · · → Hom(X(1), A)→ Hom(Z,A)→ Hom(Y, A)→ Hom(X,A)→ · · ·

· · · → Hom(A,X)→ Hom(A, Y )→ Hom(A, Z)→ Hom(A,X(1))→ · · · .

Proof. That the first sequence is exact at Hom(Y, A) is the contents of the Lemma. It follows,
by repeated application of the Rotation Axiom, that the firstsequence is exact everywhere.
By duality, or by an analogous proof, the second sequence is exact.

(5.7) Corollary. If, in a morphism(x, y, z) of exact triangles, two of the morphisms are
isomorphisms, then so is the third.

A morphismu : X→ Y is an isomorphism if and only if its cone is zero.

Proof. The first assertion follows from exactness of (say) the second long exact sequence.
Indeed, assume that(x, y, z) is a morphism from(X, Y, Z; u, v, w) to (X′, Y ′, Z′; u′, v′, w′)
and thatx andy are isomorphisms. The long exact sequences for the first and the second
triangle are the rows in two-row diagram whose vertical map are induced byx, y and z.
Consider in the diagram the mapz∗ : Hom(A, Z)→ Hom(A, Z′) induced byz. Its neighbors
in the diagram, two to the left and two to the right, are isomorphisms, being induced byu or
v. Therefore, by the Five-lemma,z∗ is a bijection. SinceA was an arbitrary object ofK, it
follows thatz is an isomorphism.

Let Z be a cone ofu : X → Y and letZ′ be a cone ofu′ : X′ → Y ′. Assume there is
given an isomorphismx, y from u : X → Y to u′ : X′ → Y ′. By the prism axiom,x, y
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extend to a morphism of triangles(x, y, z), and by the first part of the proof,z : Z → Z′ is
an isomorphism.

If u is an isomorphism, we may takeu′ = 1Y andx = u, y = 1Y . By Axiom (1)(c), we
may takeZ′ = 0. Asz is an isomorphism it follows thatZ = 0. Conversely, ifZ = 0, then,
in the exact sequence, every third group is zero. Hence the map Hom(A,X)→ Hom(A, Y )
is zero. SinceA was arbitrary, it follows thatu : X→ Y is an isomorphism.

(5.8) Example. The cone of the zero morphismX 0 Y is equal toX(1)⊕ Y .
The precise version is the following statement: The triangle (X, Y, Z; 0, i, p), where

Z := X(1)⊕ Y andi : Y → Z andj : Z→ X(1) are the natural morphisms, is exact.
To prove the statement, consider a cone(X, Y, Z; 0, v, w) for the zero morphism. Then,

in the second long exact sequence of (5.6), every third map isthe zero map. Consequently,
the following sequence is exact for every objectA:

0→ Hom(A, Y )→ Hom(A, Z)→ Hom(A,X(1))→ 0. (*)

By the surjectivity in (*), forA := X(1), there is a morphismι : X(1) → Z with wι = 1.
Then the following diagram is commutative:

0 Y
i
X(1)⊕ Y

p
X(1) 0wwwww (ι,v)

wwwww
Y

v
Z

w
X(1).

Apply the functor Hom(A,−) to the diagram. In the result, the top row split exact, and the
bottom row is the short exact sequence (*). So, by the 5-lemmathe middle vertical map
Hom(A,X(1)⊕ Y)→ Hom(A, Z) is bijective. Therefore the morphismX(1)⊕ Y → Z is
an isomorphism.

(5.9) Lemma. Any pair of morphismsx : X→ X′ andu : X→ Y with the same source can
be completed with a pairy : Y → Y ′ andu′ : X′ → Y ′ to a commutative square(yu = u′x)
such that the morphismsu andu′ have the same cone and the morphismsx andy have the
same cone. The dual conclusion holds in the dual setup, that is, when the pair(y, u′) is given.

X
x

X′

u u′

Y
y

Y ′,

X
x

X′

u u′

Y
y

Y ′.

Proof. Here are two constructions: To prove the first assertion, define Y ′ as the cone of
(u x)tr : X → Y ⊕ X′, with the two morphismsY ⊕ X′ → Y ′ andY ⊕ X′ X. Let
(y,−u′) denote the two coordinates of the morphismY ⊕ X′ → Y ′. The the first square is
commutative, since the composition(y−u′)(u x)tr is the zero morphism. The composition
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(0 1)(u x)tr is equal toX. LetX′′ be the cone ofx, and apply the octahedron axiom to obtain
the following octahedral diagram:

X′′

a b

Y ′
y

Y(1)

(y −u′) 0

X
(ux)

Y ⊕X′
(0 1)

X′,

SoX′′ is the common cone ofx andy.
The second assertion holds by duality arguments.

Here’s a second construction: form a cone ofu : X → Y , and rotate it to obtain an exact
triangle(Z,X, Y ;w, u, v). Consider the compositionxw : Z → X → X′, and form a cone
(Z,X′, Y ′; xw, u′, v′). Finally, letV be a cone ofx. Then there are morphismy : Y → Y ′

andb : Y ′→ V with the octahedral properties:

Y ′

y b

u′

Y V

u v′

Z w X x X′.

In particular,yu = u′x, the morphismsu andu′ haveZ(1) as their common cone, and the
morphismsx andy haveV as their common cone.

(5.10) Definition. A classM ⊆ K of objects is called atriangular subclassif it is nonempty
and if, for any exact triangle inK, if two of the vertices belong toM, then so does the third. It
is an implicit part of the condition that any object ofK isomorphic to an object ofM is itself
in M.

The cone of 1:X → X is the zero object. Hence, sinceM is nonempty it follows that
the zero object is inM. Moreover, ifX ∈ M it follows from the Rotation Axiom (TR2)
thatX(1) andX(−1) are inM. It follows form Example (5.8) that the class is additive,
that is, closed under finite direct sums. So, clearly, the full category determined byM is a
triangulated: the exact triangles are the exact triangles of K with all three vertices inM.

If M is a triangular subclass ofK, a morphismu : X→ Y is called anM-morphismif its
cone belongs toM.
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(5.11) Proposition. If M ⊆ K is a triangular subclass, then the systemSM of all M-
morphisms is a multiplicative denominator system inK.

The assertion corresponds to the following statements about the systemSM:
(LOC 0) The system is multiplicative: every identity 1X is an M-morphism and the

compositionu′u of two M-morphismsu : X→ X′ andu′ : X′→ X′′ is anM-morphism.
The systemSM has in fact an additonal property: ifu′u is anM-morphism, thenu is an

M-morphism if and only ifu′ is.
(LOC 1) The system has the followingleft denominator property: Any pair of morphisms

s : X→ X′ andf : X→ Y wheres is anM-morphism may be completed to a commutative
diagram,

X
f

Y

s s′

X′
f ′

Y ′,

wheres ′ is an M-morphism. And it has the correspondingright denominator property:
conversely, iff ′ ands ′ are given withs ′ ∈ SM, then they may be completed to the commutative
diagram withs ∈ SM.

(LOC 2) The system has theleft equalizer property: If two morphismsf, g : X → Y are
equalized by anM-morphisms, says : X′→ X with f s = gs, then they are coequalized by
anM-morphisms ′:

X′
s
X

f

g
Y

s′
Y ′.

And it has the correspondingright equalizer property: conversely, if two morphismsf, g are
coequalised by anM-morphism, then they are equalised by anM-morphism.

The following two conditions are natural for denominator systemS in a triangulated
category:

(LOC 3) (1) A morphisms : X → X′ belongs toS, if and only if its shifts(1) : X(1)→
X′(1) belongs toS.

(2) If, in a morphism(x, y, z) of exact triangles, two of the morphisms belong toS, then
so does the third.

Clearly, the systemSM has the property (LOC3)(1). The property (2) is much more
delicate, and it does not hold for a general classM.

Proof of the denominator properties.(LOC 0): The cone of the identity 1X is, by Axiom
(1)(c), the zero object, and it belong toM. Hence 1X ∈ SM.

The cones of the three morphismsu, u′, andu′′ := u′u fit, by the octahedron axiom, into
an exact triangle. Hence, if two of the three morphsims are inSM, then so is the third.

(LOC 1): Consider the cone ofs : X → X′ and rotate it to obtain an exact triangle
(U,X,X′; u, s, w). Let v be the compositionv = f u : U → Y , and letY ′ be its cone. Then
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we have the following diagram with two exact triangles:

X
f

Y

u fu

s′U ======== U

s

X′
f ′

Y ′.

Use the prism axiom to complete 1U andf uwith a morphismf ′ to a morpyhism of triangles.
Then, in particular, the square with the morphismss, f, s ′, f ′ is commutative. Morever, the
cone ofs ′ isU(1) which is inM. Hences ′ ∈ SM. So the required square has been obtained.

The right denominator property is proved similarly. Or it may be noticed that it follows
by duality.

(LOC 2): To coequalizef andg it suffices to coequalizef − g and 0; hence we may

assume thatg = 0. Assume thatX′ s
X

f
Y is the zero morphism. LetM be the cone

of s. It follows from Lemma (5.4) thatf factors overM as a productf : X a
M

b
Y .

Embeddb into an exact triangle(M, Y, Y ′′; b, s ′, c):

Y ′

s′

X
a

M
b

Y.

Thens ′ ∈ SM, becauseM ∈M and ass ′b = 0, it follows thats ′f = s ′ba = 0.

(LOC 3): If X′′ is the cone ofs : X→ X′ thenX′′(1) is the cones(1). Hence,s ∈ SM if
and only ifs(1) ∈ SM.

The last assertion ought to be a consequence of octahedron axiom. Whenz is of the form
discussed in (5.15) below, the proof is easy.

(5.12) Note.The definition of the systemSM of M-morphisms makes sense for an arbitrary
subclassMofK: A morphisms : X→ X′ belongs toSM if its conebelongs toM. Conversely,
to any systemS of morphisms ofK there is associated classZ(S) of S-acyclic objects: An
objectZ belongs toZ(S) if the zero morphism 0→ Z belongs toS.

Obviously, ifM is given, then for any objectM of K we have thatM ∈M if and only if
the zero-morphism 0→ M is anM-morphism.

If S contains all identities and satisfies (LOC 3), then for any morphisms : X → X′ we
have thats ∈ S if and only if the cone ofs is S-acyclic. Indeed, there is a morphism of exact
triangles,

X
s

X′wwwww
s0 X′′wwwww

X========X,
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and the lower horizontal identity morphism 1X is in S. Hence the zero-morphism 0→ X′′

belongs toS if and only if s belongs toS.
It is easy to see under this correspondence that systems of morphisms ofK satisfying the

four conditions (LOC 0)–(LOC 3) correspond to triangular subclasses of objects ofK.

(5.13) Note. The Octahedron Axiom implies the Prism Axiom, assuming the axioms (TR1)
and (TR2). Indeed, consider as in (TR2) a commutative square, say two morphismsu : X→
Y andu′ : X′ → Y ′ and a morphism(x, y) from u to u′. Embed the morphisms at each of
the four sides in an exact triangle. In addition, embed the compositionp := u′x = yu in an
exact triangle(X, Y ′,W ;p, q, r):

Z

w v

X
u

Y

x ′′

x

r a

y

y ′′

X′′ c W
b

Y ′′

x ′ d
q

y ′

X′
u′

Y ′

w′ v′

Z′

(5.13.1)

Apply the octahedron axiom to the compositionp = yu to obtain the morphismsa andb.
In particular, by the commutativity asserted in the axiom,ra = w, bq = y ′, av = qy, and
ur = y ′′b. Similarly, apply the axiom top = u′x to obtain the morphismsc andd with
rc = x ′′, dq = v′, xr = w′d, andcx ′ = qu′.

Consider the compositions,

z = da : Z→ Z′.

It follows in particular that

w′z = w′da = xra = xw, andzv = dav = dqy = v′y.

Thus(x, y, z) is a morphism of triangles, and the Prism Axiom has been proved).

(5.14) The cone of the cones.Continue with the setup of Section (5.13):Z andZ′ are
the cones of the horizontal morphisms in the square, and the morphismz = da : Z → Z′

completes(x, y) to a morphism of triangles. Similarly,X′′ andY ′′ are the cones of the
vertical morphisms, and the morphismu′′ := bc : X′′→ Y ′′ completes(u, u′) to a morphism
of triangles. In addition, form thecone of the horizontal cones, that is, embeddz : Z → Z′

into an exact triangle(Z, Z′, Z′′; z, z′, z′′). The morphisms appear in the following diagram

31



Cat 5.10 Categories

of exact triangles and commutative squares,

X
u

Y v Z w X(1)
x ′′ y ′′

y

z′′

z

−x ′′

x

X′′
u′′

Y ′′ Z′′ X′′(1)

x ′
x

y ′ z′ x ′

X′
u′

Y ′
v′

Z′
w′

X′(1).

We claim that there are two morphismv′′ : Y ′′ → Z′′ andw′′ : Z′′ X′′ such that, in the
following diagram, (1) the horizontal tripples(v, v′, v′′) and(w,w′, w′′) are morphisms of
triangles, and (2) the triangle(X′′, Y ′′, Z′′; u′′, v′′, z′′) is exact:

X
u

Y
v

Z
w

X(1)
x ′′ y ′′ z′′ −x ′′

x

X′′
u′′

Y ′′ v′′ Z′′ w′′ X′′(1)

x ′
x

y ′
y

z′
z

x ′

X′
u′

Y ′
v′

Z′
w′

X′(1).

Indeed, consider the compositionz = da. The cone ofd is determined by rotation from the
exact triangle(X′′,W,Z′; c, d, x ′w′). Application of the octahedron axiom yields the two
morphismsv′′ andw′′ as in the following diagram,

Z′′

z′′
v′′ w′′

z′

Y ′′
−u′′

X′′(1)

vy ′′
b −c

x ′w′

Z a W
d

Z′.

with the commutation equations,

z′′v′′ = vy ′′, w′′z′ = x ′w′, v′′b = z′d, −cw′′ = az′′, (5.14.2)

and such the the triangle(Y ′′, Z′′, X′′(1); v′′, w′′,−u′′) is exact. From the exactness we
deduce by rotation that the triangle(X′′, Y ′′, Z′′; u′′, v′′, w′′) is exact. The two first commu-
tation equations state that two is the asserted squares are commutative. Commutativity of
the remaining two squares follows from the last two equations in (5.14.2) and commutation
properties of the diagram (5.13.1).
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(5.15) Note. TheEnriched Octahedron Axiomis the following: In the Octahedron setup the
morphismsa : U → W andb : W → V can be chosen so that in addition the following two
triangles are exact:

X(1)⊕ V
(u v′′) (−w

′′

b )

Y
au′=w′v

W,

Z ⊕ U

(w′ −a) ( vu′)

W
uw′′=v′′b

Y.

(5.16) Exercises.
1. Do u : X→ Y and−u : X→ Y have the same cone? [Hint: In what sense is the answer
yes and in what sense is it no?]

2. Is the shift functor in a triangulated category a triangularfunctor?

3. Prove that first property i (LOC 3), the shift invariance, is aconsequence of the second.

4. Prove that an exact functorT : K→ K′ between triangulated categories is additive. Prove
that an exact functorH : K → A from a triangulated category to an abelian category is
additive.
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6. Spectral sequences.

(6.1) Setup.Fix an abelian categoryA. At several places we will meet a diagram inA of the
form,

G

A′ F ′ F A

G′,

where the row is exact. The diagram induces a morphism,

Ker(G→A) δ Cok(A′→G′),

defined as the composition,

Ker(G→A)→ Im(F ′→ F) = Coim(F ′→F)→ Cok(A′→G′).

(6.2) The Spectral Lemma.An exact commutative diagram,

A′0 F ′0 G

A′ F ′ F A

G′ F0 A0 ,

induces an exact sequence,

0→ Ker(G→A0)→ Ker(G→A) δ Cok(A′→G′)→ Cok(A′0→G
′)→ 0.

Proof. Clearly, the kernel Ker(G→A0) is unchanged ifA0 is replaced by the image ofF0→

A0. So we may assume thatF0 → A0 is epic. Similarly, we may assume thatF → A is
epic, and thatA′0→ F ′ andA′→ F ′ are monic. Then, in particular, the diagram induces an
epicA→ A0 and a monicA′ → A′0. The morphismG→ A factors throughA0→ A, and
A′→ G′ factors throughA′0→ A′.

Clearly, the first part of the sequence, the inclusion of two kernels,

0→ Ker(G→A0)
i Ker(G→A),

is exact. Moreover, the two kernels contain the kernel ofG → F . So, the cokernel ofi
is unchanged, ifG is replaced by its image inF . Hence we may assume thatG → F is a
monomorphism. Similarly, we may assume thatF ′→ G′ is an epimorphism.
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Consider the following diagram,

0 Ker(G→A0) Ker(G→A) Ker(A0→A)wwwww
wwwww

Cok(A′→A′0) Cok(A′→G′) Cok(A′0→G
′) 0.

The top row in the diagram is the first part of the exact kernel-cokernel sequence of the
compositionG → F → A. Hence the top row is exact. Similarly, the bottom row is
exact. The first vertical isomorphism is induced from the kernel-cokernel sequence of the
compositionF ′ → F → F0. The second vertical isomorphism is induced similarly. The
diagram is commutative. In fact, both compositions in the diagram, from Ker(G→A) to
Cok(A′→G′), are equal to the morphism of (6.1).

As a consequence, the asserted sequence is exact.

(6.3) Remark. Note that any exact diagram,

F ′0 G

F ′
f

F

G′ F0,

may be completed to a diagram as in the Spectral Lemma by adding first the compositions
F ′0 → F ′ → F andF ′ → F → F0, and next the kernels and cokernels of the appropriate
morphisms.
...
...

(6.20) Triangular filtrations. Consider in a triangular categoryK an objectX with an
increasing filtration. By definition, the filtration ofX consists of a sequence of exact triangles,

Gq−1 Gq

· · · Fq−2 Fq−1 Fq · · · ,

and a sequence of morphismsFq → X compatible with the morphismsFq−1→ Fq .
The filtration may more precisely be called a filtrationtoX. It determines a filtrationfrom

X as follows: Complete the morphismFq → X to an exact triangle, the first of the following
two:

F q+1

Fq X,

Gq

F q F q+1.
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The second triangle, also exact, is obtained by applying theoctahedral axiom to the composi-
tionFq−1→ Fq → X. In addition to the exact triangle, a number of commutative diagrams
result. In particular, the sequence of morphismsX→ F q is compatible with the morphisms
F q → F q+1. Note that the triangles are only unique up to a noncanonicalisomorphism.

(6.21) The spectral sequence of an increasing triangular filtration. In the setup of(6.20),
for any exact functorT : K → A, from K to an abelian categoryA, there is an induced
2-spectral sequence,

E
p,q
2 = T p+qGq H⇒ T nX, with FqT

nX := Im(T nFq→T
nX). (6.21.1)

The spectral sequence is defined as follows: For convenience, setF−∞ := 0 andF∞ := X.
Complete, for everys, t with −∞ 6 s 6 q 6 ∞, the compositionFs → Fq to an exact
triangle,

Gs,q

Fs Fq .

The triangles fors = q and fors = −∞ are trivial: Gq,q = 0 andG−∞,q = Fq . For
s = q − 1 they are taken to be the triangles of the given filtration:Gq−1,q = Gq . Finally,
for q = ∞, the triangles are those considered in (6.20):Gq,∞ = F q+1.

Some of the morphisms in the triangles appear in the followingbasiccommutative diagram,
for s + 1 6 q − 1:

Gs+1,q Fs Gq

Gs+1,q−1 Fs+1 Fq−1 Gs+1,q−1

Gs+1 Fq Gs,q−1 .

Note that each of the sequences in the diagram, one horizontal, two vertical and two diagonal
sequences, is formed by consecutive morphisms of an exact triangle.

Fix a pairp, q of integers, letn := p + q, and define

Ep,q = E
p,q
2 := T n(Gq). (6.21.2)

Consider for 26 r 6∞ the two compositions, withGq as source and target respectively,

Gq Fq−1 Gq−r+1,q−1 and Gq,q+r−2 Fq Gq .

The first appears in the basic diagram fors := q− r, the second appears in the basic diagram
for s := q − 1 andq := q + r − 1. Define, for 26 r 6∞,

Z
p,q
r := Ker(T nGq→T

n+1Gq−r+1,q−1) and Z
p,q

r := Cok(T n−1Gq,q+r−2→T
nGq).

(6.21.3)
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The definitions, forr = ∞, yield the following equations:

Z
p,q
∞ := Ker(T nGq→T

n+1Fq) and Z
p,q

∞ := Cok(T n−1F q+1→T
nGq).

Consider the basic diagram, withs := q− r, and applyT n, that is, applyT n to the sources
of the twisted morphisms and applyT n+1 to the remaining vertices. The result is an exact
commutative diagram inA. By the Spectral Lemma (6.2), we obtain the exact sequence, for
2 6 r <∞,

0→ Z
p,q
r+1→ Z

p,q
r

δ
Z
p+r,q−r+1
r → Z

p+r,q−r+1
r+1 → 0. (6.21.4)

So the spectral shooting is defined. To define the “bridge” isomorphisms, consider the fol-
lowing commutative diagram inK:

Fq Fq−1 Xwwwww
F q+1 Fq X F q+1

Gq 0 F q .

Its sequences are consecutive morphisms of exact triangles. By the Spectral Lemma (6.2),
the following sequence is exact:

0→ Ker(T nX→T nF q) Ker(T nX→T nF q+1)

Cok(T n−1F q+1→ T nGq) Cok(T nFq→T nGq)→ 0.

As T is exact, the two kernels in the sequence are, respectively,equal to the images
Im(T nFq−1→T

nX) and Im(T nFq→T nX). The first cokernel in sequence isZ
p,q

∞ =

Ep,q/B
p,q
∞ . Again, sinceT is exact, the last cokernel is the quotient ofT nGq modulo

Ker(T nGq→T n+1Fq−1), and hence equal toEp,q/Zp,q∞ . So the exact sequence is the fol-
lowing:

0→ Fq−1T
nX→ FqT

n→ Ep,q/B
p,q
∞ → Ep,q/Z

p,q
∞ → 0.

In particular, we obtain the “bridge” isomorphism assertedin the Spectral sequence (6.21.1):

FqT
nX/Fq−1T

nX = Z
p,q
∞ /B

p,q
∞ . (6.21.5)

Note.The 3-term of the spectral sequence is the cohomology of the complexes, for allp,
formed by the 2-terms:

· · · E
p−2,−p+1
2 E

p,−p
2 Ep+2,−p−1 · · · .

Clearly, for the spectral sequence (6.21.1), these complexes are obtained by applying shifts
of T to the zero-sequence inK,

· · · G1 G0 G−1 · · · .
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(6.22) Proposition.The spectral sequence(6.21.1)is finitely convergent if, for alln andq,
the morphismsT nFs → T nFq for s ≪ 0 andT nF q → T nF s for s ≫ 0 are equal to zero.

The sequence if finite, if and only if, for alln, the morphismsT nFq−1 → T nFq are
isomorphisms forq ≪ 0 and for q ≫ 0. In particular, if T nFq = 0 for q ≪ 0 and
T nFq → T nX is an isomorphism forq ≫ 0, then the sequence is finite and convergent.

Proof. The morphismT nFs → T nFq−1 (for s < q) is equal to zero if and only if the
morphismT nFq−1→ T nGs,q−1 is a monomorphism. If the latter morphism, withn := n+1,
is a monomorphism, then the morphisms,T nGq → T n+1Fq−1 andT nGq → T n+1Gs,q−1,
have the same kernel. In other words, withr := q − s + 1 we have the equality,

Z
p,q
r = Z

p,q
∞ . (6.22.1)

Clearly, ifT nFs → T nFq is the zero morphism, then the image ofT nFs → T nX is equal to
zero. In particular,

FsT
nX = 0 for s ≪ 0. (6.22.2)

Apply the octahedral axiom to the decompositionFq → Fs → X, for q < s. In particular,
we obtain a diagram,

F q+1

Fq Gq,s F s+1 X,

with an exact triangle in the middle, and two extreme commutative triangles. ApplyT n−1

to the left commutative triangle. Consider the two morphisms T n−1Gq,s → T nFq and
T n−1F q+1→ T nFq . When composed withT nFq → T nGq their images areBp,qr andBp,q∞
(wheres = q + r − 1). Therefore, the equality,

B
p,q
r = B

p,q
∞ , (6.22.3)

holds if T n−1F q+1 → T nFq andT n−1Gq,s → T nFq have the same image. In particular,
the equality (6.22.3) holds if the morphismT n−1Gq,s → T n−1F q+1 is epic. As the middle
triangle is exact, the latter morphism is epic, if and only ifthe morphismT n−1F q+1 →

T n−1F s+1 is zero. So, if we assume thatT n−1F q+1 → T n−1F s+1 is zero, then (6.22.3)
holds. Moreover, thenT n−1X → T n−1Fs is zero and, from the exact triangle connecting
Fs, X, F s+1, it follows that theT n−1Fs → T n−1X is an epimorphism. In particular,

FsT
n−1X = T n−1X for s ≫ 0. (6.22.4)

Hence, by (6.22.1) and (6.22.3) the shooting is finitely convergent,and by (6.22.2) and (6.22.4)
the filtration on the abutment is finitely convergent.

The last assertion of the Proposition is easily verified.
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(6.23) Decreasing triangular filtrations. Consider, in the triangulated categoryK, a de-
creasingfiltration fromX:

Gp

X . . . F p F p−1 . . . 0.

For any exact functorT : K→ A there is an induced1-spectral sequence,

E
pq
1 = T

p+q(Gp) H⇒
p
T nX, with F pT nX := Ker(T nX→ T nF p−1).

The assertion follows from (6.21), or directly by a similar argument. The decreasing filtration
on the abutment corresponds to the increasing filtration given byFqT nX = F n−qT nX.

(6.24) Examples. (1) Consider a complexX in A•. For an integerp, define thepth right
truncationof X as the complex,

Xp] : · · · → Xp−2→ Xp−1→ Xp → 0→ 0→ · · · .

The left truncationX[p is defined similarly. Note thatXp] is the quotient complex ofX
corresponding to the subcomplexX[p+1. So, in the derived category there is an exact triangle,

Xp]

X[p+1 X.

(6.24.1)

In fact, the morphismXp] X[p+1 is given by a morphism of complexes: it is equal to
−∂ : Xp → Xp+1 in degreep and (necessarily) equal to zero in all other degrees. Is is easy
to seethat the triangle is exact in the homotopy category, that is, the triangle is homotopy
equivalent to the cone of the inclusionX[p+1→ X.

The right truncationsXp] form adecreasingfiltration fromX in the homotopy category:

Xp(−p)

X · · · Xp] Xp−1] · · · 0,

and the left truncations form a decreasing filtrationtoX:

Xp(−p)

0 · · · X[p+1 X[p · · · X.

Note that the exact triangles in the two filtrations are special case of the exact triangle (6.24.1):
the definitions of the truncations yieldX[p] = Xp(−p), and the triangle in, for instance, the
last filtration is obtained from (6.24.1) withX := X[p.
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(2) For an integerq, define theqth right cycle truncationas the complex,

FqX : · · · → Xq−2→ Xq−1→ Zq → 0→ 0→ · · · ,

whereZq is the kernel ofXq → Xq+1. Note thatFqX is a subcomplex ofX corresponding
to the quotient complex,

· · · → 0→ 0→ Bq+1→ Xq+1→ Xq+1→ · · · ,

whereBq+1 = Xq/Zq is the image ofXq → Xq+1. There is a natural quasi-isomorphism
from this quotient complex to following quotient complex:

F q+1 : · · · → 0→ 0→ Zq+1→ Xq+2→ Xq+3→ · · · ,

whereZq+1 (in degreeq + 1) is the cokernel,Xq+1/Bq+1, of Xq → Xq+1. The latter
complex is the(q + 1)th left cocycle truncationof X. So, in the derived category ofA, there
is an exact triangle,

F q+1

FqX X.

(6.24.2)

TheFqX form anincreasingfiltration toX,

H q(X)(−q)

0 · · · Fq−1X FqX · · · X,

and theF qX form the corresponding increasing filtrationfromX:

H q(X)(−q)

X · · · F qX F q+1 · · · 0.

(6.25) The spectral sequences of hyper cohomology.LetT : A→ B be a derivable functor.
Consider a right complexX ∈ A+, and the two filtrations of (6.23). The (hyper) derived
RT (X) is an object inD+(B), and itsnth cohomology is thenthe derivedRnT (X). In
particular, evaluated on objects ofA (as complexes concentrated in degree 0), it defines an
additive functorRnT : A → B. As usual, denote by(RnT )• its extension to a functor of
complexesA• → B•.

From the spectral sequences in (6.21) and (6.23) we obtain:
(1) an induced1-spectral sequence,

E
pq
1 = R

qT (Xp) H⇒
p
RnTX, with F pRnTX := KerRnT (X→ Xp−1]);

its 2-term isEpq2 = H
p((RqT )•(X)),

(2) and an induced2-spectral sequence,

E
pq
2 = R

pT (H qX) H⇒ RnT (X), with FqRnT (X) := ImRnT (FqX→ X).
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(6.26) The Spectral sequence of a composite functor.Consider derivable functors of abelian
categories,T : A → B andS : B → C. Assume that there is a classQ of objectsQ ∈ A

with the following properties:

(1) For every objectA ∈ A there is a monomorphismA→ Q into an objectQ ∈ Q.
(2) For everyQ ∈ Q,Q is T -acyclic andTQ is S-acyclic.

Then, as is well-known, the compositionST : A→ C is derivable, and

R(ST ) = (RS)(RT ). (6.26.1)

As a consequence, for every complexX ∈ A+, there is a 2-spectral sequence,

RpS(RqTX) H⇒ Rn(ST )(X). (6.26.2)

Indeed, by (6.26.1), the abutment isRnS(T X), and the spectral sequence is that of (6.24)(1),
with T := S andX := TX.

Note. The spectral sequence for hyper Ext is obtained as follows: Recall that for arbitrary
objectsX, Y in a triangular categoryK, there are Ext-groups defined by

Extn(Y,X) := HomK(Y,X(n)).

The functorTX = HomK(Y,X), for a fixed objectY of K, is an exact functorT : K→ (Ab).
Hence, when a filtration ofX is given, (6.21.1) yields a spectral sequence with abutment
Extn(Y,X).

The Ext-groups of an abelian categoryA are obtained by takingK := D(A). In particular:
Let T : A→ B be a derivable functor. Then, for complexes complexX ∈ A+ andY ∈ B•,
there is an induced 2-spectral sequence,

E
pq
2 = Extp

B
(Y, RqTX) H⇒ ExtnB(Y, RTX).

(6.27) Double complexes.Consider the category(A•)• of complexes of complexes. An object
X in (A•)• is complex such that each componentXp is a complex (whoseqth component is
denotedXpq ); the differential inX is denoted∂ ′ : Xp → Xp+1 and the differential in the
componentXp is denoted∂ ′′ : Xpq → Xp,q+1. Note that we have two shift operators: The
shiftX 7→ X(n, 0) is the shift of thecomplexX; it shifts the position of the componentsXp

and multiplies∂ ′ by (−1)n. The shiftX 7→ X(0, n) shifts the position of the compentents of
eachXp and multipliesboth types of differentials by(−1)n.

Recall that there is an identification of(A•)• with the categoryA•• of bicomplexes. It
identifiesX with the bicomplex obtained by multiplying the differential in Xp by (−1)p. We
will write (A•)•♯ for the subcategory of(A•)• consisting of complexes of complexesX with
only finitely many nonzeroXpq on each diagonalp + q = n. So, under the identification,
(A•)•♯ = A••♯ . Note that(A•)•♯ contains the subcategories

(A•)bnd, (An])+, (A[m,n])•.
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The subcategory(A•)•♯ gives rise to a triangulated homotopy category Hot♯(A
•) and a

derived categoryD♯(A•). The natural functor Tot onA••♯ , may be viewed as a funtor,

Tot : (A•)•♯ → A•.

It respects the two shifts:

Tot
(
X(n, 0)

)
= (TotX)(n), Tot

(
X(0, n)

)
= (TotX)(n),

and it preserves homotopy and cones. As a consequence, it defines an exact functor of
triangulated categories,

Tot : Hot♯(A
•)→ Hot(A).

LetX be a complex in(A•)•♯, and consider the decreasing filtration of Example (6.24)(1).

It induces the 1-spectral sequence of (6.23) forT = H0 Tot. As TotX[p] = Xp(−p), the
result isa natural1-spectral sequence,

E
pq
1 = H

q(Xp) H⇒
p
H n TotX, with F pH n TotX = KerH n Tot(X→ Xp−1]). (6.27.1)

The2-term is given by
E
pq
2 = H

p(H
q
′′X), (6.27.2)

where the notation for the innerqth cohomology indicates the complex withpth component
equal toH q(Xp). It is easy to see that the spectral sequence is finitely convergent. In
particular:

If a complexX in (A•)•♯ has all componentsXp acyclic, thenTotX is acyclic.
From this result, it follows in particular that the functor Tot takes quasi-isomorphisms into

quasi-isomorphisms. Hence it extends to a functor,

Tot :D♯(A
•)→ D(A).

This functor may be applied to the filtration in Example (6.24)(2) (note thatH qX, theqth
cohomology of the complexX ∈ (A•)•, is an object inA•; it may also be denotedH q

′ X).
The result is a 2-spectral sequence,

E
pq
2 = H

p(H qX) H⇒ H n TotX with FqH
n TotX := ImH n Tot(FqX→ X). (6.27.3)

This spectral sequence is different from the spectral 2-spectral sequence given in (6.27.2), and
the two filtrations on their common abutmentHh Tot(X) are different. However, (6.27.2) is
obtained by applying (6.27.3) to the transposed complex (ofcomplexes)Xtr. Indeed, the two
spectral sequences have the same 2-term. Moreover, under transposition, the cycle truncation
Fq(X

tr) of Xtr corresponds to the subcomplexFq′′X of X obtained by applying the cycle
truncationFq to all componentsXp of X. Note that

Fq
′′X ∈ (Aq ])•, X[p ∈ (A•)[p.

These two families of subcomplexes ofX define the same filtration on the target, that is, for
all p, q andn = p + q,

ImH n Tot(X[p → X) = ImH n Tot(Fq
′′X→ X).

In fact, it is easy to see that the two complexes TotX[p and TotFq′′X, for p + q = n, have
the same degree-n cohomomology. The general assertion, that the two sequences, with the
same 2-term, are identical, at least up to automorphism, maybe proved similarly.
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7. Adjoint functors.

Fix a categoriA.
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8. Relative abelian categories.

(8.1) Definition. Let A be a (right)relative abelian category(or (right) relativized abelian
category?), that is, an abelian categoryA with a given a (right)allowableclassSof morphisms
of A. A (right) allowable classS of morphisms is assumed at a minimum to satisfy the
following two conditions:

(allow1) The classS is multiplicative, and closed under isomorphisms and (finite) direct
sums.
(allow2) For any objectA of A, the morphism 0→ A belongs toS.

The morphisms in the given classS are also called therelative monomorphismsof A (or
said to be relatively monic). It follows from the conditionsthat every split monomorphism is
relatively monic. It is not assumed that the relative monomorphisms are monic.

Several notions related to monomorphisms and exactness have relativized versions: A
sequence inA,

A′
u′

A
u
A′′, (8.1.1)

is calledrelatively exactif it is a zero sequence and the induced morphism Coku′ → A′′ is
relatively monic. Arelatively short exact sequenceis a sequence,

0→ A′
u′

A
u
A′′→ 0, (8.1.2)

such thatu′ : A′ → A is relatively monic andu is the cokernel ofu′ (that is, the sequence
A→ A′→ A′′→ 0 is exact). Note that if the sequence (8.1.2) is relatively short exact, then
it is relatively exact; the converse holds if the relative monomorphisms are monic.

Clearly, a complex

· · · Xn−1 dn−1
Xn

dn
Xn+1 · · · , (8.1.3)

is relatively exact(or relatively acyclic) if and only if, for all n, the right exact sequence,

0→ Xn/Bn→ Xn+1→ Xn+1/Bn+1→ 0, (8.1.4)

(whereBn := Im dn−1) is relatively short exact. A morphism of complexes is arelative
quasi-isomorphismif its mapping cone is relatively exact.

A functorT : A→ B, where alsoB is a relative abelian category, isrelatively exact, if it is
additive and takes relatively short exact sequences ofA into relatively short exact sequences
of B. The condition implies thatT takes a relatively exact complex ofA into a relatively
exact complex ofB, but it does not imply in general that a relative exact sequence (8.1.1) is
taken into a relative exact sequence ofB.

An objectQ of A is calledrelatively injectiveif any pair of morphismsf : A → Q and
s : A→ A′, wheres is relatively monic, embed into a commutative diagram,

A
s

B ′

f

Q.
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Finally, a morphismt : A→ Q in A is said to berelatively injectiveif it is relatively monic
and if any pair of morphismsf : B → A ands : B → B ′ with a relative monics embed into
a commutative diagram,

B
s

B ′

f

A
t

Q.

According to the last definition, an objectQ is relatively injective if and only if the identity
ofQ is relatively injective. A relative monomorphismA→ Q into a relative injective object
is relatively injective.

(8.2) Examples.A given abelian categoryA may be relativized by taking as allowable class
the classS1 of all monics, or the classS2 of all split monics, or the class of all morphisms.

Clearly, with respect to the classS1, the relativized concepts are the usual concepts.
With respect to the classS2, the sequence (8.1.1) is relatively exact if and only if there is

a slittingA = B ⊕ C, whereB = Im u′ = Keru. The sequence (8.1.2) is relatively short
exact if it is short exact and split, and the complex (8.1.3) is relatively exact if and only if it is
contractible. In particular, a morphism of complexes is a relative quasi-isomorphism if and
only if it is a homotopy equivalence. Finally, any object ofA is a relatively injective object,
and the relative injective morphisms are the split monics.

With respect to the classS3, any zero sequence (8.1.1) is relatively exact, and the sequence
(8.1.2) is relatively short exact if and only if it is right exact. The only relatively injective
object is the zero object, and the relative injective morphisms are the zero morphisms.

(8.3) Homotopy Lemma. LetX be a relatively exact complex and letQ be a right complex
consisting of relatively injective objects. Then any morphism of complexesX → Q is
homotopic to zero.

Proof. Insert ‘relative’ at appropriate places in the corresponding proof of the nonrelativized
statement.

(8.4) Corollary. Lets : X→ Y be a relative quasi-isomorphism ofcomplexes and letv :X→
Q be a morphism into a right complexQ consisting of relative injective objects. Then, in the
homotopy category, there is a unique morphismw : Y → Q such thatv = ws. In particular,
any relative quasi-isomorphisms : Q → Q′ between right complexes of relative injective
objects is a homotopy equivalence.

Proof. LetZ be the mapping cone of the morphisms : X→ Y . Then there is an exact triangle
(of complexes of abelian groups),

Hom•(Z,Q)

Hom•(X,Q) Hom•(Y,Q),

and part of its cohomology sequence is the exact sequence,

HomHot(Z,Q)→ HomHot(Y,Q)→ HomHot(X,Q)→ HomHot(Z(−1),Q).
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The two extreme groups are zero by the Lemma. Hence, the middle homomorphism is
bijective. Thus the first assertion holds. The second is an immediate consequence.

(8.5) Definition. For any right exact functorλ : A→ A0 there is aninduced relativizationof
A: a morphismu : A→ A′ is a relative monomorphism ifλ(u) : λA→ λA′ is a monomor-
phism inA0. Alternatively,A may be relativized via a left exact contravariant functor.

Clearly, if A is relativized viaλ, then the zero sequence (8.1.1) is relatively exact if and
only if it becomes exact underλ, the sequence (8.1.2) is relatively short exact if and only if
it is right exact and becomes short exact underλ, and the complex (8.1.3) is relatively exact
if and only if it becomes exact underλ. In particular, a morphism of complexes is a relative
quasi-isomorphism if and only if it becomes a quasi-isomorphism underλ.

Note that the three relativizations in Example (8.2) are of this form: The classS1 with λ
equal to the identity, the classS3 with λ equal to the zero functor. Finally, the classS2 is
obtained with the contravariant functor,

A→ Funct(A, (Ab)),

given byA 7→ Hom(A,−). Indeed,A → A′ is a split monomorphism if and only if
Hom(A′, X)→ Hom(A,X) is surjective for allX in A.

It follows from this last observation that thesplit relativization induced byλ (for which the
relative monomorphisms are the morphismss : A → A′ such thatλ(s) is a split monomor-
phism) may be induced by a right exact functor.

(8.6) Remark. In order to work properly with the homotopy categories of complexes overA,
more properties of the class of relative monomorphisms are needed. Clearly, for complexes
we need the following two properties:

(1) If f : X→ Y is a homotopy equivalence andX is relatively acyclic, thenY is relatively
acyclic.

(2) If, in an exact triangle,
Z

X Y ,

two of the complexes are relative acyclic, then so is the third.
In turn, the two properties are consequences of the following:

(allow3) If Z is the mapping cone of a morphismX→ Y of complexes, andX andZ are
relatively acyclic, then so isY .

Obviously, the properties hold if the relativization if induced by a right exact functorλ
from A, and (hence) also for the split relativization induced byλ.

(8.7) Remark. The properties in (8.6) may be shown to hold for aproper relative abelian
category, that is, an abelian category relativized by a class S of morphisms satisfying the
following conditions:

(prop1) The classS is multiplicative, and 0→ A belongs toS for every objectA of A.
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(prop2) The classS is stable under pushout.
(prop3) For any compositions = vt of morphisms,t : A → A′ andv : A′ → A′′, if s ∈ S

andv is a monomorphism, thent ∈ S.

(8.8) Proposition. Assume the properties of(8.6). Then the following assertions hold:
(1) If, for a compositionw = uv of morphisms of complexes, two of the morphismsu, v,

andw, are relative quasi-isomorphisms, then so is the third.
(2) The class of relative quasi-isomorphisms is a denominator system in the homotopy

categoryHot(A).
(3) If a bicomplexX in A♯ (that is, a bicomplex with only finitely many nonzeroXpq on

each diagonalp + q = n) has relatively acyclic columns, thenTotX is relatively acyclic.
(4) Let

0→ X→ Y → U → 0, (8.8.1)

be a sequence of complexes which is relatively exact in each degree. LetZ be the mapping
cone ofX→ Y . Then the induced morphismZ→ U is a relative quasi-isomorphism.

(5) Let Q be an additive class of objects ofA such that for any objectA of A there is a
relative monomorphismA → Q into an objectQ of Q. Then, for any right complexX in
A+, there is a relative quasi-isomorphismX→ Q into a right complexQ in Q+.

Proof. Clearly, (1) and (2) follow from the properties of (8.6). Assertion (3) follows from
the standard construction of the total complex of a bicomplex in A[0,n],∗ as an iterated cone.
Assertion (4) follows from Assertion (3), since the cone of the morphismZ→ U is the total
complex of the bicomplex associated to (8.8.1) (withU as a column in degree 0).

Consider finally (5). Assume thatX ∈ A>0. Chose for eachn a relative monomorphism
s̃n : Xn → Q̃n with Q̃n in Q. View theQ̃n as a complex with zero differentials, and letQ0

be the truncated mapping cone of the identity of this complex,

Q0 : · · · → 0→ Q̃0⊕ Q̃1→ Q̃1⊕ Q̃2→ · · · .

Thens = (s̃, s̃d) is a morphism of complexess : X→ Q0, and it is a relative monomorphism
in each degree. Repeat the construction withX := Coks to obtain a complexQ1, and
continue. The result is a complex of complexes inA>0,

· · · → 0→ X→ Q0→ Q1→ Q2→ · · · ,

which is relatively acyclic in each degree, and withQn in Q>0. Apply (3) to obtain a relative
quasi-isomorphismX→ TotQ.

(8.9) Derived functors.Assume the conditions of (8.6) forA and for a second relative abelian
categoryB. LetD+(A) be the triangulated category obtained by localizing Hot+(A) at the
relative quasi-isomorphisms. It follows, for an additive functorT : A→ B, that the functor
T : Hot+(A)→ Hot+(B)→ D+(B) is derivable with respect to the class of relative quasi-
isomorphisms if there are sufficiently many relativelyT -acyclic objects ofA, that is, if there
exists an additive classQ of objects inA such that,

(i) For any objectA ∈ A there is a relative monomorphismA → Q into an object
Q ∈ Q.

(ii) If Q is a relatively acyclic complex inQ+, then the complexTQ is relatively acyclic.
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If A has sufficiently many relatively injective objects (that is, for any objectA there
is a relative monomorphism into a relatively injective object), then in fact any functor
T : Hot+(A)→ C has a derived functorRT : D+(A)→ C. The valueRT (X) at a complex
X is equal toTQ, for any relative quasi-isomorphismX → Q into a right complexQ of
relatively injective objects.

The theory resolvent complexes is relativized similarly: Consider aT -coaugmented com-
plex of additive functors:

C : · · · → 0→ T → C0→ C1→ C2→ · · · .

The nonaugmented complex of functorsC may be viewed as a functorC : A → B>0, and
it extends to a functor on rigth complexes: the value on a complexX in A+ is the complex
TotC(X) in B+. As a result we obtain a functor TotC : Hot+(A)→ Hot+(B)→ D+(B),
and a transformationδ : T → TotC, induced by the co-augmentationT → C0.

Consider the following two conditions on the complexC:

(i) For every objectA of A there exists a relative monomorphismA→ Q into an object
Q such that the complexC(Q) is relatively acyclic inB.

(ii) Each functorCn : A→ B is relatively exact.

Lemma on resolvent complexes.Let T → C ′ be a secondT -coaugmented complex of
additive functorsA→ B. Assume that the condition(i) holds forC and that(ii) holds for
C ′. Then, in the category of functorsHot+(A)→ D+(B), there is a unique transformation
TotC → TotC ′ extending the identity transformation ofT .

Proof. The (sketch of) proof uses two standard observations: LetQ be the class of objectsQ
of A such thatC(Q) is relatively acyclic. LetX be a complex inA+. It follows from (8.8)(5)
that there is a relative quasi-isomorphisms : X → Q into a complexQ in Q+. Moreover,
it follows from condition (i) forC that the natural morphismδ : T (Q) → TotC(Q) is a
relative quasi-isomorphism inB+. It follows from condition (ii) forC ′ that any relative
quasi-isomorphismX→ Y induces a relative quasi-isomorphismC ′X→ C ′Y .

Consider the following ‘prism’ diagram:

TotCX TotCQ
δ

TX TQ

TotC ′X s TotC ′Q

The horizontal morphisms are induced byX → Q. The skew morphisms are induced by
the transformations of functorsT → TotC andT → TotC ′. As observed above, the two
morphismss andδ in the diagram are relative quasi-isomorphisms, and hence isomorphisms
in D+(B). So the required morphismCX → C ′X is equal to the clock wise composition
(in D+(B)) of the four outer morphisms in the diagram.
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A T -coaugmented complex of functorsC with both properties (i) and (ii) is called a
relatively exact resolvent complexfor T . It follows from the Lemma that resolvent complexes
are unique, up to a unique isomorphism inD+(B). Moreover, ifT → C andT → C ′ are
resolvent complexes, then any morphismC → C ′ extending the identity ofC, is the unique
isomorphismC → C ′. If T has a relatively exact resolvent complexT → C, thenT is
relatively derivable, and there is a natural isomorphismRTX→ TotCX in D+(B).

Note the special case whenB is relativized with the split monomorphisms as relative
monomorphisms. ThenD+(B) is simply Hot+(B), and relatively exact resolvent complexes
are unique up to homotopy equivalence.

Consider in particular the case where the identity ofA, as a functor,

1: A→ Asplit,

from A with a given to relativization toA with the split relativization, has a relatively exact
resolvent complex 1→ C. Thus it is required for the objectsQ in (ii) that C(Q) is con-
tractible, and it is required that each functorCn turns relatively short exact sequences into
split exact sequences (and hence relatively acyclic complexes into contractible complexes).
Clearly, in this case, any additive functorT : A→ B, viewed as a functor of relative abelian
categoriesT : A→ Bsplit has a relatively resolvent complex, namelyT → T C.

(8.10) Remark. The Lemma in (8.9) has a flavor similar to the Theorem of Acyclic Models:
LetK be an arbitrary category, and letM be a class of objects (themodels) of K. Consider the
category of functorsK→ B from K to a given abelian categoryB. Relativize the category
of functors: A transformationF → G is relatively monic(or M-monic), if FM → GM

is monic inB for every modelM. (This the relativization induced by the exact funtor that
restricts a functorF : K → B to the classM.) Acordingly there is a notion ofM-acyclic
complexes of functors andM-injective functors. IfQ is an injective object ofB andM is
any model, then the functor,

ρMQ = Q
HomK(−,M),

is M-injective. Indeed, the assertion follows from the functorial isomorphism, for arbitrary
objectsM,Q in B:

HomFunct(F, ρMQ) = HomB(FM,Q).

The theorem of acyclic models.Let T : K→ B a functor and letT → C andT → C ′ be
two T -coaugmented complexes of functors. Assume thatTM → CM is an exact resolution
for every modelM and that each functorC ′n isM-injective. Then, in the homotopy category
of complexes of functors, there is a unique morphismC → C ′ extending the identity ofT .

Proof. This is a special case of Corollary (8.4), withX := T , Y := C andQ := C ′.

(8.11) Example.TakeK = Top and as models the topological simplices1p forp = 0, 1, . . . .
Apply the dual concepts withB := Ab. LetCsing

n : Top→ Ab be the functor,

C
sing
n X = Z

⊕HomTop(1
n,X).
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ThenCsing
n is relatively projective, sinceZ is projective inAb. The functorsCsing

n fit onto the
singular chain complexCsing, naturally augmented by the constant functorZ. Its homology
defines thesingular homology,

H
sing
n (X) = Hn(C

singX).

The reduced singular homologyis the homology of the augmented complexCsing. It is
well known, and easy to see, that the reduced singular homologyH n(Z) vanishes whenZ is
contractible. In particular, withZ = 1p, it follows that theZ-augmented complexCsing→ Z

satisfies both assumptions in (the dual version of) the Theorem of Acyclic models.
A classical application is the following:

Homotopy property of singular homology. Homotopic mapsf0, f1 : X → Y induce ho-
motopic morphisms of chain complexesCsingX→ CsingY .

Proof. Let I be the unit interval. It suffices to prove that the two inclusionsi0, i1 : X→ X×I

induce homotopic morphisms of chain complexes,

Csing(X)→ Csing(X × I).

View the two sides asZ-augmented complexes of functors onTop. The left side consists
of relatively projective functors, and the right side is relatively acyclic, since1p × I is
contractible. So, by the Theorem, there is, up to homotopy, only one morphism from the left
side to the right side.
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Limits

1. Direct systems; limits, colimits.

Fix a categoriesC andD, and index categoriesI , J . (An index categoryis a category so
small that some of the constructions below make sense; in particular, an index category may
be asmall category, that is, a category whose class of morphisms is a set.)

(1.1) Setup. A functorX : I → C is also called a (direct) systemin C indexedby I , or an
I -systemin C, or aco-I -objectin C. There is category ofI -systems inC, with transformations
of functors as morphisms; it is denotedCI .

An I -systemX : I → C associates in a functorial way to everyindexi (that is, an object
i of I ) an objectXi in C and to every morphismϕ : i → j of indices atransition morphism
Xi → Xj , denotedX (ϕ), or ϕX , or ϕ∗, or simplyϕ. A morphismof I -systemsu : X → Y

is a transformation of functors; in other words, it is a family of morphismsui : Xi → Yi ,
indexed by the objectsi of I , andcompatiblewith the transition morphisms, that is, for any
morphismϕ : i → j in I the following diagram is commutative:

Xi
ui

Yi

ϕX ϕY

Xj
uj

Yj .

An objectA of C defines aconstantI -system, withXi = A for all i and all transition
morphisms equal to the identity 1A; it is denoted constI (A) (or simplyA). A morphism
a : X → A, from the I -systemX to the constantI -systemA, is a family a = (ai) of
morphismsai : A→ Xi which is acompatible familyin the sense that the following diagrams,
for all morphismsϕ : i → j in I , commute:

Xi
ai

A

ϕX aj

Xj .

We will say that the objectA with the compatible familyai : Xi → A is a common target
for the systemX . If A is a common target forX with the compatible familya : X → A and
f : A → B is a morphism inC, thenB with the compositionf a : X → B as compatible
family is a common target forX ; it is said to beinduced froma via the morphismf : A→ B.
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(1.2) Definition. A colimit of anI -systemX : I → C is a common targetq : X → Qwith the
following universal property: any common targetb : X → B is induced fromq via a unique
morphismf : Q → B. It follows from the universal property that a colimit, if itexists, is
unique: If q̃ : X → Q̃ is a second colimit ofX, then the unique morphisms : Q̃→ Q such
that q̃ = sq is a canonical isomorphism̃Q ∼−→Q.

We will use the notationQ = lim−→X , orQ = lim−→i∈I Xi , or similar, to indicate thatQ is
the colimit of the systemX : I → C. The colimit is a common target forX , and hence it
is more than on object ofC: it comes with a compatible family of morphismsX → Q; the
i’th member of the family is thei’th canonical injection, usually denoted inXi : Xi → Q.
The normal use of the symbols is an abuse of notation: We use lim−→Xi to denote at the same
time the object with the compatible family of of injections ini and the object ofC which is
the common target of the injections. So we view the injections as a compatible family of
morphisms,

Xi
ini lim−→X

ϕX inj

Xj .

(1.2.1)

The universal property may be rephrased as follows: For an objectB of C and a compatible
family bi : Xi → B of morphisms there is a unique morphism

f : lim−→X → B such thatf ini = bi : Xi → B for all i ∈ I ;

it is said to be defined by the equationsf ini = bi .

(1.3) Definition. The dual concepts lead to a dual type of limit: LetX : I → C be anI -
system. IfB is an object ofC, then a morphismb : B → X , from the constantI -systemB
to theI -systemX is given by acompatible familyof morphismsbi : B → Xi . We will say
thatB with the compatible family is acommon sourcefor the systemX . A limit (sometimes
called aninverse limit) of the (direct)I -systemX : I → C is a common sourcep : P → X

from with the following universal property: any common sourcea : A→ X is induced from
P via a unique morphismg : A → P . We use the notationP = lim←−X or P = lim←−i∈I Xi
to indicate thatP is the limit of the systemX : I → C. It is an abuse of notation: lim←−X

denotes at the same time a common source forX with a compatible family of morphisms
prXi : lim←−X → Xi , called the canonicalprojections, andthe object ofC which is the common
source of the canonical projections. The projections form acompatible family of morphisms,

lim←−X
pri

Xi

prj
ϕX

Xj .

(1.3.1)

The universal property may be rephrased as follows: For an objectA of C and compatible
family ai : A→ Xi of morphisms there is a unique morphism

g : A→ lim←−X such that pri g = ai : A→ Xi for all i ∈ I ;
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it is said to be defined by the equations pri g = ai .

Clearly, the limit and the colimit are functorial in theI -systemX . The categoryC is said
to havelim←−I ’s, resp.to havelim−→I

’s if every I -systemX : I → C has a limit, resp. a colimit;
if this is the case, there is a well-defined functor,

lim←−I : CI → C, resp. lim−→I
: CI → C.

(1.4) Terminology. A contravariant functorZ : I → C is also called aninverseI -systemin
C or anI -objectin C. In questions related to limits and colimits an inverse systemZ : I → C

is always replaced by the (direct) systemopZ : Iop→ Z, indexed by the opposite category
Iop.

There is a tendency that limits often occur in connection with inverse systems and colimits
occur in connection with (direct) systems. It is an old (and quite confusing) tradition that the
limit of an inverse system is called aninverse limit, and the colimit of a direct system is called
adirect limit.

(1.5) Product and coproduct. Assume that the categoryI is discrete(no morphisms except
the identities). Then anI -systemX is just a familyXi indexed by the objects ofI . A common
target forX is a family of morphismsai : Xi → A. A colimit of the systemX is called a
coproduct(or adirect sum) of theXi , and denoted

∐
X , or

∐
Xi, or

∐

i∈I

Xi, or
∨

Xi, or
⊕

Xi ;

the last symbol is mainly used in additive categories. The coproduct comes with injections
ini : Xi →

∐
X , and the equationsg ini = ai define a morphismg :

∐
X → A. In the finite

caseI = {1, . . . , n} we may use notations like the following for the coproduct:

X1

∐
· · ·
∐
Xn or X1 ∨ · · · ∨ Xn or X1⊕ · · · ⊕Xn.

Dually, a common source forX is a family of morphismsai : A → Xi . A limit of the
systemX is called aproductof theXi , and it may be denoted

∏
X , or

∏
Xi, or

∏

i∈I

Xi, or Xi .

The product comes with projections pri :
∏

X → Xi , and the equations pri g = ai define
a morphismg : A →

∏
X . In the finite caseI = {1, . . . , n} we may use notations like the

following for the product:

X1

∏
· · ·
∏
Xn or X1× · · · ×Xn.

The coproduct of the empty family (I = ∅) is thecofinalor initial object ofC and the product
of the empty family is the final object.
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When the family is constant,Xi = X for all i, we use the notationXI for the product and
X⊕I for the coproduct. In the finite case,I = { 1, . . . , n }, we writeXn andX⊕n. Note that
the productXI is a contravariant functor with respect to the setI and the coproductX⊕I is
a covariant inI .

For an arbitrary index categoryJ we say thatC has
∏
J ’s, resp.has

∐
J ’s, if for any family

in C indexed by a set of cardinality at most equal to the cardinality of the class of morphisms
in J , the product, resp. the coproduct, exists.

(1.6) Example. Assume thatI has a final objecti0. Then, for anyI -systemX : I → C the
objectXi0 is the colimit of the system, lim−→X

∼−→Xi0. More precisely, ifXi → Xi0 is the
transition morphism corresponding to the unique morphismi → i0, then the objectXi0 with
the morphismsXi → X as injections is the direct limit.

Dually, if I has an initial objectj0, then for anyI -systemX , we haveXj0 = lim←−X .

Clearly, assuming the existence, the colimit of the identity functor is a final object ofC
and a limit is an initial object ofC.

(1.7) Fibered product and amalgamated coproduct.For the categoryI := 1′ → 0← 1
(three objects and two morphisms in addition to the identities), anI -systemX is a diagram
X ′1→ X0← X1. A common sourceA for X is a commutative diagram,

A
a1 X1

a′1
ϕ

X′1 ϕ′
X0,

with a0 = ϕa1 = ϕ
′a′1. The limit, if it exists, is called thefibered productor thepull-backof

the given diagram; it is denotedX ′1
∏

X0
X1 orX ′1×X0 X1.

Dually, for the categoryJ := 1′ ← 0→ 1 aJ -systemY is a diagramY ′1← Y0→ Y1,
and a common targetY → B is a pair of morphismsb′1 : Y ′1→ B andb1 : Y1→ B such that
the compositionsY0→ Y ′1→ B andY0→ Y1→ B are equal. The colimit, if it exists, is
called theamalgamated coproductor thepush-forwardof the given diagram; it is denoted
Y ′1

∐
Y0

Y1 orY ′1 ∨Y0 Y1.

A

a′1

a1

X ′1×X0 X1 pr X1

pr′

X ′1 X0

Y0 Y1

in

b1Y ′1
in′

Y ′1 ∨Y0 Y1

b′1

B

(1.8) Equalizer and coequalizer. Assume thatI is the category 0→→ 1, with two objects
0, 1 and two morphismsϕ,ψ : 0→ 1 in addition to the two identities. Then anI -systemX

in C is a diagram of two morphismsX0
ϕ

ψ
X1.
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The limit of the system is theequalizerof the morphismsϕ,ψ , denoted Eq(ϕ, ψ) or
Ker(ϕ, ψ). The canonical projection pr0 : Ker(ϕ, ψ) → X0 is, in fact, a monomorphism
(and pr1 = ϕ pr0 = ψ pr0).

The colimit of the system is thecoequalizerof the morphismsϕ,ψ , denoted Coeq(ϕ, ψ)
or Cok(ϕ, ψ). The canonical injection in1 : X1 → Cok(ϕ, ψ) is, in fact, an epimorphism
(and in0 = in1 ϕ = in1ψ).

Ker(ϕ, ψ)
pr0

X0
ϕ

ψ
X1

in1 Cok(ϕ, ψ).

(1.9) Limits in the category of sets.If I is a small category, then anyI -systemX of sets has
a limit. In fact, let

∏
i∈I Xi be the product set, consisting of all element families(xi)i∈I with

xi ∈ Xi , and letP be the subset of all compatible families, that is, element families

(xi)i∈I such thatϕ∗(xi) = xj for any morphismϕ : i → j in I.

Then the setP with the i’th coordinate projection(xi)i∈I 7→ xi as the canonical projection
P → Xi is the limit lim←−i∈I Xi .

Proof. This is just an observation: LetP ⊆
∏

Xi be the subset of compatible element
families. Clearly, a family of mapsai : A→ Xi defines a mapα : A→

∏
Xi fromA to the

product set, andα maps into the subsetP if and only if ai : A→ Xi is a compatible family
of maps.

(1.10) Main existence lemma.(1) Assume that the categoryC has equalizers and
∏
I ’s.

ThenC haslim←−I ’s. In fact, for anyI -systemX : I → C, the limit lim←−i∈I Xi is the equalizer
of the following pair of morphisms,

∏

i∈I

Xi
s

t

∏

ϕ : i→j

Xj .

In the product on the right side, the index set is the class of all morphismsϕ : i → j in I ,
and the object corresponding to the indexϕ : i → j is the objectXj given by the target ofϕ.
The two morphismss, t into this product are given by their projections corresponding to an
indexϕ : i → j ; they are given by the equations of morphisms

∏
X → Xj :

prϕ s = ϕ∗ pri, and prϕ t = prj .

(2) Assume that there is a classJ ⊆ I of objects such that for every objecti ∈ I there
exists an objectj ∈ J and a morphismj → i. Assume that the categoryC has arbitrary
intersections of subobjects, and equalizers, and

∏
J ’s. ThenC haslim←−I ’s.

Proof. Part (a) is just a game where you play with the universal properties of the product and
the equalizer. You have to play it!

Part (b) is similar, knowing the rules: Consider the productP :=
∏
j∈J Xj . For any

morphismϕ : j → i in I , with j ∈ J , let pϕ : P → Xi be the morphismϕ∗ prj . For any
pair of morphismsϕ : j → i andϕ′ : j ′ → i with j, j ′ ∈ J , the equalizer Ker(pϕ, pϕ′)
is a subobject ofP . Now check that the intersection of all these equalizers, with obvious
projections, is the limit lim←−i∈I Xi .
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(1.11) Limits and colimits of sets. Let I be a small category and letX : I → Setsbe an
I -system of sets. Clearly, the general description in (1.10)leads to the description of the limit
lim←−I Xi in (1.9).

The category of sets has coproducts, given by the disjoint union
∐
I X , and it has coequal-

izers: IfZ
s

t
X is a pair of maps, then the coequalizer Cok(s, t) is the quotientX/ ∼ of

X modulo the equivalence relation∼ generated by the relationss(z) ∼ t (z) for z ∈ Z. In
even more detail, for elementsx, x ′ write x ←→ x ′ if eitherx ′ = x, or there exists an element
z ∈ Z such that(x, x ′) = (s, t)(z) or (x, x ′) = (t, s)(z). Then,

x ∼ x ′ ⇐⇒ there exists a finite stringx = x0←→ x1←→ · · · ←→ xn = x
′.

So the dual version of Lemma (1.10) applies. It follows that the categorySetshas lim−→I
’s,

and that the colimit lim−→I X may be described as the quotient ofX :=
∐
i∈I Xi modulo the

equivalence relation generated by the following relation:Two elementsx, x ′ inX, sayx ∈ Xi
andx ′ ∈ Xj are related if there is a morphismϕ : i → j such theϕ∗(x) = x ′.

(1.12) Examples.The construction in (1.10)(1) applies to many classical categories of sets
with an extra structure. Of special interest is the following result:

Observation. The categoryAb of abelian groups has arbitrary small limits. Moreover, if
X : I → Ab is a system of abelian groups, then the set underlying the group lim←−i Xi is the
limit of the underlying sets.

Proof. Clearly, if Xi is a family of abelian groups indexed by a setI , then the product
group is the product set

∏
i∈I Xi with coordinate-wise composition; iff, g : X → Y are

homomorphisms of abelian groups, then the set equalizer is asubgroup ofX and hence, with
its subgroup structure, equal to the equalizer in the category Ab.

So, by (1.11), for any systemXi of abelian groups indexed by a small categoryI , the
limit lim←−i∈I Xi exists and it may be obtained by giving the limit of underlying sets a natural
induced structure as an abelian group.

Almost identical observations may be made for most other categories of sets with extra
structure, for instance for the following categories:

C = Gr is the category of groups,
C = k-Alg is the category of commutative algebras over a commutative ring k,
C = k-Mod is the category ofk-modules,
C = Top is the category of topological spaces,
C = POS is the category of partially ordered sets.

(1.13) Note. It follows from Lemma (1.10) thatC has arbitrary finite limits, resp. finite
colimits, if and only if C has finite products and equalizers, resp. finite coproducts and
coequalizers. In particular, an abelian category has arbitrary finite limits and finite colimits.

Again, by the same Lemma,C has arbitrary small limits (i.e., limits of systems indexed
by small categories), resp. small colimits, if and only ifC has small products and equalizers,
resp. small coproducts and coequalizers.

60



Direct systems; limits, colimits Lim 1.7

Note also that the categoryFunct(I,C) of all functorsF : I→ C has the same limits and
colimits as the categoryC. The limit of a systemi 7→ Fi of functorsFi : I→ C is determined
“argument by argument”:(lim←−I Fi)(Z) = lim←−I (FiZ) for Z ∈ I.

(1.14) Definition. Let F : C → D be a functor. IfX : I → C is anI -system inC, then
the compositionFX : I → D is anI -system inD. SoF induces a functorCI → DI . In
particular, ifai : A→ Xi is a compatible family inC, corresponding to a morphism from the
constantI -systemA toX , thenFai : FA→ FXi is a compatible family inD.

Assume that the limits exist. The projections prX
i : lim←−X → Xi form a compatible family

in C. So the images underF form a compatible familyF(prXi ) : F(lim←−X )→ FXi in D. So
there is an induced morphism,

F(lim←−
I

X )
u lim←−

I

FX , defined by the equations prFX
i u = F(prXi ). (1.14.1)

The functor is said tocommute withlim←−I ’s if, whenever the limit lim←−I X of anI -systemX

exists, the compatible familyF(pri) : F(lim←−X ) → FXi is the limit of theI -systemFX .
Assuming the existence of both limits in (1.14.1), the functorF commutes with lim←−I ’s if the
morphismu in (1.14.1) is an isomorphism for anyI -systemX .

The functorF : C → D is said to beleft exact, resp.right exact, if it commutes with all
finite limits, resp. colimits.

It follows from Lemma (1.10) that a functorF is left exact if and only if it commutes
with equalizers and with finite products; it commutes with all small limits if and only if it
commutes with equalizers and arbitrary products indexed bysets.

(1.15) Proposition. The functorHomC(− ,− ) from Cop× C to Setscommutes withlim←− in
the second variable and, when viewed as a covariant functorCop→ Setsin the first variable,
also in the first variable. More precisely, for a given systemX : I → C, the following
assertions hold: Letpi : P → Xi be a common source and letqi : Xi → Q be a common
target for the systemX . Consider, for objectsA,B ∈ C the maps of sets induced byp andq:

(1) HomC(A, P )
up

lim←−
i∈I

HomC(A,Xi), (2) HomC(Q,B)
vq

lim←−
i∈I

HomC(Xi, B).

ThenP = lim←−i Xi if and only if (1) is bijective for allA, andlim−→i
Xi = Q if and only if (2)

is bijective for allB.

Proof. Indeed, the precise result is a reformulation of the universal properties of limits and
colimits.

(1.16) Definition. Consider a functor8 : J → I . Then for anyI -systemX in C the
compositionX8 is a J -system inC; it is said to be obtained fromX by restriction to
J (via 8), and may be denotedX|8 or X |J . Restriction defines a functorCI → CJ .
Assume that the colimit lim−→i∈I Xi exists. Then the canonical injections define a compatible
family of morphisms ini : Xi → lim−→I

X , and it restricts to a compatible family of morphisms
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Lim 1.8 Limits

X8j → (lim−→I
X ) from theJ -systemX8 to the constantJ -system lim−→I

X . So, if the colimit
lim−→J X8 = lim−→j∈J X8j exists, the first of the following morphisms is a canonical morphism
in C,

lim−→
j∈J

X8j lim−→
i∈I

Xi; lim←−
i∈I

Xi → lim←−
j∈J

X8j (1.16.1)

the second morphism is obtained similarly, assuming that the limits exist.
Recall that theright fiber of the functor8 : J → I at an objecti of the target category,

denotedi/8 (or i/J ), is the following category: The objects ofi/8 are the pairs(j, ϕ)
consisting of an objectj ∈ J and a morphismϕ : i → 8j in I . The morphisms ini/8 from
(j, ϕ) to (j ′, ϕ′) are the the morphismsψ : j → j ′ in J for which the following diagram is
commutative:

i

ϕ ϕ′

8j
8(ψ)

8j ′.

The functor8 : J → I is called afinal or terminal functorif its right fibers are non-empty
and connected.

Example. The categoryI is said to befiltering, if the following two conditions are satisfied:
(FILT1) For any pair of objectsj, j ′ ∈ I there exists an objectk ∈ I and morphisms

j → k← j ′.
(FILT2) Any pair of morphismsi →→ j can be coequalized by a morphismj → k.

It is said to bepseudo-filteringif (FILT2) holds and (FILT1) holds in the week form:
(PS-FILT1) For any pair of morphismsj ← i → j ′ there exists an objectk ∈ I and

morphismsj → k← j ′, and

i
j

j ′
k, i j k.

Of course, assuming (FILT2), the square in (PS-COFILT1) maybe assumed commutative.
It is easy to see thatI is pseudo-filtering if and only if the connected components of I are

filtering.

If I is pseudo-filtering, then the inclusion of a subcategoryJ ⊆ I is final, if and only if
for every objecti ∈ I there is an objectj ∈ J and a morphismi → j .

(1.17) Proposition. Assume that the functor8 : J → I is final. Then, if one of the two
colimits lim−→i∈I Xi and lim−→j∈J X8j exists, then so does the other, and the canonical morphism
of (1.16.1)is an isomorphism,

lim−→
j∈J

X8j
∼
u lim−→

i∈I

Xi . (1.17.1)

Hint. To define an inverse ofu, consider the family of morphismsvi : Xi → lim−→J
X8 defined

for i ∈ I as follows: Chose an objectj ∈ J and a morphismi → 8j in I . Let vi be the
composition,

Xi
ϕ

X8j
inX8
j

lim−→X8.
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Direct systems; limits, colimits Lim 1.9

Now check that thevi are well-defined, that they form a compatible familyv : X → lim−→J
X8

from the I -systemX to the constantI -system lim−→J X8, and that the induced morphism
lim−→I

X → lim−→J
X8 is the inverse of (1.17.1).

(1.18) Proposition. If a functorF : C→ D has a left adjoint then it commutes with all limits.
In particular, thenF is left exact.

Proof. By assumption there is a functorλ : D→ C and a functorial adjunction bijection, for
objectsD ∈ D andC ∈ C,

HomC(λD,C) = HomD(D, FC). (1.18.1)

Consequently, for anyI -systemX such that the limit lim←−I X exists, there is a commutative
diagram of sets,

HomD(D, F (lim←−i∈I Xi))==== HomC(λD, lim←−i∈I Xi)

≀

lim←−i∈I HomD(D, F (Xi))==== lim←−i∈I HomC(λD,Xi).

The horizontal bijections are induced by the adjunction bijections. The right vertical map
is a bijection, reflecting the universal property of lim←−I , cf. (1.15). The left vertical map is
induced by the compatible family of morphismsF(prXi ) : F(lim←−I X )→ F(Xi). As the map
is bijective, it follows that the compatible family has the universal property. HenceF(lim←−I X )
is the limit of the systemFX .

(1.19) Examples.As noted in (1.12) several classical categoriesC have as objects sets with
an extra structure, and the forgetful functor: C→ Setscommutes with lim←−’s. In fact, ifC is
such a category, there if a functorW : Sets→ C which is left adjoint to . It associates with
a setT an objectW(T ) which you may think of as the free object inC generated byT ; it is
defined by the equation HomC(W(T ), A) = HomSets(T , A).

Here are the examples corresponding to the categories in (1.12):
C = Ab,W(T ) := Z

⊕T is the free abelian group generated byT .
C = Gr , W(T ) is the free group of words in letters corresponding to the elements of

T ∪ T −1.
C = k-Alg, W(T ) := k[T ] is the polynomial algebra in variables corresponding to the

elements ofT .
C = k-Mod, W(T ) := k⊕T is the freek-module on generators corresponding to the

elements ofT .
C = Top,W(T ) = T discr is the discrete topological spaceT .
C = POS,W(T ) := T discr is the discrete partially ordered setT .

(1.20). Assuming the existence of the limits and the colimits we havefunctors lim←−I : CI → C

and lim−→I
: CI → C. By the universal property of limits, we have the bijection,for any object

A ∈ C and anyI -systemX : I → C:

HomCI (constI A,X )) = HomC(A, lim←−
I

X ).
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In other words, the limit functor lim←−I is right adjoint toA 7→ constI A is left adjoint to lim←−I .
Similarly, the colimit is left adjoint toA 7→ constI A:

HomCI (X , constI A) = HomC(lim−→
I

X , A).

Therefore, the following result is an immediate consequence of Proposition (1.18).

Proposition. If the categoryC haslim←−I ’s then the limit functorlim←−I : CI → C commutes
with arbitrary limits; in particular, the limit functor is left exact. If the categoryC haslim−→I ’s
then the colimit functorlim−→I

: CI → C commutes with all colimits; in particular, the colimit
functor is right exact.

(1.21) Remark. Proposition (1.18) is morally an “if and only if” statement.The more precise
result is the following:

Theorem. A functorF : C → D has a left adjoint if and only if every system inC indexed
by a right fiber ofF has a limit andF commutes with these limits.

Proof. Fix D in D. Recall that the right fiber ofF at D, denotedD/C, is the following
category: Its objects are pairs(X, f ), with an objectX ∈ C and morphismf : D → FX in
D. A morphism inD/C, say from(X′, f ′) to (X, f ), is a morphismh : X′ → X in C such
thatf = F(h)f ′:

D

f ′
f

FX′
F(h)

FX.

(1.19.1)

Assume thatλ : D→ C is a left adjoint ofF . Then the adjunction bijection, say

p : HomD(D, FX)→ HomC(λD,X), (1.19.2)

functorial inD ∈ D and inX ∈ C, associates with each object(X, f ) ∈ D/C a morphism
p(g) : λD → X which is an object in the categoryλD/C of all morphisms with sourceλD.
It is obviously an isomorphism of categories fromD/C to λD/C. The latter category has an
initial object, which is the identity 1:λD → λD. Hence the right fiberD/C has an initial
object (which is the morphismε : D→ FλD corresponding to the identity ofλD under the
bijectionp). Therefore, any system indexed byD/C has a limit.

Conversely, assume the conditions for the ‘if’ part. The functorD/C→ C determined by
(X, f ) 7→ X is aD/C-system inC. DefineλD as its limit:

λD := lim←−
(X,f )∈D/C

X.

The limit comes with a compatible family of canonical projections: For any index(X, f ) in
D/C there is a morphism prX,f : λD → X, and this family is compatible, that is, for any
commutative diagram (1.19.1), the following diagram is commutative:

λD

prX′,f ′
prX,f

X′
h

X.

(1.19.3)
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Now, for fixedX ∈ C, define the mapp as in (1.19.2) byp(f ) := prX,f . It follows from the
compatibility of the family of projections that the mapp is functorial with respect toX.

If g : D′→ D is a morphism inD, there is an obvious functor of the fibersD/C→ D′/C,
determined by(X, f ) 7→ (X, fg). So there is a natural morphismλD′ → λD of limits, see
(1.16), commuting with the projections. It follows thatD 7→ λD is functor and that the map
p in (1.19.2) is functorial inD.

It remains to prove thatp is bijective. By assumption, the functorF commutes with
limits. So, sinceλD is the limit of the system(X, f ) 7→ X, it follows thatFλD, with the
compatible family of morphismsF(prX,f ) : FλD→ F(X), is the limit of the image system
(X, f ) 7→ FX. By definition of the right fiberD/C, there is an obvious compatible family of
morphisms from the objectD to the image system(X, f ) 7→ FX. Hence, by the existence
part of the universal property of limits, this compatible family is induced by a morphism from
D to the limitFλD. So there is a morphismε : D→ FλD such that, for all(X, f ) ∈ D/C,
the first of the following diagrams is commutative:

D

ε f

FλD
F(prX,f )

FX,

D

ε q(g)

FλD
F(g)

FX.

(1.19.4)

In the second diagram, ifg : λD → X is a morphism, we letq(g) := F(g)ε. Then, by
definition of q, the second diagram is commutative. The mapg 7→ q(g) is a map of the
Hom-sets in (1.19.2), from the right to the left. We claim that the mapq is the inverse ofp.

First, by the commutativity of the first diagram in (1.19.4),it follows for any morphism
f : D→ FX thatqp(f ) = f .

So it remains to prove, for a given morphismg : λD → X thatpq(g) = g. Now, the
morphismε : D→ FλD defines an object(λD, ε) inD/C. Let (X, f ) be an arbitrary object
in D/C. It follows from the commutative diagrams in (1.19.4) that prX,f is a morphism
(λD, ε) → (X, f ) and g is a morphism(λD, ε) → (X, q(g)). So the following two
diagrams, corresponding to (1.19.3), are commutative:

λD

prλD,ε
prX,f

λD
prX,f

X,

λD

prλD,ε
prX,q(g)

λD
g

X.

(1.19.5)

In the second diagram,pq(g) = prX,q(g). So, by the commutativity of the second diagram,
to prove the equationpq(g) = g it it suffices to prove that prλD,ε = 1λD.

To prove that latter equation note that the first diagram in (1.19.5) is commutative for all
(X, f ) ∈ D/C. Hence, sinceλD is the limit of the system(X, f ) 7→ X, it follows from the
uniqueness part of the universal property for limits that prλD,ε is the identity morphism of
λD.

(1.20) Exercises.
1. Let T : A → B be a functor between abelian categories. Assume thatT is right exact.
Prove thatT is left exact if and only ifT preserves monomorphisms.
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2. The category of direct systems.

(2.1) Setup. Fix the categoryC. LetY : J → C be aJ -system inC. Consider, for an object
A ∈ C, the colimit,

lim−→
j∈J

HomC(A,Yj ). (2.1.1)

Recall, cf. (1.11), that the colimit of sets is a quotient of the disjoint union
∐

HomC(A,Yj )

modulo an equivalence determined from the transition morphisms. Writeψ : j1 ←→ j2
to indicate thatψ is either a morphismψ : j1 → j2 or a morphismψ : j2 → j1. Then,
more explictly, an element of the colimit (2.1.1) is given bya representativef : A → Yj

for somej ∈ J , and two representativesf : A → Yj andf ′ : A → Yj ′ are equivalent if

there is a path of morphisms inJ : j = j0
ψ1
←→ j1

ψ2
←→ j2

ψ3
←→ · · ·

ψn
←→ jn = j

′ and a
sequence of morphismsfν : A→ Yjν for ν = 1, . . . , n− 1 such that the following diagram
is commutative:

A

f f1 f2 ··· f ′

Yj ψ1
Yj1 ψ2

Yj2 ψ3
· · ·

ψn
Yj ′ .

(2.2) Definition. Thecategory of all(direct)systemsin C, denoted dir-C, has as objects the
systems inC for all possible index categories. IfX : I → C andY : J → C are objects of
dir- C, then the set of morphisms in dir-C, fromX toY , is the following set:

Homdir- C(X .Y) := lim←−
i∈I

lim−→
j∈J

HomC(Xi,Yj ); (2.1.1)

the limit and colimit on the right are in the category of sets.So, according to the description
above, a morphismf : X → Y is a compatible element familyf = (fi) of elements
fi ∈ lim−→j∈J HomC(Xi,Yj ). Such a family is determined by selecting for each indexi ∈ I

an indexj = j (i) ∈ J and a morphismrepresentingfi :

fij : Xi → Yj ;

to such morphismsfij : Xi → Yj andfij ′ : Xi → Yj ′ determine the samefi if they are equi-
valent. Compatibility of thefi means that for any morphismϕ : i → i ′ in I , the morphisms
fi′j ′ϕ∗ : Xi → Yj ′ andfij : Xi → Yj (wherej = j (i) andj ′ = j (i ′)) are equivalent:

Xi
fij

Yj

ϕ∗

Xi′
fi′j ′

Yj ′ .

Composition of morphisms in dir-C is defined on the representatives: Letf : X → Y and
g : Y → Z be morphisms in dir-C, sayf is represented by morphismsfij (i) : Xi → Yj (i)with
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a selectionj = j (i) andg is represented by morphismsgjk(j) : Yj → Zk(j) with a selection
k = k(j), then the compositiongf is represented by the morphismsgjkfij : Xi → Yj → Zk
wherej = j (i) andk = k(j (i)).

It is easy to see that composition is associative. Obviously, for any systemX : I → J ,
the family 1:Xi → Xi represents a morphismX → X which is a unit for the composition.
Hence dir-C is a category.

Clearly, a functorF : C→ D extends in a natural way to a functor dir-C→ dir- D between
the categories of systems.

(2.3). Associated with every objectX of C there is a system inC:

X1 : 1→ C,

indexed by the one point category1 and with the (constant) valueX. Clearly, the association
defines an embedding,

( )1 : C ⊆ dir- C, (2.3.1)

of C as a full subcategory of the category of systems inC. More generally, ifY : J → C and
Z : K → C are objects of dir-C, then

Homdir- C(Z, X1) = lim←−
k∈K

HomC(Zk, X), Homdir- C(X1,Y) = lim−→
j∈J

HomC(X,Yj ). (2.3.2)

It follows from the first equation that it is equivalent to give a morphismf : Z → X1 and to
give a common targetX for the systemZ : K → C.

Via the inclusion (2.3.1) anI -systemX : I → C in C may be viewed as anI -system
X1 : i 7→ (Xi)1 in dir-C. For theI -systemX1 : I → dir- C, the objectX ∈ dir- C is a common
target: For everyi ∈ I , the identity ofXi represents an element in Homdir- C(Xi ,X ) =

lim−→j∈I HomC(Xi,Xj ). From the compatible family(Xi)1→ X of morphisms in dir-C, we
obtain a natural map of sets, forY in dir- C,

Homdir- C(X ,Y) lim←−
i∈I

Homdir- C((Xi)1,Y), (2.3.3)

and it follows from (2.3.2) that the map (2.3.3) is bijectivefor allY . Therefore, by Proposition
(1.15), the systemX , as an object in dir-C, is the colimit of the system(X )1,

X = lim−→
i∈I

(Xi)1.

Warning. The embedding( )1 : C → dir- C does not commute with colimits. So, even if
the colimitX := lim−→Xi exists inC, it does not follow thatX1 is the colimit of the system
(X )1 : I → dir- C.
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(2.4). Let X : I → C andY : J → C be objects of dir-C. Assume that the colimitY :=
lim−→j Yj exists. Then, for every objectZ ∈ C, there is a canonical map of sets

lim−→
j

HomC(Z,Yj )→ HomC(Z, Y ). (2.4.1)

Assume that the colimitX := lim−→i
Xi exists. SetZ = Xi in (2.4.1) and pass to the limit

over i. On the left you get Homdir- C(X ,Y) and on the right you get HomC(X, Y ) since
HomC(− , Y ) commutes with limits in the first variable. So the result is a canonical map,

Homdir- C(X ,Y)→ HomC(X, Y ). (2.4.2)

It associates with a morphismf : X → Y of systems a morphism lim−→I
X → lim−→J

Y ; it is
natural to denote it lim−→ f . It is functorial inX andY when the colimits are defined.

Lemma. Consider a morphism of systemsf : X → Y . Then, if the colimits exist, the
induced morphismlim−→X → lim−→Y is an isomorphism if and only if the following maps, for
all objectsZ if C, are bijective,

Homdir- C(Y, Z1)→ Homdir- C(X , Z1). (2.4.3)

Proof. Indeed, by definition of the morphisms in dir-C and by the universal property of
colimit, the map (2.4.2) identifies with the map induced by lim−→ f ,

HomC(lim−→Y, Z)→ HomC(lim−→X , Z),

and the latter map is bijective for allZ if and only if lim−→ f is an isomorphism.

(2.5) Note. For a small categoryJ , the identity functor 1J : J → J is a system inJ and
hence an object in dir-J .

Observation 1. The system1J : J → J , given by the identity, is the final object ofdir- J .

Proof. Denote by{∗} the one-point-set. We have to prove, for any system8 : I → J that

Homdir- J (8, 1J ) = {∗}.

By (2.2.1), the Hom-set is a limit (overi ∈ I ), and the limit of one-point-sets is a one-point-
set. Hence we may assume thatI = 1 and that8 has the formk1 for some elementk of J .
So we have to establish the equation,

lim−→
j∈J

HomJ (k, j) = {∗}.

This equation follows from the description in (2.1): A representative for an element in the
colimit is a morphismϕ : k→ j for somej , and clearlyϕ : k→ j is equivalent to the identity
1: k→ k.
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Observation 2. More generally, a functor8 : I → J is a final object in the categorydir- J if
an only if the right fibers of8 are non-empty and connected, that is, if and only if8 is final
as defined in(1.16).

Proof. As in the previous proof,8 is a final object in dir-J if and only if for everyk ∈ J we
have the equation,

lim−→
i∈I

HomJ (k,8i) = {∗}.

So the assertion follows from the description in (1.11).

Now, let8 : I → J be any functor. Then, since 1J is the final object of dir-J , there is a
canonical morphism8 → 1J in dir- J . So, applying the functorY : J → C, the result is a
morphism in dir-C:

Y8→ Y . (2.5.1)

It is the morphism obtained by selectingj (i) := 8i and with the identitiesY8i → Y8i

as representatives. Since the colimit is functorial on dir-C, the morphism (2.5.1) in dir-C
induces a morphism inC,

lim−→
i∈I

Y8i → lim−→
j∈J

Yj . (2.5.2)

We recover the result of Proposition (1.17): If8 : I → J is a final functor, then (2.5.1) is an
isomorphism; hence, so is (2.5.2).

(2.6) Dir-representable functors. Consider the categoryFunct = Funct(Cop,Sets) of con-
travariant set-valued functors onC. For a fixed objectY ∈ C, the Hom-functor in the first
variable, HomC( ,Y ) belongs toFunct(Cop,Sets). We writeY(Z) for its value atZ ∈ C:

Y(Z) := HomC(Z, Y );

clearlyY 7→ Y( ) is a covariant functorC→ Funct(Cop,Sets). It is a full embedding. In fact,
by the Yoneda representation theorem, for any contravariant functorT ∈ Funct(Cop,Sets)
there is a natural bijection of sets, functorial inX ∈ C,

HomFunct(X( ), T ) = T (X).

It is determined by9 7→ 9X(1X) for transformations9 : X( ) → T ; the transformation
8(ξ) corresponding to an elementξ ∈ T (X) is given byf 7→ T (f )(ξ) for f : Z→ X.

In particular, forT := Y( ), we obtain the bijection HomFunct(X( ), Y ( )) = HomC(X, Y ),
and henceX 7→ X( ) is an embedding,

C ⊆ Funct(Cop,Sets),

of C as a full subcategory of the functor category. A contravariant functor of the formX( )
with X ∈ C is said to berepresentable.
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Let Y : J → C be aJ -system inC. The functor categoryFunct(Cop,Sets) has the same
colimits as the category of sets. So, in the functor categorywe may form the colimit lim−→j Yj ( ).
It is denotedY( ), and its value at the objectZ ∈ C is the colimit of sets,

Y(Z) = lim−→
j

HomC(Z,Yj ).

A contravariant functor of the formY( ) with a systemY : J → C is said to bedir-
representable. If X : I → C is a second system inC, then we have the following four
equalities:

HomFunct(X ( ),Y( )) = lim←−
i

HomFunct(Xi,Y( )) = lim←−
i

Y(Xi) = lim←−
i

lim−→j HomC(Xi,Yj ))

= Homdir- C(X ,Y).

Indeed, the first holds sinceX ( ) is the colimit of theXi( ) in the functor category, the second
holds by Yoneda, the third by definition of the functorY( ), and the last by (2.2.1). It follows
thatX 7→ X ( ) is an equivalence from the category dir-C of direct systems inC to the full
subcategory ofFunct(Cop,Sets) consisting of dir-representable functors.

(2.7) Definition. A systemX : I → C is said to beessentially constantif the following two
(equivalent) conditions hold:

(i) There is an objectX ∈ C and an isomorphism in dir-C,

X
∼−→X1. (2.7.1)

(ii) The colimit lim−→i∈I Xi = X exists, and any functorF : C → D commutes with this
limit: lim−→i∈I FXi = FX.

The equivalence is almost obvious: A common targetx : X → X corresponds to the
morphism (2.7.1) in dir-C. If (2.7.1) is an isomorphism, then so is the morphismFX →
(FX)1 in dir- D; apply the functor lim−→ to obtain the isomorphism lim−→FX = FX. Conversely,
if (ii) holds, then the isomorphism in (2.7.1) is obtained bytaking asF the inclusion( )1 : C→

dir- C.
Clearly, under the correspondence between systems and dir-representable functors, the

systemX is essentially constant if and only if the contravariant functorX ( ) is representable.

(2.8). Consider a system in dir-C indexed by an index categoryI , sayi 7→ X (i) for i ∈ I .
Then eachX (i) is a systemX (i) : Ji → C with an index categoryJi .

If the colimit,
Yi := lim−→

j∈Ji

X
(i)
j ,

exists for each indexi ∈ I , then by the functorial properties of lim−→ in (2.4) theYi form
an I -systemY in C, and hence an object inY ∈ dir- C. Moreover, for eachi ∈ I there is
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a morphismκi : X (i) → Y represented by the morphism inj : X (i)
j → Yi , and theκi is a

compatible family of morphisms in dir-C,

κi : X
(i)→ Y,

makingY a common target of the systemX (i). This common target is in general not universal,
that is,Y is not the colimit of the systemX (i); if the colimit X := lim−→X (i) exists in dir-C,
then theκi determine a canonical morphismX → Y .

Proposition. Consider anI -systemi 7→ X (i) in dir- C such that

(i) The colimitX := lim−→i∈I X
(i) exists indir- C, and

(ii) the colimitYi := lim−→j∈Ji
X
(i)
j exists inC for everyi ∈ I .

Then the canonical morphismX → Y induces, for every objectZ of C, a bijection,

Homdir- C(Y, Z1)→ Homdir- C(X , Z1). (2.8.1)

Proof. The systemY in dir- C is the colimit of the systems(Yi)1 and the systemX is the
colimit of the systemsX (i). Therefore, since Hom commutes with limits in the first variable,
it suffices to prove that the following map is bijective for any i:

Homdir- C((Yi)1, Z1)→ Homdir- C(X
(i), Z1).X, Z1). (2.8.2)

Identify the map (2.8.2) with the following map:

HomC(Yi, Z)→ lim←−
i

HomC(X
(i), Z).X,Z1). (2.8.3)

The map (2.8.3) is bijective becauseYi = lim−→X (i).

(2.9) Corollary. Under the conditions (i) and(ii) of (2.8), we have an isomorphism inC,

lim−→X
∼−→ lim−→Y,

provided that one of the two colimits exists.

Proof. The assertion follows from Lemma (2.4).

Remark. If every systemX (i) is essentially constant, i.e.,X (i) ∼−→ (Yi)1 in dir- C, then we
have the equations,

X = lim−→X (i) = lim−→(Yi)1 = Y .

In particular, in this caseX is essentially constant if and only ifY is essentially constant.

(2.10). Consider a direct systemX : I × J → C defined on a product category.
...

(2.11). An abelian categoryA has equalizers and coequalizers. Hence it has lim←−I ’s if and
only if it has

∏
I ’s, and it has lim−→

′
I

if and only if it has
∐
I ’s.

Proposition. Let A be an abelian category with exact
∐
I . Then the functorlim−→I

: AI → A

is right exact.

Proof. . . .
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3. Inductive and projective limits.

(3.1) Definition. A systemX : I → C is called aninductive systemif the index categoryI is
filtering. An inverse systemY : I → C, that is, a contravariant functorY : I → C, is called a
projective systemif the index categoryI is filtering.

A colimit of an inductive system is often called aninductive limit, and a limit of a projective
system is often called aprojective limit.

(3.2) Observation.Let i 7→ Xi be an inductive system of sets. Consider the inductive limit,

lim−→
i∈I

Xi =
∨

i∈I

Xi/ ∼,

as the quotient of the disjoint union
∨

Xi modulo the equivalence relation∼, cf. (1.11). Then:

(1) Two elementsx ∈ Xi andx ′ ∈ Xi′ are equivalent if and only if there are morphisms
ϕ : i → j andϕ′ : i ′→ j such thatϕ∗(x) = ϕ∗(x ′) in Xj .

(2) For any two elements in the inductive limit there is an indexi such that the elements
have representatives inXi .

(3) Two elementsx, x ′ ∈ Xi are equivalent if and only if there is a morphismϕ : i → j

such thatϕ∗(x) = ϕ∗(x ′).

The assertions are easy consequences of the filtering conditions on the index set.

Proposition. Let I be a filtering category. Then the inductive limitlim−→I
: SetsI → Sets

commutes with finite limits and arbitrary colimits.

Proof. The second assertion is obvious since a colimit commutes with arbitrary colimits. To
prove the first assertion is suffices to prove that lim−→I

commutes with equalizers and final
element and with the productX × Y of two I -systems.

(3.3) Construction. Let i → Xi be an inductive system of abelian groups. Consider the
inductive limit of the underlying sets,

E :=
∨

i

Xi/ ∼ .

Let a, b ∈ E be elements of the quotient, and chose an indexi and representativesx, y ∈ Xi
for a andb. Leta+ b be the element in the quotientE represented by the sumx+ y ∈ Xi . It
is easy to see, using the description in (3.2) that the element a+b is independent of the choice
of i and of the representativesx, y. So we have obtained a composition(a, b) 7→ a + b in
the setE. Furthermore, it is easy to see thatE with this composition is an abelian group,
that the canonical injections of setsXi → E are homomorphisms of groups (and henceE is
a common target of the given system inAb), and thatE is, in fact, the colimit inAb of X .
HenceE is the inductive limit of theXi . The construction may be stated as the following
result:
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Corollary. The forgetful functor : Ab → Setscommutes with inductive limits.

(3.4) Corollary. Let I be a filtering category. Then the inductive limitlim−→I
: AbI → Ab

commutes with finite limits and arbitrary colimits.

Proof. We know that the inductive limit, as a colimit, commutes witharbitrary colimits. To
prove the first assertion consider a finite categoryJ and aJ -systemj 7→ X (j) of I -systems
i 7→ X

(j)
i in Ab. We have to prove that the canonical homomorphism,

lim←−
j∈J

lim−→
i∈I

X
(j)
i → lim−→

i∈I

lim←−
j∈J

X
(j)
i , (3.4.1)

is an isomorphism of abelian groups. It suffices to prove thatit is a bijective map of the un-
derlying sets. So apply the forgetful functor: Ab → Setsto (3.4.1). The functor commutes
with arbitrary limits by the results in Section 1, and it commutes limI by the corollary in
(3.3). Therefore, the bijectivity of (3.4.1) follows from the Proposition in (3.2).

Similar considerations apply to categories of sets with an algebraic structure, likeGr ,
kMod, Rings, etc.

(3.5) Note.It is easy to see that the assertions (3.2) (i) and (iii) and the conclusion in Corollary
(3.4) hold ifI is only assumed to be pseudo-filtering. ????

(3.6) Definition. The category ind-C of ind-objectsof C is the full subcategory of dir-C
determined by the inductive systems inC. So for inductive systemsX : I → C andY : J → C,
the set of morphisms fromX toY is the following set,

Homind-C(X .Y) := lim←−
i∈I

lim−→
j∈J

HomC(Xi ,Yj ). (3.6.1)

AsJ is filtering, the colimit on the right hand side is an inductive limit, and so the observations
in (3.2) apply.

The one-point-category1 is filtering and so the constant systemX1 defined by an object
X ∈ C is an inductive system. In other words, the the functorX 7→ X1 of (2.3) is a full
embedding ofC into the ind-category,

C ⊆ ind-C.

If X : I → C is an inductive system, anJ is a final subcategory ofI , thenJ filtering and
the restrictionX |J : J → C is an inductive system. Moreover, since the inclusionJ ⊆ I is
final, it follow that the natural morphism is an isomorphism,

X |J ∼−→X .

(3.7) Note.Under duality, direct systems and inductive systems correspond to inverse systems
and projective systems. An inverse system inC is a contravariant functorX : I → C, and it
corresponds to a covariant functorX op: I → Cop, and hence to a direct system inCop. The
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category of inverse systems inC, denoted inv-C, has as objects the inverse systems inC. The
set of morphisms in the inv-category from the inverseI -systemX to the inverseJ -systemY
is the set,

Hominv- C(X .Y) := lim←−
j∈J

lim−→
i∈I

HomC(Xi,Yj );

The category pro-C is the full subcategory of inv-C determined by the projective systems.
Clearly, the functorX → X op determines isomorphisms of categories,

(
inv- C

)op
= dir- Cop,

(
pro-C

)op
= ind-Cop.

(3.8) Lemma. Let i 7→ Xi be an inductiveI -system which is local, that is, for every morphism
ϕ : i → j in I the transition morphismϕ : Xi → Xj is an isomorphism inC. Then the
inductive limitlim−→I

X exists and, for every indexi0 ∈ I , thei0’th injection is an isomorphism,

ini0 : Xi0
∼−→ lim−→

i∈I

X .

Proof. It follows from (FILT2) that the transition morphismϕ : Xi → Xj , corresponding
to a morphismϕ : i → j , is independent ofϕ; call it ϕi,j . So, if there exists a morphism
ϕ : i → j , there is a well-defined isomorphismϕij : Xi → Xj . Now, if i is an arbitrary
index there is an indexj and morphismsi → j and i0 → j . So there is a well-defined
isomorphismϕi := ϕ−1

i0j
ϕij : Xi → Xi0. Now check thatXi0 is a common target ofX with

theϕi as compatible family and that this makesXi0 the colimit of theXi .

(3.9) Lemma. LetX : I → C be an ind-object. Assume that there exists a final subcategory
J ⊆ I such that for any morphismj → j ′ in J , the corresponding transition morphism
Xj → Xj ′ is an isomorphism. ThenX is essentially constant.

Proof. The morphismX |J → X is an isomorphism in ind-C. Hence the assertion of the
Lemma follows from Lemma (3.8).

(3.10) Observation. Assume that the categoryC has an additive hom-structure. Then, in
equation (3.6.1), the set lim−→j

HomC(Xi,Xj ) is an inductive limit of abelian groups, and hence
an abelian group, see (3.3). Moreover, the transition morphisms in the (inverse) system
i 7→ lim−→j

HomC(Xi,Yj ) are homomorphisms of abelian groups; so the limit on the right side
of (3.6.1) is an abelian group, see the Observation in (1.12).

So the equality (3.6.1) gives the set Homind-C(X .Y) the structure of an abelian group; it
defines an additive Hom-structure inC.
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4. Localization.

Fix categoriesC andD, and a classS of morphisms ofC. From Section (4.3)S is assumed
to be a left denominator system.

(4.1) Definition. The classS of morphisms inC is called aleft denominator systemif the
following conditions are satisfied:

(LOC0)S is closed under composition and contains all identities.
(LOC1) Every pair of morphismss : X→ X′ andf : X→ Y with s ∈ S can be embedded

into a commutative diagram witht ∈ S:

X
f

Y

s t

X′
f ′

Y ′.

(LOC2) Every pair of morphismsX→→ Y which is equalized by a morphisms : X′→ X

in S can be coequalized by a morphismt : Y → Y ′ in S.

The condition (LOC0) is themultiplicative condition. Conditions (LOC1) and (LOC2)
are theleft Ore conditions. If S satisfies, in addition, the (dual) right Ore conditions, then S
is called adenominator systemin C.

A left denominator system is calledsaturatedif the following condition holds:
(SAT) Letf : X → Y be a morphism. Assume that there are morphismsg : Y → Z and

h : Z→ W such thatgf ∈ S andhg ∈ S. Thenf ∈ S.

(4.2) Definition. Let F : C→ D be a functor. IfS is any class of morphisms inC, we will
say thatF isS-local orS-localizingif it transforms morphisms inS into isomorphisms inD.

Clearly, for a given functorF : C→ D, the classT of morphismst in C such theF(t) is
an isomorphism inD satisfies the multiplicative condition and the saturation condition (but
not nessecarily the denominator conditions); moreover,F is T -localizing.

(4.3) Definition. Fix a left denominator systemS in C. LetX be an object ofC and denote by
X/S the following category: The objects ofX/S are the morphismss : X → U with s ∈ S
(sourceX and arbitrary targetU ); if s : X → U and t : X → V are objects ofX/S, then
the set of morphismss → t is the set of morphismsf : U → V in C making the following
diagram commutative:

U
f

V

s t

X.

There is an obvious “target” functor(s : X→ X′) 7→ X′ fromX/S to C; it is denoted

XS : X/S → C.

The target of an objects ∈ X/S will be denotedXs ; so an objects ∈ X/S is a morphism
s : X→ Xs in S, and the target functorXS associates withs : X→ Xs the targetXs .
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Observation. The categoryX/S is filtering. As a consequence, the systemXS : X/S → C

is an inductive system and it may be viewed as an object in the ind-category:

XS ∈ ind-C.

The assertion is an immediate consequence of the left denominator conditions.

Definition. The localizationof C with respect toS, also called the category ofleft fractions
of C with denominators inS is the full subcategory of ind-C determined by the inductive
systems of the formXS forX ∈ C. The category of left fractions is denotedS−1C or CS , and
it is also said to by obtained fromC by inverting the morphisms ofS.

For every morphismf : X→ Y in C there is a natural induced morphismfS : XS → YS in
S−1C described as follows: For each indexs ∈ X/S use (LOC1) to obtain an indext ∈ Y/S
and a commutative diagram,

Xs
f ′

Yt

s t

X
f

Y ;

the morphismf ′ represents an elementfs ∈ lim−→t∈Y/S HomC(Xs, Yt ), and thefs , for objects
s ∈ X/S, define the induced morphismfS : XS → YS in ind-C. It is easy to see with this
definition thatX 7→ XS is a functor,

( )S : C→ S−1C.

The rules for manipulations with left fractions and other properties of the category of left
fractions and the functor( )S will be developed in the following.

(4.4) The rules. In the sequel we will repeatedly meet inductive limits of sets of the following
form, for objectsX, Y ∈ C:

lim−→
s∈Y/S

HomC(X, Ys). (4.4.1)

Recall that an element in the inductive limit is given by a representativea : X→ Ys for some
indexs : Y → Ys in Y/S; the pair(s, a)may be visualized as a diagram,

Ys
a s

X Y .
(4.4.2)

Two pairs(s, a) and(t, b) define the same element in the inductive limit if there is an index
u : Y → Yu in Y/S and morphismsf : s → u andg : t → u (that is,f, g are morphisms
f : Ys → Yu andg : Yt → Yu such thatf s = u = gt) suchf a = gb =: c:

Ys
a s

X
c

Yu
u

Y.

b t

Yt
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Again, by the filtering properties of the index category, anytwo elements of the inductive
limit have representatives of the form(s, a) and(s, b) (with the same indexs ∈ Y/S), and
two pairs of this form represent the same element in the limit, if there is an indext ∈ Y/S and
a morphismf : t → s such thata, b : X→ Yt are equalized by the morphismf : Yt → Ys .

A very good question: The index categoryX/S in (4.4.1)is, in general, not a small category;
so, does the inductive limit(4.4.1)exist in the category of sets?

The answer is simple: No, why should it! – in general. The negative answer represents a
problem, with several solutions: (1) Enlarge the concept ofa category; (2) Add conditions on
the setup ensuring the existence of the inductive limit; or,(3) ignore the problem and pretend
that the limit exists. Our choice is the path described in (3).

(4.5) Observation.Let s : X → X′ be a morphism inS, andY an object inC. Then the
canonical map induced bys is a bijection:

lim−→
t∈Y/S

HomC(X
′, Yt)

∼−→ lim−→
t∈Y/S

HomC(X, Yt).

Proof. Use the denominator conditions.

(4.6). For every objectX ∈ C, the identityX 1 X is the initial object inX/S. In particular,
if F : C → D is any functor such the the inductive limit lim−→FXS = lim−→s∈X/S FXs exists,
there is a canonical injection morphismFX = FX1→ lim−→FXS .

Lemma. Let F : C→ D be anS-localizing functor. Then, for any objectX ∈ C, the com-
positionFXS : X/S → D is a local system, and the canonical morphism is an isomorphism,

FX ∼−→ lim−→
s∈X/S

FXs . (4.6.1)

Proof. Consider inX/S objectss : X → Xs and t : X → Xt and a morphismf : s → t .
Thenf is a morphismf : Xs → Xt andf s = t . Hence the following diagram inD is
commutative:

FXs
F (f )

FXt

F (s) F (t)

X.

As the morphismsF(s) andF(t) are isomorphisms ofD, then so isF(f ). Consequently,
the functorFXS : X/S → D transforms any morphism inX/S into an isomorphism; hence
it is a local system.

It follows from Lemma (3.8) that the inductive limit exists and that any of the canonical
injections is an isomorphism.
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(4.7) Observation. For everyX, Y in C the natural map induced byX1→ XS is a bijection,

Homind-C(XS, YS)
∼−→ Homind-C(X1, YS) = lim−→

t∈Y/S

HomC(X, Yt). (4.7.1)

Proof. Fix Y and consider the functorF := lim−→t∈Y/S HomC( , Yt ). By definition of the
ind-category, the left side of (4.7.1) is the projective limit of the systemFXS , and the map in
(4.7.1) is the projection corresponding to the index 1∈ X/S:

lim←−
s∈X/S

F(Xs)→ F(X1). (4.7.2)

The functorF is a contravariant functor fromC to Sets, and may be viewed as a covariant
functorF : C → Setsop. It is S-local by Observation (4.5). So the lemma in (4.6) applies,
and it yields an isomorphism in the dual categorySetsop. In the categorySets, it is the map
(4.7.2). Hence (4.7.2) is bijective.

(4.8). The result in (4.7) is fundamental for manipulations in the categoryS−1C. The set of
morphisms fromXS to YS in S−1C will allways be described via the bijection (4.7.1):

HomS−1C(XS, YS) = lim−→
t∈Y/S

HomC(X, Yt). (4.8.1)

The inductive limit on the right side is determined in (4.4).Accordingly, amorphismϕ : XS →
YS in S−1C is represented by pair(t, f ) consting of an indext ∈ Y/S and a morphism
f : X→ Yt ; it may visualized by the diagram (4.4.2). Composition inS−1C is determined as
follows: Consider inS−1C morphismsϕ : XS → YS andψ : YS → ZS , represented by pairs
(t, f ) and(u, g), with t, u ∈ S,

Y ′
f t

X Y

and
Z′

g u

Y Z.

To represent the compositionψϕ, embedd to two morphismst, g with sourceY in a commu-
tative square where the edget ′ opposite oft belongs toS:

Z′′
g′ t ′

Y ′ Z′
f t g u

X Y Z.

Then the compositionψϕ is represented by the pair(t ′u, g′f ).
Clearly, for a morphismf : X → Y , the morphismfS : XS → YS defined in (4.3) is

represented by the pair(1, f ):
Y

f

X Y
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The morphismfS : XS → YS is the unique morphism such that the following diagram in
ind-C is commutative:

X1
f

Y1

XS
fS

YS .

(4.9) Observation.For any morphismu : X→ U in S, the morphismuS : XS → US in S−1C

is invertible. Its inverse is the morphismUS → XS represented by(u, 1). In general, the
morphismXS → YS in S−1C represented by the pair(t, f ) wheret ∈ Y/S andf : Y → Yt
is equal to(tS)−1fS .

Proof. Let σ : US → XS be the morphism inS−1C represented by the pair(u, 1). The pairs
(u, 1), (1, u) and(u, 1) are the three pairs at the base of the following diagram:

U U
1 1 1 1

U U U
1

u u 1 1
u

U X U X.

The pair in the middle representsuS . The diagram is obiously commutative. By the rule of
composition, it follows from the left part of the diagram that uSσ is represented by the pair
(1U , 1U ); henceuSσ is the identity ofUS in S−1C. Again, by the rule of composition, it
follows from the left part of the diagram thatσuS is represented by the pair(u, u). Clearly,
(u, u) is equivalent to(1X, 1X). HenceσuS is the identity ofXS .

Let ϕ be the morphismXS → YS represented by(t, f ). It follows easily from the rule of
computation thattSϕ is represented by the pair(1, f ); hencetSϕ = fS . As tS is invertible,
it follows thatϕ = (tS)−1fS .

(4.10) The universal property of localization.LetS be a left denominator system inC. Then
everyS-localizing functorF : C → D has a unique extension to a functorF̃ : S−1C → D.
In other words, there is a unique functorF̃ : S−1C→ D such thatF̃ ( )S = F :

C F D

( )S
F̃

S−1C.

Proof. Uniquenes is obvious: The morphism( )S : C → S−1C is bijective on objects, and
so the equationF̃ (XS) = F(X) determinesF̃ on objects. By the observation in (4.8)
any morphismϕ : XS → YS is of the formϕ = (tS)

−1fS , and so the equatioñF(ϕ) =
F(s)−1F(f ) determinesF̃ on morphisms.
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To prove existence consider this diagram:

HomS−1C(XS, YS)
F̃ HomD(F (X), F (Y ))

≀ ≀

lim−→t∈Y/S HomC(X, Yt )
F lim−→t∈Y/S HomD(F (X), F (Yt )).

The left vertical map is the bijection (4.8.1). The bottom horizontal map is the natural
morhisms of inductive limits induced byF . The right vertical map is the canonical injection
into the inductive limit determined by the index 1∈ Y/S. The map is the bijection (4.6.1)
applied with the functorY 7→ HomD(F (X), F (Y )). So, commutativity of the diagram
defines the top horizontal map̃F .

It is easy to see that there is a functorF̃ defined by the top horizontal map of the diagram,
and that this functor has the required properties.

(4.11) Note.If S is a right denominator system, then a dual construction leads to the category
CS−1 = SC of right fractionsand a functorS( ) : C→ CS−1, where

HomCS−1(SX, SY) = lim−→
s∈S/X

HomC(sX, Y);

it satisfies the universal property (4.10).
It follows in particular that if a systemS is a denominator system (left and right), then

there is a unique isomorphism, from the category of left fractions to the category of right
fractions making the following diagram commutative:

C

( )S S ( )

S−1C===== CS−1.

(4.12) Definition. Let S be a left denominator system inC. LetX, Y be objects ofC. The
set of morphism in the categoryS−1C fromXS to YS is often denoted ExtS(X, Y ):

ExtS(X, Y ) := HomS−1C(XS, YS) = lim−→
t∈Y/S

HomC(X, Yt).

The elements of ExtS(X, Y )may be calledS-extensionsofX byY . Note that ExtS is functor
in two variables,

ExtS : Cop× C→ Sets,

andS-localizing in each variable. By the universal property, anS-localizing functorF : C→

D induces a transformation of functors,

ExtS(X, Y )→ HomD(FX, FY),
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called theYoneda transformation. If D is the category of sets, the transformation may be
viewed as a pairing,

ExtS(X, Y )× FX→ FY.

(4.13) Note.LetS be a left denominator system inC. Letf : X→ Y be a morphism inC. It
is easy to see thatfS : XS → YS is an isomorphism inS−1C if and only if there are morphisms
g : Y → X′ andf ′ : X′ → Y ′ in C such thatgf andf ′g belong toS. In particular, ifS is
saturated, thenfS is invertible inS−1C if and only if f ∈ S.

(4.14). For an arbitrary classT of morphisms inC, an objectQ ∈ C is calledT -injectiveif
every morphismX→ X′ in T induces a surjective map,

HomC(X
′,Q)→ HomC(X,Q). (4.14.1)

Consider a left denominator systemS in C.

Observation 1. If Q is anS-injective object, then every morphisms : X → X′ induces a
bijection,

HomC(X
′,Q) ∼−→ HomC(X,Q). (4.14.2)

Proof. The map (4.14.2) is surjective since the objectQ is S-injective. To prove that the
map is injective, consider two morphismsf, g : X′ → Q having the same image under the
map (4.14.2). Then they are equalized bys. Hence, by (LOC2), they are coequalized by
a morphismt : Q → Q′ with t ∈ S, that is, tf = tg. Since the map HomC(Q′,Q) →
HomC(Q,Q) is surjective, there is a morphismp : Q′ → Q such thatpt = 1Q. Then,
clearly, the equationtf = tg implies thatf = g. So the map (4.14.2)

The observation may be rephrased as follows: An objectQ ∈ C is S-injective if and only
if the functor HomC( ,Q) is S-localizing.

Note that it follows from the result that if a morphismf : Q → Q′ betweenS-injective
objects belong toS, then it is an isomorphism.

Observation 2. If Q is S-injective, then the following map is a bijection, for any object
X ∈ C:

HomC(X,Q)
∼−→ HomS−1C(XS,QS) = ExtS(X,Q).

Proof. If t : Q → Z is a morphism inS, by Observation 1, there is a unique morphism
f : Z → Q such thatf t = 1Q. In other words, the morphism 1Q : Q → Q as an object
in Q/S is the final object inQ/S. Consequently, for any systems 7→ Zs indexed by the
categoryQ/S, the canonical morphismZ1→ lim−→Zs is an isomorphism. So the bijection is
a consequence of the definition of ExtS(X,Q) as an inductive limit.

(4.15) Remark. If an S-localizing functorF : C→ D has a right adjoint functorρ : D→ C,
thenρ(D) is S-injective for any objectD ∈ D.

Indeed, the adjunction equation,

HomC(X, ρD) = HomD(FX,D),

shows that the functor HomC( , ρD) is S-localizing.
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Proposition. Let S be a left denominator system inC. Then the following three conditions
are equivalent:

(i) The functor( )S : C→ S−1C has a right adjoint functorρ.
(ii) For every objectX of C there is anS-injective objectQ and a morphismf : X→ Q

such thatfS : XS → QS is an isomorphism inS−1C.
(iii) The ind-objectXS is essentially constant for every objectX of C.

Moreover, if the conditions hold then the functorρ : S−1C → C of (i) is fully faithful and
( )Sρ

∼−→1.

Proof. (i) ⇒ (ii): Assume thatρ : S−1C→ C is left adjoint to( )S . Take objectsX,Z of C.
The adjunction bijection appears as the middle vertical mapin the following diagram:

HomC(X, ρZ)

( )S

wwwwwwwwww

ǫ

HomS−1C(XS, (ρZ)S) HomC(ρ(XS), ρZ)

η ρ

HomS−1C(XS, YS).

The maps labeledǫ andρ are induced by the unitǫ : X→ ρ(XS) and the counitη : (ρZ)S →
Z. It follows from the functoriality of the adjunction map that the diagram is commutative.

By the remark,ρZ is S-injective. Hence the map( )S in the diagram is bijective by
Observation 2. It follows that the map labeledη is bijective. Since any object ofS−1C has
the formXS , it follows that

ηZ : (ρZ)S → Z

is an isomorphism. As we have noticed, the objectQ := ρ(XS) is S-injective. Hence, to
finish the proof of (ii) it suffices to show for the morphism

ǫX : X→ ρ(XS)

thatfS is invertible. Now, by general properties of adjoint functors, we have the equality:

εXS
(
ǫX
)
S
= 1:XS →

(
ρ(XS)

)
S
→ XS .

SinceηXS is invertible, it follows that(εX)S is invertible. Hence (ii) has been proved. Morover,
it follows that the map labeledǫ in the diagram is bijective. Hence so is the mapρ in the
diagram. Whenceρ is fully faithful.

(ii) ⇒ (i): Choose for each objectX of C anS-injective objectρ(X) and a morphism in
C,

ǫ : X→ ρ(X),

such that(fX)S is an isomorphism. For each objectY ∈ C, there are bijections,

HomS−1C(YS , XS)
∼−→ HomS−1C(YS, (ρX)S)===HomC(Y, ρX),

the first induced by the isomorphism(fX)S , the second by the (???), functorial inY . Use the
bijection to defningρ is a functorρ : S−1C→ C, right adjoint to( )S .
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(4.16) Proposition.Let S be a left denominator system inC. Then the functor( )S : C →

S−1C is right exact.

Proof. Let X : I → C be system with a finite index categoryI , and assume that the colimit
X = lim−→i

Xi exists inC. Every object ofS−1C is of the formYS with an objectY ∈ C so we
have to prove, for any objectY ∈ C that the map induced by the system is a bijecition:

HomS−1C(XS, YS)→ lim←−
i∈I

HomS−1C((Xi)S , YS).

The bijectivity follows from the fundamental description (4.8.1) of morphisms inS−1C, as
the inductive limit lim−→t∈Y/S, in the category of sets, commutes with the finite limit lim←−I , see
(3.2).

Corollary. If C has finite coproducts, or coequalizers, or finite colimits, then so hasS−1C.

Proof. We use repeatedly that every object ofS−1C is of the formXS with X ∈ C.
First, it follows immediately from the proposition that ifC has finite coproducts, then so

hasS−1C.
Next, assume thatC has coequalizers. Consider inS−1C a pair of morphismsϕ,ψ : XS →

YS . Then, by the rules in (4.4) there is a morphismt : Y → Y ′ in S and morphismsf, g : X→
Y ′ suchfS = tSϕ andgS = tSψ . Let h : Y ′ → Z be a coequalizer forf, g. Then, by the
proposition,hS is a coequalizer forfS, gS . As tS is an isomorphism, it follows thathS tS is a
coequalizer forϕ,ψ . Therefore,S−1C has coequalizers.

Clearly, the third assertion is a consequence of the first twoassertions.

(4.17) Proposition.Assume thatS is a left denominator system inC. Then:

(1) If C has an additive Hom-structure, then there is unique additive Hom-structure on
S−1C such that the functor( )S : C→ S−1C is additive.

(2) If C is an additive or semi-additive category, then so isS−1C, and the functor( )S : C→

S−1C is additive.
(3) Assume thatX is a denominator system. IfC is an exact category or an abelian

category, then so isS−1C, and the functor( )S : C→ S−1C is exact.

Proof. Assume the conditions in (1). An additive Hom-structure onS−1C such that the
functor( )S is additive, is necessarily unique: Indeed, two morphismsϕ,ψ : XS → YS have
representatives(t, f ) and (t, g) with the same indext ∈ Y/S. Thenϕ = (tS)

−1fS and
ψ = (tS)

−1gS , and henceϕ + σ = (tS)−1(fS + gS) = (tS)
−1(f + g)S . Conversely, it is

obvious that the additive Hom-structure on the category ind-C, as defined in (3.??), determines
an additive Hom-structure on the subcategoryS−1C satifying the requirement.

Assume the conditions in (2). By (4.16), the functor( )S : C → S−1C commutes with
finite coproducts. Therefore, since the functor is surjective on objects, it follows thatS−1C

has finite coproduct. The remaining assertions follow from (1).
Assume the conditions in (3). Consider a morphismϕ : XS → YS in S−1C, say represented

by the pair(t, f ) wheret ∈ Y/S andf : X → Yt . Thenϕ = (tS)−1fS . The isomorphism
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(tS)
−1 induces an isomorphism from the cokernel offS to the cokernel ofϕ. As fS has a

cokernel by (4.16), so hasϕ. The existence of kernels holds by duality, sinceS is also a right
denonminator system. The rest of the assertions are left as exercises.

(4.18) Definition. A full subcategoryC0 of C is calledlocalizing(with respect to the given
left denominator systemS) if the following condition holds: For any objectQ ∈ C0 and
any morphisms : Q → X in S there exists a morphismf : X → Q′ with Q′ ∈ C0 such
that f s ∈ S. Equivalently, ifS0 := S ∩ C0, then the conditions means for every object
Q ∈ C0 that the natural inclusionQ/S0 ⊆ Q/S is final. It is easy to see for a localizing
subcategoryC0 that the systemS0 is a left denominator system inC0 and that the natural
functor ind-C0→ ind-C induces a fully faithful embedding,

(S0)
−1C0 ⊆ S

−1C.

(4.19) Exercises.
1. Let f : X → Y be a morphism inS. Prove that composition withf is a natural functor
8f : Y/S → X/S, and prove that the restricted systemXS8f is equal toYS . Prove that
the functor8f is final, and conclude that the restriction morphismYS → XS in ind-C is an
isomorphism. Prove that this isomorphism is the inverse offS .

2. Let S be a left denominator system inC. Let f be a morphism inC such thatf s ∈ S for
some morphisms ∈ S. Prove that there is morphismg and a morphismt ∈ S such that (gf
andgt are defined and)gf ∈ S andgt ∈ S.

Assume that the left denominator systemS is saturated. Repeat the argument withf
replaced byg, and conclude thatf ∈ S. Assume for three composable morphismsf, g, h

thathg ∈ S andgf ∈ S. Prove thatf ∈ S, g ∈ S, andh ∈ S.
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D R A F T

5. Localization in triangulated categories.

Fix a triangulated categoryK and inK a systemS of morphisms. From section 5.4,S is
assumed to be a triangular system and, in particular, a left and right denominator system.

(5.1) Setup. Let K be a triangulated category, andS a class of morphisms inD. It is natural
to require conditions onS making it compatible with the triangular operations:

(LOC3) The classS is stable under shifts, that is,s ∈ S if and only if s(1) ∈ S.

Consider the following commutative diagram with two exact triangles:

X
s

X′

Z
u

Z′

Y
t

Y ′.

(5.1.1)

By the prism axiom, the pairs, t may be extended with a a morphismu : Z → Z′ to a
morphism(s, t, u) of triangles. We consider the following condition onS:

(LOC4) In the setup of the commutative diagram (5.1.1), ifs, t ∈ S, then the pairs, t may
be extended with au ∈ S to a morphism(s, t, u) of triangles.

The system of morphismsS ⊆ K will be called atriangular system of morphismsif it
contains all identities and satisfies conditions (LOC3) and(LOC4). As we shall see, the
conditions imply the multiplicativity condition (LOC0). and the left and the right Ore condi-
tions (LOC1) and (LOC2); in particular, a triangular systemof morphisms is a denominator
system.

We will prove later that if a triangular system is saturated,then the following condition
holds:

(LOC4*) In the setup of the commutative diagram (5.1.1), if(s, t, u) is a morphism of
triangles, ands, t ∈ S, thenu ∈ S.

(5.2) Definition. If S is a system of morphisms ofK then an objectZ of K is calledS-acyclic
if the zero morphismZ → 0 belongs toS. If M is a class of objects ofK, then a morphism
s : X→ Y is called anM-isomorphismif the cone ofs is isomorphic to an object ofM.

(5.3) Proposition. LetS be a triangular system of morphisms ofK. ThenS is a multiplicative
denominator system. and all isomorphisms are inS. Moreover, the classM :=M(S) of all
S-acyclic objects is a triangular subclass ofK, andS is the class ofM-isomorphisms.

Conversely, ifM ⊆ K is a triangular subclass, then the systemS := S(M) is a triangular
system of morphisms inK, andM is the class ofS-acyclic objects.

87



Lim 5.2 Limits

Proof. We will first prove the asserted bijective correspondence between triangular systems
S of morphisms and triangular subclassesM ⊆ K. Consider for a morphisms : X → Y the
following diagram:

X
s

Y

s

wwwwwwwwww
Z 0

Y ======= Y.

(5.2.1)

The left triangle is the cone ofs. So the two triangles are exact.

Assume first thatS is a given triangular system of morphisms, and letM := M(S) be
the class ofS-acyclic objects. Consider an exact triangleZ → Z′ → Z′′ → Z(1) and the
unique morphism from it into the zero triangle. Then, clearly, it follows from (LOC4) that
if Z,Z′ ∈ M, thenZ′′ ∈ M. Moreover, it follows from (LOC3) that the classM is stable
under shifts, and it contains the zero object, because the identity of the zero object is inS.
ThereforeM is a triangular subclass ofK. Moreover, in the diagram (5.2.1) the identity ofY
is in S. Therefore, by (LOC4),s is in S if and only ifZ ∈ 0 is inS, that is, if and only ifs is
anM-isomorphism.

Conversely, assume thatM is a given triangular class of objects, and letS := S(M) be the
system ofM-isomorphisms. The zero object is inM, andM is stable under shifts; it follows
immediately that every isomorphism is inS, and that (LOC3) holds. Moreover, ifZ is any
object ofK, thenZ(1) is the cone of the zero morphismZ→ 0; henceZ is in M if and only
if Z is M-acyclic.

To finish the proof of the bijectivity of the correspondence,we have to show that the system
S(M) satisfies (LOC4). In fact, to finish the proof of the proposition we have to show that the
systemS satisfies the multiplicativity condition (LOC0) and the left and right Ore conditions
(LOC1) and (LOC2) as well.

First, the multiplicativity condition follows from the Octahedral Axiom. In fact, ifh = st
is a composition, then there is an exact triangle connectingthe cones ofs, t , andst . Hence,
if two of the cones belong toM, then so does the third. Hence, if two of the morphismss, t ,
andst belong toS, then so does the third. In particular, (LOC0) holds.

The condition (LOC4) follows from the cone of the cones construction. Indeed, in the
setup of (5.1.1), assume thats, t areM-isomorphisms. Then their cones,X′′ andY ′′ belong
to M. There are morphismsu : ′Z → Z′′ andX′′ → Y ′′ having the same coneZ′′. This
common cone belongs toM, becauseZ′ andZ′′ belong toM. Therefore, the cone ofu
belongs toM, that is,u is anM-isomorphism.

For the Ore conditions, it suffices to verify the right conditions (LOC1) and (LOC2),
because the assumptions are self dual. In the proof, we only use thatM is stable under
shifts. Let there be given two morphismsf : X→ Y ands : Y ′toY with s ∈ S. Consider the
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following diagram:
X′

g
Y ′

sY ′′ ======= Y ′′

hf t hg

X g Y.

(5.2.1)

The right triangle is obtained by embeddings into an exact triangle whereh : Y → Y ′′ is
the morphism into the cone. The left triangle is obtained by embeddinghf : X → Y ′′ into
an exact triangle which is then rotated. The pair of morphisms 1, f is then completed with
a morphismg : X′ → Y ′ to a morphism of triangles. In particular, theg, f completes the
given morphisms to a commutative square, andt is in S(M) because the cone oft is Y , and
hence equal to the cone ofs which is inM.

To verify (LOC2) consider morphismsf : X → Y ands : Y → Y ′ with s ∈ S such that
sf = 0. Consider the following diagram:

X′ Y ′′

t g h

X
f

Y
s

Y ′.

It obtained as follows. First, the triangle to the right is exact; it is obtained by rotating the
cone ofs. Sinces is in S, the vertexY ′′ is in M. Next, the morphismg is a lift of f ; such
a lift exists, sincesf = 0 and the right triangle is exact. Finally, the triangle to the left is
a rotation of the cone ofg. So the triangle is exact, and the cone oft is the vertexY ′′. As
Y ′′ ∈M it follows thatt ∈ S. Moreover, sincet andg are consecutive morphisms in an exact
triangle, it follows thatgt = 0. Hencef t = hgt = 0.

Hence all the properties of the systemS of M-isomorphisms have been justified.

(5.4). In the rest of Section 5 we consider a fixed triangular systemS in K. By the Proposition,
it is a denominator system, and it is characterized by the classS-acyclic objects.

Corollary 1. A triangular functorF : K→ K′ from K to a triangulated categoryK (or to an
abelian categoryA) is S-local if an only ifF(Z) = 0 for everyS-acyclic objectZ.

Proof.

Corollary 2. An objectQ of K is S-injective if and only ifHomK(Z,Q) = 0 for every
S-acyclic objectQ.

Proof.

(5.5) Lemma. Let F : K→ K′ be a triangular functor fromK to a triangulated categoryK′.
Then the systemT of morphismss in K such thatF(s) is an isomorphism inK′ is a triangular
saturated system.
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Similarly, if F : K→ A is a triangular functor fromK to an abelian categoryA, then the
systemT of morphismss in K such that(F (s(n))) is an isomorphism inA for all n ∈ Z is a
triangular saturated system inK.

Proof.

(5.6) Proposition. The localizationS−1K has a unique structure as a triangulated category
such that the the functor( )S : K→ S−1K is triangular.

Proof. The shifts inS−1K are clearly determined by(XS)(n) := (X(n))S , and the class of
exact triangles is necessarily the the triangles inS−1K isomorphic to the image of an exact
triangle ofK.

It is easy to verify the axioms of a triangulated category.

(5.7) Note. It is immediate from the definition that the functor( )S : K → S−1K has the
following universal property:

Any triangular functor defined onK (with target a triangular category or an abelian cate-
gory) has a unique extension to a triangular functor defined onS−1K

(5.8). The localized category is in particular an additive category. Hence, for any two objects
X andY of K. the Hom-set is an abelian group, theext-group(with respect toS)

ExtS(X, Y ) := HomS−1K(XS, YS).

Forn ∈ Z we define then’th ext-group,

ExtnS(X, Y ) := ExtS(X, Y (n)) = ExtS(X(−n), Y );

The second equality indicates the isomorphism obtained by applying the shift automorphism
X 7→ X(−n) in S−1K. The same automorphism induces an isomorphism,

Extn+pS (X, Y ) = ExtpS (X(−n).Y ).

Clearly, ifF : K→ K′ is a triangularS-local functor fromK to a triangulated categoryK′,
then the Yoneda transformation is a homomorphism of abeliangroups,

ExtnS(X, Y )→ HomK′(F (X, F (Y )(n)).

Similarly, if H : K → A is a triangularS-local functor fromK to an abelian categoryA,
andH n(X) := H(X(n)), there is an induced transformation of abelian groups,

ExtnS(X, Y )→ HomA(H
p(X),Hp+n(Y )). (5.8.1)

If A = Ab the transformation may be viewed as a pairing,

H n ⊗ ExtpS (X, Y )H
n(X)→ H n+p(Y ). (5.8.2)
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In fact, in any abelian categoryA with coproducts there is definition of the tensor above such
that the Yoneda transformation (5.8.1) corresponds to the Yoneda pairing (5.8.2).

In the special case of the functorH(X) = ExtS(Z,X) with a fixed objectZ, the Yoneda
pairing,

ExtnS(Z,X)⊗ ExtpS (X, Y )→ Extn+pS (Z, Y )

is given by composition inS−1K:

ϕ ⊗ ψ 7→ ψ(n)ϕ.

D R A F T

6. Derivable functors.

Fix categoriesC andD, and inC a left denominator systemS of morphisms.

(6.1) Definition. Let F : C → D be a functor. For an objectX ∈ C we writeRSF(X) or
RF(X) for the inductive limit,

RF(X) := lim−→
s∈X/S

F(Xs),

provided that the inductive limit exists inD. If RF(X) exists for everyX ∈ C, we say that
the (right) derived functorRF exists(with respect toS); clearly,RF is a functor,

RF : C→ D.

Moreover, sinceamorphisms : X→ Y inS induces an isomorphism of ind-objectsXS → YS ,
and hence an isomorphism

RF(X) = lim−→F(XS)
∼−→ lim−→F(YS) = RF(Y),

it follows that the functorRF is S-local. Consequently,RF has a unique extension to a
functor (also denoted)RF from the localized category,

C RF D

( )S RF

S−1C.

(6.2). The transformationX1→ XS induced a transformationF(X)1 = F(X1)→ F(XS)

in ind-D. Consequently, ifRF exists, there is a natural transformationF → RF of functors
C→ D.
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Proposition. LetF : C→ D be a functor such that the derived functorRF with respect toS
exists. Then for every transformationF → G fromF to anS-local functorG : C→ D there
is a unique transformation of functorsRF → Gmaking the following diagram commutative:

F RF

G.

Proof. In the ind-category ind-D there is a commutative diagram

F(X1) F (XS)

G(X1)
∼ G(XS),

whereG(X1)→ G(XS) is an isomorphism by Remark (5.?). Apply the colimit functorlim−→
to get the required morphismRF(X)→ G(X). It is easily seen to be unique.

(6.3) Definition. Let F : C → D be a functor andX an object ofC. ThenF is called
(right) derivable atX (with respect toS if the ind-objectF(XS) in ind-D is essentially
constant, that is, if the colimitRF(X) = lim−→F(XS) exists inD and the induced morphism
F(XS)→ RF(X)1 is an isomorphism in ind-D. If the functorF is derivable everywhere,
the functor

RF : C→ D,

is called theright derivedfunctor ofF .

(6.4) Proposition. The following three conditions on the left denominator systemS ⊆ C are
equivalent:

(i) The functor( )S : C→ S−1C has a right adjoint.
(ii) For every objectX in C there exists anS-injective objectQ and a morphismf : X→

Q such that the induced morphismfS : XS → QS is an isomorphism inS−1C.
(iii) The identity functorC→ C is right derivable everywhere with respect toS.

The three conditions are implied by any of the following two:

(iv) The class ofS-injective objects isS-dense.
(v) There exists anS-dense classQ of objects inC such that, for any commutative

diagram,

X
s′

Q′

s
f

Q,

if Q,Q′ ∈ Q ands, s ′ ∈ S, thenf ∈ S.
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If S is saturated then all five conditions are equivalent.

Proof. The equivalence of (i), (ii), and (iii) is the the result in Proposition (5.?). IfS is
saturated, (iv) is just a restatement of (ii). To prove (iv)⇒ (v), simply observe the the class
of S-injective objects has the property in (v).

Finally, we prove the implication (v)⇒ (iii). Let X be an object inC, and denote by
X/S/Q the full subcategory ofX/S consisting of morphismss : X→ Q with targetQ ∈ Q.
SinceQ is S-dense, the subcategoryX/S/Q is final inX/S, and the condition (v) means
that the inductive systemXS : X/S → C restricts to a constant inductive system onX/S/Q;
thereforeXS is essentially constant.

(6.5) Definition. LetF : C→ D be a functor. An objectQ in C is said to be (right) unfolded
for F orF -acyclic(with respect toS) if the following canonical morphism is an isomorphism
in ind-D:

(FQ)1 = F(Q1)→ F(QS).

Note that an objectQ isF -unfolded if and only ifF is derivable atQ andFQ ∼−→RF(Q).
Note further that anF -unfolded object is unfolded for any compositionGF ofF with a functor
G : D→ E. In particular, an object unfolded for the identity ofC is unfolded for any functor
F : C→ D.

Observation. With respect to the given denominator system an objectQ of C is unfolded for
the identity functor ofC if and only ifQ is S-injective.

Proof. If Q is S-injective, then the morphism 1:Q → Q is the final object inQ/S; hence
Q1→ QS is an isomorphism in ind-C. Conversely, assume thatQ1→ QS is an isomorphism
in ind-C. Then, for any objectX of C, we have isomorphisms,

HomC(X,Q) = Homind-C(X1,Q1) = Homind-C(X1,QS) = HomS−1C(XS,QS).

It follows that the functor HomC( ,Q) is S-local. HenceQ is S-injective.

(6.6) Definition. A functorF : C→ D is calleduniformly(right) derivable(with respect to
S) is there exists anS-dense classQ of objects ofC with the following property for every
objectX:

(∗X): For any commutative diagram inC,

X
s′

Q′

s
f

Q,

if Q,Q′ ∈ Q ands, s ′ ∈ S, thenFf : FQ→ FQ′ is an isomorphism inD.
An S-dense class with the property is said to be (right) F -unfolding(with respect toS.
Note that a uniformly derivable functor is derivable everywhere as it follows from (a

generalization) the proof of (v)⇒ (iii) in (6.4) above.
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(6.7) Unfolding Theorem. Let F : C → D be a functor and letQ be anS-dense class of
objects ofC. Then the following three conditions are equivalent:

(i) The classQ is F -unfolding.
(ii) Every objectQ ∈ Q is F -unfolding.
(iii) For every morphisms : Q→ Q′ in S, withQ,Q′ ∈ Q, the morphismFs : FQ→

FQ′ is an isomorphism inD.

If the three conditions are satisfied, thenF is uniformly derivable, and the class of allF -
unfolded objects is anF -unfolding class;moreover, for every objectX ∈ C and any morphism
s : X→ Q in S fromX to anF -unfolded objectQ there is a commutative diagram inD with
isomorphisms as indicated:

FX FQ

≀

RF(X) ∼ RF(Q).

Proof. SinceQ is S-dense, the condition (i) is that the property (∗X) of (6.6) holds for every
objectX of C. It follows that (i)⇒ (iii), and further, that (iii)⇒ (∗Q) for every objectQ in
Q; hence (iii)⇒ (ii). Finally, to prove that (ii)⇒ (∗X) for every objectX in C, consider a
commutative diagram,

X
s

Q

s f

Q′,

withQ,Q′ ∈ Q ands, s ′ ∈ S.

The diagram induces a commutative diagram in ind-C:

XS
∼ QS Q1

≀
fS f1

Q′S Q′1,

and it follows thatfS is an isomorphism. ApplyF to obtain a commutative diagram in ind-D:

F(QS)
∼ FQ1

≀ F(fS) F (f )1

F(Q′S)
∼ FQ′1.

It follows thatF(f ) : FQ→ FQ′ is an isomorphism inD.
The remaining assertions of the Theorem are easily proved.

(6.8). Consider composable functors,F : C→ D andG : D→ E. Clearly, ifF is derivable
atX, then so isGF andR(GF)(X) = G(RF(X)). Similarly, it F is uniformly derivable,
thenGF is uniformly derivable, and anyF -unfolded object is unfolded forGF .

Note that by Proposition (6.5), the identity functor ofC is uniformly derivable if and only
if the class ofS-injective objects isS-dense. In particular, if the class ofS-injective objects
is S-dense, then every functorF : C→ D is uniformly derivable.
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(6.9) Example. Consider for a fixed objectA ∈ C the functor,

HA = HomC(A, ) : C→ Sets.

ThenHA is derivable everywhere with respect toS, and

RHA(X) = lim−→
s∈X/S

HA(Xs) = lim−→
s∈X/S

HomC(A,Xs) = ExtS(A,X).

So ExtS(A, ) is the right derived of HomC(A, ):

RHomC(A, ) = ExtS(A, ).

Similarly, with respect to a given right denominator systemT , the right derived of the functor
HomC( , B), as a functorCop→ Setsis equal to ExtT (A, B).

By the Unfolding Theorem (6.7)(iii), a classQ in C is unfolding for all the functors
HomC(A, ) for A ∈ C, if and only if it is unfolding for the identity. In turn, the condition
holds if and only ifQ is S-dense and consists of (up to isomorphism all)S-injective objects.

(6.10). In the applications we will often consider the case when there is given a functor,

F : C→ D,

and, in addition to the given left left denominator systemS ⊆ C, a given left denominator
systemT in D. In this situation the preceding definitions will be appliedto the composite
functor,

( )T F : C→ T −1D. (6.10.1)

The functorF is called local with respect toS andT if the functor( )T F is S-local. If T is
saturated, thenF is local, if

s ∈ S H⇒ F(s) ∈ T .

We say thatRF existsif R
(
( )T F

)
exists with respect toS, and we use

RF : S−1C→ T −1D

to denote the extension toS−1C of theS-local functorR
(
( )T F

)
: C→ T −1D. The transfor-

mation( )T F → R
(
( )T F

)
induces a transformation of functorsC→ T −1D:

( )T F → RF( )S .

We say thatF is derivable atX, resp.uniformly derivable, if ( )T F is derivable atX,
resp.( )T F is uniformly derivable, with respect toS. Similarly, the notions of anF -unfolded
objectQ and anF -unfolding classQ refer to the corresponding notions for the functor( )T F .
The functorRF : S−1C→ T −1D is thederived functorof F .

Note that the considerations of (6.8) yield limited information on a compositionGF in
this generalized setup; they apply only to a functor with sourceT −1D.
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(6.11) The Chain Rule.Consider categoriesC andD with left denominator systemsS and
T and functorsF : C→ D andG : D→ E. Assume thatF is derivable everywhere and that
RG exists. In addition, assume that there is a classQ of objects inC having the following
two properties;

(1) The classQ is S-dense inC.
(2) For every objectQ ∈ Q, the morphismG(FQ)→ RG(FQ) is an isomorphism in

E.

Then the compositionGF is derivable everywhere and the canonical transformation is an
isomorphism,

R(GF) ∼−→RGRF. (6.11.1)

Moreover, if the classQ consists ofF -unfolded objects, then it isGF -unfolding; in particular,
thenGF is uniformly derivable.

Proof. Note that the functorRG : T −1D → E appearing in (6.11.1) is the extension to
T −1D of theT -local functorRG. To be precise in the proof, we will useRG to denote the
extension. So the restriction toD is the functorRG( )T , and the natural transformation is
the transformationG→ RG( )T of functorsD→ E.

LetX be an object ofC. By (1), the inclusion of categories,

8 : X/S/Q →֒ X/S,

is final. Hence we have in ind-C an isomorphismXS8
∼−→XS , and it induces in ind-D the

isomorphismF(XS)8
∼−→F(XS). Apply the functorsG andRG( )T and the transformation

G→ RG( )T to obtain a commutative diagram in ind-D:

GF(XS)8
∼ GF(XS)

RG ( )T F(XS)8
∼ RG()T F(XS).

By (2), the left vertical morphism is an isomorphism. Hence,so is the right vertical morphism.
SinceF is derivable atX, we have in ind−T −1D the isomorphism( )T F(XS)

∼−→RF(X).
So the induced morphisms are isomorphisms in ind-E:

GF(XS)
∼−→RG( )T F(XS)

∼−→RG(RF(X))1.

Thus the first part of the Theorem has been proved.
To prove the last part, consider the following commutative diagram in ind-E, forX ∈ Q:

GF(XS) GF(X)1

≀

RG( )T F(XS) RG ( )T F(X)1.

It follows thatX isGF -unfolded(??).
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(6.12).The preceding definitions generalize in an obvious way to functors of several variables.
For simplicity, consider the case of two variables, that is,a functor,

F : C1× C2→ D

from the productC = C1×C2 of two categoriesC1 andC2 with left denominator systemsS1
andS2. ThenS := S1× S2 is a left denominator system inC, and there is an isomorphism,

S−1C = S−1
1 C1× S

−1
2 C2.

We will say thatR2F exists, it R
(
F(A1, )

)
exists with respect toS2 for every objectA1 in

C1. Assuming the existence, we may considerR2F as a functor,

R2F : C1× S
−1
2 C2→ D.

Similarly, we say thatF is derivable everywhere with respect to the second variableif, for
every objectA1 ∈ C1, theF(A1, ) : C2→ D is derivable everywhere with respect toS2.

Proposition. If R2F exists with respect toS1, thenRF exists with respect toS = S1 × S2
if and onlyR1R2F exists with respect toS1. Assuming the existence, there is a canonical
isomorphism of functors,

RF ∼−→R1R2F.

Similarly, with respect to the appropriate denominator systems, ifF is derivable in the second
variable, thenF is derivable if and only ifR2F is derivable in the first variable.

Proof. The assertions follow from general results about colimits over a product category.

Remark. If there are subclassesQ1 ⊆ C1 andQ2 ⊆ C2 such thatQ1 is unfolding for all the
functorsF( ,A2) for A2 ∈ C2 andQ2 is unfolding for all the functorsF(A1, ) for A1 ∈ C1
then the product classQ := Q1 × Q2 is unfolding forF . Moreover, thenF is uniformly
derivable, and we have canonical isomorphisms of functors,

R1R2F
∼−→RF ∼←−R2R1F.

(6.13) Remark. Assume thatC andD are additive categories and thatF : C → D is an
additive functor. Assume thatRF exists with respect to the left denominator systemS. It
follows easily thatRF is an additive functor. IfC andD have shift automorphismsU 7→ U(1)
andF commutes with the shifts, it follows easily thatRF commutes with the shifts.

(6.14). Consider the case of a triangulated categoryK with a left denominator systemS and
a triangular functor,

F : K→ K′,

from K to a triangulated categoryK′.
The following easily proved proposition is a complement to the Unfolding Theorem (6.7).

The conditions are with respect to the systemS.
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Proposition. Let Q be a triangularS-dense class inK. Then, with respect to the given
denominator systemS, the following conditions onQ are equivalent:

(i) The classQ is F -unfolding.
(ii) Every object inQ is F -unfolded.
(iii) If Q in Q is acyclic, thenF(Q) = 0 in K′.

Often the conditions are applied when the target category isof the form(S′)−1K′, obtained
by localizingK′ with respect to a triangular denominator systemS′ (and the functor is the
functor ( )S ′F ). In this case that last condition (iii) takes the followingform: If Q in Q is
acyclic, then( )S ′F(Q) = 0. If the systemS′ is saturated, the condition is equivalent to the
following:

(iii’) If Q in Q is acyclic, thenF(Q) is acyclic.

(6.15) Theorem. In the setup of(6.14), consider an exact triangle inK,

Z

X Y.

Assume thatF is derivable atX and atY . ThenF is derivable atZ and atX(1), and the
following triangle inK′ is exact:

RFZ

RFX RFY.

It follows from the Theorem that ifF is derivable everywhere thenRF is a triangular
functor. In addition, ifF is uniformly derivable, then the class ofF -unfolded objects is a
triangular subclass ofK.

We are not going to make any use of the result in the stated generality, but only the special
case considered in the following corollary. Therefore we will give a direct proof of the special
case, and postpone the proof of the general case.

Corollary. Assume in the setup of the Theorem that there is a triangularF -unfolding class
Q. Then the functorRF is a triangular functor.

Direct proof of the Corollary.LetX→ X′ → X′′→ X(1) be an exact triangle inK. Since
Q isS-dense, it follows from the denominator conditions that there is a commutative diagram,

X′
s′

Q′

X
s

Q.

withQ,Q′ ∈ Q ands, s ′ ∈ S.
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EmbedQ→ Q′ into an exact triangle with vertexQ′′ in Q, By (LOC4), the pair(s, s ′)may
be extended to a morphism(s, s ′, s ′′) of triangles, withs ′′ ∈ S,

X′
s′

Q′

X′′
s′′

Q′′

X s Q.

Apply F andRF and the transformationF → RF . The result is a commutative diagram of
triangles inK′:

RFX′ ∼ RFQ′ ∼ FQ′

RFX′′ ∼ RFQ′′ ∼ FQ′′

RFX ∼ RFQ ∼ FQ.

The horizontal morphisms are isomorphisms, and the right triangle is exact. Hence the left
triangle is exact. Consequently,RF is a triangular functor.

(6.16) Remark.There is a result similar to Corollary (6.15) for the case of atriangular functor
F : K→ A from the triangulated categoryK to an abelian categoryA. For the caseA = Ab
the following result is more precise.

Proposition. Let K be a triangulated category with a triangular denominator systemS. Let
G : K→ Ab be a triangular functor. ThenRG exists andRG is a triangular functor.

Proof. For every objectX of K we have by definition

RG(X) = lim−→
s∈X/S

G(Xs).

So we have to prove for any exact triangle inK,

Z

β

X
α

Y,

that the induced sequence of abelian groups is exact:

lim−→
s∈X/S

G(Xs)
α∗ lim−→

t∈Y/S

G(Yt )
β∗ lim−→

u∈Z/S

G(Zu).
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Let η be an element in Kerβ∗, and representη by an elementy ∈ G(Yt ) for some index
t ∈ Y/S. Then there is a commutative diagram,

Z
u

Zu

β β ′

Y
t

Yt

with u ∈ Z/S,

and thenG(β ′)(y) ∈ G(Zu) representsβ∗(η). Sinceβ∗(y) = 0, we may modifyu in the
diagram and assume thatG(β ′)(y) = 0. Now embedβ ′ : Yt → Zu in an exact triangle
X′ → Yt → Zu → X′(1). By (LOC4), the pair(t, u) may be extended to a morphism of
triangles(s, t, u) with s ∈ S,

Z
u

Zu

X
s

X′

Y
t

Yt .

Thens : X → X′ is an index inX/S with Xs = X′. SinceG is triangular, the following
sequence inAb is exact:

G(Xs)→ G(Yt )→ G(Zu).

Moreover,G(β ′)(y) = 0. Hence there is an elementx ∈ G(Xs) such thatG(α′)(x) = y.
Clearly, thenx represents an elementξ ∈ lim−→s∈X/S G(Xs) such thatα∗(ξ) = η.

(6.17). Proof of Theorem 6.15Consider an exact triangle(X, Y, Z, α, β, γ ) in K. SetU :=
RF(X) andV = RF(Y) and leta = RF(α) : U → V . Embeda : U → V in an exact
triangle(U, V,W, a, b, c) of K′. The inductive systemsF(XS) andF(YS) are essentially
constant. Hence, in the ind-category ind-K′ there is a commutative diagram with horizontal
isomorphisms:

U1
f

∼ F(XS)

a1

V1
∼
g F(YS).

(6.17.1)

The shifts inK′ define natural shifts in the ind-category ind-K′. Let us first show (with respect
to these shifts) that the pairf, g extends to a morphism of triangles in ind-K′:

U1
f

∼ F(XS)

c1

W1
h

F(ZS)

b1
a1

V1
∼
g F(YS).

(6.17.2)
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The morphismf1 : U1→ F(XS) in the ind-category is represented by a morphismϕ : U →
F(Xs) for somes ∈ X/S. Similarly, g is represented by a morphismψ : V → F(Yt )

for t ∈ Y/S. The square (6.17.1) is commutative. Hence, replacing(t, ψ) by an other
representative if necessary, we may assume that there are commutative squares, inK and in
K′: commutative.

X
s

Xs

α α′

Y
t

Yt ,

U
ϕ

F(Xs)

a

V
ψ

F(Yt ).

Now, letZu be the cone ofα′ : Xs → Yt , and consider the morphismss, t in S. By (LOC4),
the pair(s, t)may be extended to a morphism of triangles(s, t, u) with u ∈ S:

X
s

Xs

Z
u

Zu

Y
t

Yt .

SinceF is triangular, we may extend the pairϕ,ψ of morphisms inK′ to a morphism(ϕ, ψ, χ)
of exact triangles inK′:

U
ϕ

F(Xs)

c

W
χ

F(Zu)

b
a

V
ψ

F(Yt ).

(6.17.3)

Thenχ represents a morphismW1 → F(ZS) in ind-K′ which is the morphism required in
(6.17.2).

To finish the proof we show thath is an isomorphism in ind-K′: It is enough to show for
any objectA of K′ that the morphism induced byh is an isomorphism of abelian groups:

HomK′(A,W) ∼−→ lim−→
u∈Z/S

HomK′(A, F (Zu)). (6.17.4)

Consider the triangular functorG : K → Ab defined byG(X) = HomK′(A, F (X)). By
the previous result,RG is a triangular functor. Now, the inductive limit on the right side of
(6.17.4) is the valueG(Z). LetHA : K′→ Ab denote the functorHA( ) = HomK(A, ). Then
G = HAF , and the commutative diagram (6.17.3) with exact trianglesinduces a commutative
diagram inAb with exact rows,

HA(U) HA(V ) HA(W) HA(U(1)) HA(V (1))

f ≀ g ≀ h

V
f ≀ g ≀

RG(U) RG(V ) RG(W) RG(U(1)) RG(V (1)).
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The four maps induced byf andg are isomorphisms. So, by the 5-Lemma, the map induced
by h is bijective. Therefore,h is an isomorphism, and the proof is complete.
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The homotopy categories

Througout this chapterA denotes a fixed abelian category.

1. Complexes.

(1.1) Definition. A complexX in A is an infinite sequence of objects and morphisms ofA,

X : · · · Xn−1 ∂n−1
Xn

∂n
Xn+1 · · · , (1.1.1)

such that∂n∂n−1 = 0 for all integersn.
The objectXn is thedegree-n objector degree-n componentofX, the morphism∂n = ∂nX

is the degree-n differentialor boundary operatorof X. In addition we define:

Bn(X) := Im ∂n−1, the degree-n boundary objectof X;
B̃n(X) := Coim∂n, the degree-n coboundary objectof X;
Zn(X) := Ker∂n, the degree-n cycle objectof X;
Z̃n(X) := Cok∂n−1, the degree-n cocycle objectof X.

As ∂n∂n−1 = 0, we haveBn ⊆ Zn, and we may form the quotient,
H n(X) := Zn/Bn, the degree-n cohomology objectof X.

Note thatH n is the cokernel of the inclusionBn→ Zn and, symmetrically, the kernel of the
projectionZ̃n→ B̃n: We have an exact commutative diagram,

0 0

0 Bn Zn H n 0wwwww
0 Bn Xn Z̃n 0

B̃n ==== B̃n

0 0

(1.1.2)

SoH n is the image (or the coimage) of the compositionZn→ Xn→ Z̃n. In addition, since
∂n∂n−1 = 0, there is an induced morphismδ : Z̃n→ Zn+1, and an exact sequence,

0 H n Z̃n
δ
Zn+1 H n+1 0. (1.1.3)
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An exact complex is often said to beacyclic. A complex isleft bounded, or aright complex,
if Xn = 0 whenn≪ 0, and it isright bounded, or aleft complex, if Xn = 0 whenn≫ 0. Left
and right bounded complexes are simplybounded. A complex ispositiveif Xn = 0 when
n < 0, andnegativeif Xn = 0 whenn > 0. (Some mathematicians doing mostly homology
will not agree to the last definitions; maybe the proper phrasing should be co-positive and
co-negative.)

(1.2) Note. The components of a complex may be indexed in two natural waysstarting
from the 0’th component. The complex in (1.1.1) isincreasing: the index of the target of a
differential is 1 bigger than the index of its source. Alternatively, a complex may come with
adecreasingindexation,

Y : · · · Ym+1
∂m+1

Ym
∂m

Ym−1 · · · . (1.2.2)

A complex of the form (1.2.2) may be called achain complex, in contrast to thecochain
complexof (1.1.1). Them’th homologyof the complex (1.2.2), denotedHm(Y ), is the
quotient Ker∂m/ Im ∂m+1.

A complex with increasing indexation as in (1.1.1) is turnedinto a decreasing complex
with the definitionsXm := X−m and∂m := ∂−m. In this notation, them’th homomology of
X is the(−m)’th cohomology,Hm(X) = H−m(X).

Let us emphasize the common convention that the differentials of a complex are indexed
using the index of theirsource.

(1.3) Definition. A diagramX of the type (1.1.1) withXn ∈ A corresponds formally to a
functor from the graph (quiver) with the integers as vertices,

Z
→ = · · · −2 −1 0 +1 +2 · · · , (1.3.1)

to the categoryA. As such it is an object in the abelian categoryAZ
→

of all such dia-
grams. Recall that a morphism of diagramsf : X→ Y is aZ-indexed family of morphisms
f n : Xn → Y n commuting with the differentials. Kernels and cokernels are obtained “com-
ponent for component” (e.g.,(Kerf )n := Kerf n), with induced differentials.

Thecategory of complexes, denotedC•(A) or simplyA•, is the full subcategory ofAZ
→

consisting of complexes. Clearly, iff : X→ Y is a morphism of complexes, then Kerf and
Cokf are complexes. HenceA• is an abelian category.

From a slightly different point of view, a complex is aZ-indexed familyX = (Xn) of
objects with a family of morphisms∂ = ∂X : X → X(1) such that∂2 = 0 is the zero
morphismX→ X(2); we useX(p) to denote thep-shifted family,

X(p)n := Xp+n.

A morphism of familiesf : X→ Y is a morphism of complexes if and only iff ∂X = ∂Yf .
Clearly, there is a full abelian subcategory ofright complexes, determined by the condition

Xn = 0 for n ≪ 0, denotedA+ = C+(A). With a similar notation, there are subcategories
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of left complexes, A− = C−(A), of positiveand ofnegative complexes, A>0 = C>0(A) and
A60 = C60(A), and ofbounded complexes, Ab = Cb(A). Using the reindexation in (1.2),
we may identify:

(Aop)• = (A•)op, (Aop)+ = (A−)op, (Aop)>0 = (A60)op, (Aop)b = (Ab)op.

(1.4) The connecting morhpism.The objectsBn, Zn, . . . , H n associated with a complex
X of A may obviously be considered as additive functorsA• → A. Clearly,Zn is left exact
andZ̃n is right exact. The morphismδ : Z̃n(X) → Zn(X) of (1.1.3) is a transformation of
functors. Hence, for a short exact sequence of complexes,

0→ X′→ X→ X′′→ 0, (1.4.1)

there is associated, for everyn, an exact commutative diagram,

Z̃n(X′) Z̃n(X) Z̃n(X′′) 0

δ′ δ δ′′

0 Zn+1(X′) Zn+1(X) Zn+1(X′′).

By the exact sequence (1.1.3), the snake morphism1 : Ker δ′′ → Cokδ′ induced by this
diagram is a morphism,

1n : H n(X′′)→ H n+1(X′);

it is called theconnecting morphismfor the given short exact sequence of complexes. It is
easy to see that the connecting morphism is functorial with respect to morphisms of short
exact sequences.

(1.5) The long exact cohomology sequence.For a given short exact sequence of complexes
(1.4.1), the connecting morphisms1n fit into a long exact sequence of cohomology objects:

· · ·

H n(X′) H n(X) H n(X′′)

H n+1(X′) H n+1(X) H n+1(X′′)

· · · .

Proof. The assertion is an immediate consequence of The Snake Lemma.

(1.6) The shifts. If X is a complex inA we define for eachp ∈ Z a complexX(p), the
p-shift, or thep’th suspension, ofX, as follows:

X(p)n := Xn+p, ∂ nX(p) := (−1)p∂n+pX : Xn+p → Xn+p+1.

Thep-shift is a functor: For a morphismf : X → Y of complexes, theshiftedmorphism
f (p) : X(p)→ Y(p) is in degreen equal tof n+p : Xn+p → Y n+p . Often we write simply
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f : X(p)→ Y(p) for thep-shift of the morphismf . Note that if the differential is viewed
as a family of morphisms∂X : X→ X(1), then

∂X(1) = −∂X(1) : X(1)→ X(2).

The sign imposed on the differential does not change the cohomology objects. So there is an
identificationH n(X(p)) = H n+p(X).

Note that for the “picture” of complexes, say on paper (or in your mind) with the degree-0
object centered, the shiftX(1) is a left shifted version ofX: all objects ofX are translated
one step to the left.

ClearlyX 7→ X(1) is an “autofunctor” ofA•, sometimes denoted6, andX(p) = 6pX
is itsp’th power.

If A is an object ofA, we writeA(0) (or sometimes simplyA) for the complex havingA as
the degree-0 object and the zero object in all other degrees.The functorA 7→ A(0) identifies
A with the full subcategory of complexes “concentrated in degree0”. We writeA(n) for the
n-shift of A(0); it has the objectA in degree−n. Note that morphisms of complexes from
A(0) to a complexX correspond to morphismsA→ Z0(X). In particular, ifX is a positive
complex, then morphismsε : A→ X correspond to complexes

· · · → 0→ A
ε
X0 X1 X2 · · · ;

the complexX is said to be aco-augmented complex overA, with co-augmentationε.

For complexesX, Y we indicate by the notation,

f : X Y,

that f is a morphism of complexesf : X → Y(1). A morphismf : X Y induces
morphisms of cohomologyH n(X)→ Hp+1(Y ).

(1.7) The mapping cone of a morphism.Let f : X → Y be a morphism of complexes in
A. Thecone(or themapping cone) of f is the complexZ = Conf with

Zn := ⊕
Xn+1

Y n
, ∂nZ :=

(
−∂n+1

X 0
f n ∂nY

)
, or, shorter,Z := ⊕

X(1)
Y

, ∂Z :=

(
−∂ 0
f ∂

)
,

together with the followingtriangle,

Z

k=(1 0) h=(01)

X
f

Y.

In the matrix defining the family∂Z : Z→ Z(1), the lower right∂ is ∂Y and the upper left∂
is ∂X (or more correctly, it is∂X(1)); so the morphism−∂ is ∂X(1).
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Note that the whole triangle is part of the cone Conf . However, when it is unambigous,
it may be convenient to use Conf as a notation for the top vertexZ.

Note that the three morphisms of the triangle and their shifts form an infinite sequence of
morphisms,

· · · → X(−1)→ Y(−1)→ Z(−1)→ X→ Y → Z→ X(1)→ Y(1)→ Z(1)→ · · · .

It is easy to see that the cone and the infinite sequence are functorial with respect to the
category of morphismsf (of complexes).

Consider an additive functorT : A → B, whereB is an abelian category. Clearly,T
extends to additive functors on families and on complexes:

T : AZ → BZ andT • : A• → B•.

It is easy to see that the extensionT • commutes with the formation of cones.

Note. A related, dual, notation is thecoconeC̊onf . It consists of the following complex
W = C̊onf ,

W := ⊕
X

Y(−1)
, ∂W =

(
∂X 0
f −∂Y

)
,

and the following triangle
W

k=(1 0) h=(01)

X
f

Y.

Obviously,C̊on(f ) = (Con(−f ))(−1).

(1.8) The long exact cohomology sequence of a cone.For a given mapf : X → Y of
complexes with mapping coneZ, then’th cohomologyH n applied the morphisms of the
triangle and their shifts is a long exact sequence: · · ·

H n(X) H n(Y ) H n(Z)

H n+1(X) H n+1(Y ) H n+1(Z)

· · ·

Proof. Clearly, there is a short exact, and degree-wise split, sequence,

0 Y
(01)

Z
(1 0)

X(1) 0. (1.8.1)

It is easy to see that the connecting morphisms of this short exact sequence,δ : Hp(X(1))→
Hp+1(Y ), are the maps induced byf on cohomology. So the cohomology sequence of the
triangle is the cohomology sequence of the short exact sequence (1.8.1). By (1.5), it is exact.
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(1.9) Truncations. LetX be a complex. For an integerp, the degree-p left truncationX>p

is the complex,

X>p : · · · 0 0 Xp
∂
Xp+1 ∂

Xp+2 · · · ,

with Xp in degreep. It may also be denotedX>p−1. Similarly, there is a right truncation
X6p = X<p+1. The left truncations are subcomplexes ofX and they form an decreasing
filtration ofX:

· · · →֒ X>p+1 →֒ X>p →֒ X>p−1 →֒ · · · →֒ X. (1.9.1)

The right truncations are quotient complexes ofX. In fact, there is a natural exact sequence
of complexes,

0 X>p X X6p 0. (1.9.2)

Applied to the complexX := X>p, the quotient becomes the complex withXp concentrated
in degreep. So there is an exact sequence of complexes,

0 X>p X>p Xp(−p) 0. (1.9.3)

Consider the following diagram:

· · ·
−∂

Xp−1 −∂
Xp 0 · · ·

∂p

· · · 0 Xp+1 ∂
Xp+2 ∂ · · · ,

where the nontrivial vertical morphism is in degreep + 1. The top row isX6p(−1) and the
bottom row isX>p. The diagram is commutative, since∂2 = 0. So∂p defines a morphism
of complexesX6p(−1) → X>p. Clearly, the cone of this morphism is the given complex
X:

X

X6p(−1) ∂p
X>p.

(1.9.4)

Applied to the truncated complex,X := X>p, the lower left vertex is the complex with the
objectXp concentrated in degreep + 1. So there is a cone of complexes,

X>p

Xp(−p−1) ∂
X>p.

(1.9.5)

(1.10) Quasi isomorphisms. A morphism of complexesf : X → Y is called aquasi-
isomorphismif for all n the induced morphism on cohomologyH n(X) → H n(Y ) is an
isomorphism. The following result is an immediate consequence of (1.8).
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Corollary. A morphism of complexesf : X→ Y is a quasi-isomorphism if and only if the
mapping cone off is acyclic.

(1.11). Letf : X→ Y be a morphism of complexes, and consider the coneZ := Conf of f .
If g : Y → W is a morphism of complexes such thatgf = 0 theng̃ := (0g) is a morphism
of complexesZ→ W ; it is said to beinducedby g:

Z

g̃

X
f

Y g W.

Proposition. Let f : X→ Y be a monomorphism, and consider its coneZ := Conf and its
cokernelW := Cokf . Then the induced morphismZ→ W is a quasi-isomorphism.

Proof. Use the two long exact sequences, of the coneX → Y → Z of f and of the short
exact sequenceX→ Y → W defined byf , to obtain the following diagram with exact rows:

H n(X)
f

H n(Y )
h

H n(Z)
k

H n+1(X)
f

H n+1(Y )wwwww
wwwww g̃

wwwww
wwwww

H n(X)
f

H n(Y )
g

H n(W)
1

H n+1(X)
f

H n+1(Y ).

Except for the square involvingk and1 the squares are obviously commutative. Check that
the exceptional square is anticommutative. Conclude by the5-lemma that the middle vertical
morphism is an isomorphism.

Similarly, if X→ Y is an epimorphism of complexes, with kernelV and coneZ, there is
an induced quasi-isomorphismV (1)→ Z.

(1.12) Cohomology truncations.LetX be a complex. Consider for an integerp the following
inclusion of subcomplexes,

τ6pX · · · Xp−2 Xp−1 Zp 0 0 · · ·wwwww
wwwww

τ̃6pX · · · Xp−2 Xp−1 Xp Bp+1 0 · · · ,

The inclusion is a quasi-isomorphism and both complexes aredegree-p right cohomology
truncationsof X: Their degree-n cohomology is equal toH nX whenn 6 p and equal to 0
otherwise. The truncations form an increasing filtration ofX, for instance for theτ6pX:

· · · →֒ τ6p−1X →֒ τ6pX →֒ τ6p+1 →֒ · · · →֒ X. (1.12.1)

The quotient complexτ6pX/τ<pX is the complex

· · · 0 Bp Zp 0 · · · ,
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whithZp in degreep. It hasZp/Bp = HpX as it only nonvanishing cohomology; in fact,
the natural morphism is a quasi-isomorphism:

τ6pX/τ<pX→ Hp(X)(−p).

Similarly, there are two left cohomology filtrationsτ>pX andτ̃>pX defined as quotients
of X. In fact, there are exact sequences,

0→ τ6pX→ X→ τ̃>pX→ 0,

0→ τ̃6pX→ X→ τ>pX→ 0.

(1.13) Definition. Let X andY be complexes ofA. Define for every integern an abelian
group,

Homn(X, Y ) :=
∏

p∈Z

HomA(X
p−n, Yp).

So an element off ∈ Homn(X, Y ) is an infinite family of morphismsfp : Xp → Yp+n,
illustrated by a diagram, not necessarily commutative,

· · · X−n · · · X−1 X0 X1 · · ·

· · · Y 0 · · · Y n−1 Y n Y n+1 · · ·

Equivalently, Homn(X, Y ) is the set of all families of morphismsX(−n)→ Y (or families
of morphismsX→ Y(n)).

Consider the homomorphism of abelian groups,

dn : Homn(X, Y )→ Homn+1(X, Y ),

given bydn := ∂Y − (−1)n∂X. The image of a familyf = (fp) in Homn(X, Y ) is the
sequencedn(f ) in Homn+1(X, Y ) with (dnf )p : Xp−n−1→ Yp given by the equation, for
p ∈ Z,

(dnf )p = ∂
p−1
Y f p−1− (−1)nfp∂

p−n−1
X .

In terms of the differential∂X(−n) = (−1)n∂X, if f ∈ Hom(X, Y (n)) then

dn(f ) = ∂Yf − f ∂X(−n).

It is easy to see that the compositiondn+1dn is the zero map. So the groups Homn with the
mapsdn form a complex of abelian groups, denoted Hom•A(X, Y ). Note that a familyf ∈
Hom(X(−n), Y ) is a cycle in the complex Hom•

A
(X, Y ) if and only if ∂Yf − f ∂X(−n) = 0,

that is, if and only iff is a morphism of complexesf : X(−n)→ Y . As a formula:

Zn(Hom•A(X, Y )) = HomA•(X(−n), Y ) = HomA•(X, Y (n)).
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Note that the definition whenY is a single objectB, identified with the complexB(0)
havingB is degree 0, gives a complex Hom•(X, B)which differs by signs in the differentials
from the complex obtain by evaluating the functor HomA(−, B) at the complexX: If the
latter functor is denoted(−)∗ for simplicity, then

Hom•(X, B) = · · · · · · X2∗ −∂∗ X1∗ ∂∗
X0∗ −∂∗ X−1∗ ∂∗ · · · ;

this sign convention is sometimes used when a contravariantfunctor is applied to a complex.
The formation of the complex Hom• is clearly functorial, that is, it defines a functor

Hom• :
(
A•)op× A• → Ab•.

It respects the shifts:

Hom•(X(−n), Y ) = Hom•(X, Y (n)) = Hom•(X, Y )(n).

If X ∈ A− andY ∈ A+, then the product defining the group Homn(X, Y ) is finite;
moreover Homn(X, Y ) vanishes whenn ≪ 0, that is, the complex Hom•(X, Y ) belongs to
subcategoryAb+.

(1.13) Exercises.
1. Let ε : Z→ {±1} be an arbitrary map. For any complexX in A let εX denote the complex
with εX

n := Xn andε∂n = ε(n)∂n. Define a canonical functorial isomorphismεX
∼−→X.

2. Define, for a morphism of complexesf : X → Y an isomorphism of cones Con(f ) →
Con(−f )

3. Does the functorA 7→ A(0), from A to A•, have a right adjoint? – and a left adjoint?

4. Establish an exact sequence 0→ τ̃<pX→ τ6pX→ (HpX)(−p)→ 0.
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2. Homotopy.

(2.1) Definition. Recall that we work over a fixed abelian categoryA. LetX, Y be complexes
of A. A family of morphismsf : X → Y is said to benull homotopicor homotopic to
zero if there exists a family of morphismssp : Xp → Yp−1 (called ahomotopy) such that
f p = ∂p−1sp+sp+1∂p. Equivalently, in terms of families,s = (sp) is a family of morphisms
s : X→ Y(−1) and

f = ∂Y (−1)s + s(1)∂X, (2.1.1)

or shorter:f = ∂s + s∂ . The family s will be called a homotopy fromf to 0, and we
will indicate it by writing s : f ≃ 0. A null homotopic family of morphismsf : X → Y

commutes with the differentials; hencef is a morphism of complexesf : X→ Y .
Two morphismsf0, f1 : X→ Y of complexes arehomotopic, written

f0 ≃ f1 : X→ Y,

if f0 − f1 is homotopic to zero. Clearly, homotopy is an equivalence relation in the group
Hom(X, Y ) of morphisms of complexes, corresponding to the subgroup ofnull homotopic
morphisms. The equivalence classes are calledhomotopy classesof morphisms, and the
homotopy class determined by a morphismf : X→ Y is denoted [f ] (or simply by the same
symbolf ).

Assume thatf : X → Y is homotopic to zero. Then, for any morphismg : Y → W and
h : V → X, the compositionsgf andf h are homotopic to zero. It follows that we may define
a category Hot(A) as follows: The objects of Hot(A) are complexes ofA and ifX andY
are objects of Hot(A) then the morphismsX → Y in Hot(A) are the homotopy classes of
morphisms of complexesX → Y . The category Hot(A) is thehomotopy categoryof A. It
has an additive Hom-structure: the set of morphisms fromX to Y in the homotopy category
is the quotient group,

HomHot(A)(X, Y ) := HomA•(X, Y )/ ≃ ,

of morphisms of complexes modulo null homotopic morphisms.The natural functor,

A• → Hot(A)

(denotedX 7→ [X]) respects finite direct sums. It follows easily the Hot(A) is an additive
category. In addition, the shiftsX 7→ X(p) are well-defined in the homotopy category.

Restricting to right complexes, left complexes, or boundedcomplexes, we obtain full
subcategories Hot+(A), Hot−(A), and Hotb(A) of Hot(A); for every additive subclassQ
of A we get an additive subcategory Hot(Q) of complexes of objects fromQ.

It follows from the description in Hot(1.13) that the subgroup of null homotopic morphisms
X→ Y is equal to the image of the mapd−1 : Hom−1(X, Y )→ Hom0(X, Y ), that is, equal
to the degree-0 boundaryB0(Hom•(X, Y )). The subgroup of morphisms of familiesX→ Y
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Hot 2.2 The homotopy categories

that are morphisms of complexes is the group of degree-0 cycles in the complex Hom•(X, Y ).
Hence

HomA•(X, Y ) = Z
0(Hom•(X, Y )),

HomHot(A)(X, Y ) = H
0(Hom•(X, Y )).

More generally, see Hot(1.13),

HomHot(A)(X(−n), Y ) = HomHot(A)(X, Y (n)) = H
n(Hom•(X, Y )).

(2.2) Proposition. Two homotopic morphisms of complexesf0 ≃ f1 : X → Y induce the
same morphism on cohomology:H n(f0) = H

n(f1) : H n(X)→ H n(Y ).

Proof. It suffices to prove that a null homotopicf : X → Y induces the zero morphism on
cohomology. So assume thatf = ∂s + s∂ for a family of morphismss : X → Y(−1).
Consider the following diagram,

Zn(X) H n(X)

s̃n f̃ n

Y n−1
∂̃n−1

Zn(Y ) H n(Y ).

The square, induced by the morphismf , is commutative. In the triangle, the morphism∂̃n−1

is induced by the differential ofY , ands̃n is the restriction ofsn to Zn(X). The triangle is
commutative, sincef n = ∂n−1sn+sn+1∂n and the last termsn+1∂n vanishes when restricted
to Zn(X). So the compositionZn(X) → Zn(Y ) → H n(Y ) is the zero morphism. Hence,
so is the induced morphismH n(X)→ H n(Y ).

(2.3). The functorsX 7→ Xn,X 7→ Bn(X),X 7→ Zn(X), fromA• toA, are not well-defined
on the homotopy category. However, it follows easily from the proposition above that the
n’th cohomology, forn ∈ Z, is a well-defined functor,

H n : Hot(A)→ A.

It is also easy to verify that the bi-functor Hom• of Hot(1.3) defines a bi-functor,

Hom• : Hot(A)op× Hot(A)→ Hot(A).

Restriction yields a bi-functor

Hom• : Hot−(A)op× Hot+(A)→ Hot+(A).

The formation of the cone is not a functor on the category of morphisms of the homotopy
category. It has, however, the following property:
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(2.4) Lemma. Consider a square diagram of complexes inA•,

X
x

X′

f f ′

Y
y

Y ′,

and letZ = Conf andZ′ := Conf ′ denote the cones of the vertical morphisms. Assume
that the square is homotopy commutative, and consider a homotopys : yf − f ′x ≃ 0. Then
the family of morphisms,

z :=

(
x 0
s y

)
:
X(1)
⊕

Y

X′(1)
⊕

Y ′
,

is a morphism of complexesz : Z → Z′, and, in the following diagram, the two “squares”
involving z are commutative inA•:

X
x

X′

f

k

f ′

k′

Z
z

Z′

h h′

Y
y

Y ′

Proof. The first assertion is the equation of families of morphisms,∂Z′z = z∂Z or, in matrix
form, (

−∂ 0
f ′ ∂

)(
x 0
s y

)
=

(
x 0
s y

)(
−∂ 0
f ∂

)
.

The equations follow from the assumptionyf − f ′x = ∂s + s∂ . Commutativity of the
squares, corresponding to the equationszh = h′y andk′z = xk, is obvious.

(2.5) Lemma. Consider in the setup of Lemma(2.4) the cones of the horizontal morphisms,
X′′ := Conx andY ′′ := Cony and the morphism of complexes, fromConx to Cony:

f ′′ :=

(
f 0
−s f ′

)
:
X(1)
⊕

X′

Y(1)
⊕

Y ′
.

Then there is a natural isomorphism of complexes,Conf ′′ ∼−→ Conz. In fact, the isomor-
phism on the families,

Conf ′′ = X(2)⊕X′(1)⊕ Y(1)⊕ Y ′ ∼ Conz = X(2)⊕ Y(1)⊕X′(1)⊕ Y ′

115



Hot 2.4 The homotopy categories

is given by multiplication by the following matrix,

σ =



−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

Proof. The family f ′′ of morphisms defined by the matrix is a morphism of complexes
by Lemma (2.4) applied to the reflected square. Note the sign change in the homotopys:
interchanging the vertical and and the horizontal morphisms changes the sign in the difference
yf − f ′x.

The rest of the assertion is a simple computation. You have toidentify the 4× 4 matrices
defining∂Conf ′′ and∂Conz and prove their commutation withσ .

(2.6) Warning. In the setup Lemma (2.4), letZ′′ be the mapping cone of the morphism
z : Z→ Z′. Then, by Lemma (2.5), we have to triangles,

Z′′

(1 0) (01)

Z
z

Z′,

Z′′

(1 0)σ σ(01)

X′′
f ′′

Y ′′.

The first is the cone ofz. The second is obtained from the cone off ′′ by replacing the
top vertex with the isomorphic complexZ′′ using the isomorphismσ of (2.5). It should be
emphasized, that of the two squares deduced from the morphism in these triangles,

Y ′ Z′

Y ′′ Z′′,

Z′′ Z′

X′′ X,

the first is commutative, the second is anti-commutative. The assertion follows from a simple
computation.

(2.7) Definition. Two complexesX, Y in A are said to be (homotopy) equivalentif they are
isomorphic in Hot(A). Equivalently,X andY are homotopy equivalent if there are morphisms
of complexesf : X→ Y andg : Y → X such thatgf ≃ 1X andfg ≃ 1Y (in which casef
is said to be ahomotopy equivalence).

A complex homotopy equivalent to the zero complex is said to becontractible. As coho-
mology is a functor on the homotopy category, it follows for acontractible complexZ that
H n(Z) = 0 for all n; in other words, a contractible complex is acyclic.

Consider an additive functorT : A→ B, whereB is an abelian category, and its extensions
to additive functors on families and on complexes:

T : AZ → BZ andT • : A• → B•.

It follows from the definition thatT preserves homotopies. As a consequence,T • defines an
additive functor,

Hot(T ) : Hot(A)→ Hot(B).

In particular, ifZ is contractible, then so isT (Z).
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Characterization. The following conditions on a complexZ of A are equivalent:

(ii) The identity ofZ is homotopic to zero,1Z ≃ 0Z, that is, there exists a family of
morphismss : Z→ Z(−1) such thatf = ∂(−1)s + s(1)∂ .

(ii) Z is contractible.
(iii) The complexHomA(A, Z) is acyclic for every objectA of A.

(iii) op The complexHomA(Z, B) is acyclic for every objectB of A.
(iv) Z is isomorphic inA• to a complex of the following form, for some family(Un):

. . .

Un

⊕

Un−1

Un+1

⊕

Un

Un+2

⊕

Un+1
. . .

(v) Z is isomorphic inA• to the cone of the identity of some complexU .

Proof. (i) ⇔ (ii): Indeed, the zero object of an additive category is characterized by the
property that the identity is the zero morphism.

(ii) ⇒ (iii): If Z is contractible, then, for any additive functorT : A → B, the complex
T (Z) is contractible. In particular, HomA(U, Z) is contractible, and hence acyclic.

(iii) ⇒ (iv): LetUn := Ker ∂nZ be then’th cycle object ofZ, with the injectioni : Un+1→

Zn+1. Then∂n factors overUn+1 as a product∂n = i∂̃ .
The composition∂n+1

Z i is zero. Hencei is an(n+1)-cycle in the complex Hom(Un+1, Z).
By exactness,i is a boundary, that is, there is a morphismt : Un+1→ Zn such thati = ∂nt .
This equation implies thatUn+1 ⊆ Im ∂n, and hence thatUn+1 = Im ∂n. Moreover, from
i = ∂nt it follows that ∂̃ t = 1Un+1. Therefore, the morphism̃∂ : Zn → Un+1 is a split
epimorphism, witht as section. Clearly, Ker̃∂ = Ker∂n = Un. Consequently, we obtain the
decompositionZn = Un+1⊕ Un, and the decomposition of∂nZ, as asserted.

(iv)⇒ (v): The complex described in (iv) is the cone of the identityof a complexU with
zero differentials.

(v)⇒ (i): Assume thatU is a complex and thatZ is isomorphic to the cone of 1U . Of the
two matrices,

∂Z :=

(
−∂U 0

1 ∂U

)
ands :=

(
0 1
0 0

)
,

the first is the differential ofZ. The second, as a family of morphismsZ → Z(1), is easily
seen to be a homotopys : 1Z ≃ 0Z.

Thus the equivalence of the conditions (i),. . . ,(v) has been established. Their equivalence
to (iii)op hold by a dual argument.

(2.8) Definition. A triangle in the homotopy category Hot(A),

Z

X Y,

(2.8.1)
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is called ahomotopy coneif is isomorphic in Hot(A) to the cone of some morphism of
complexes, that is, if there exists a morphism of complexesf : X′→ Y ′ and an isomorphism
of triangles in Hot(A),

X′ ∼ X

f Conf ∼ Z

Y ′ ∼ Y

(2.9) Theorem. The homotopy categoryHot(A) is a triangulated category with the functor
X 7→ X(1) as suspension and the class of homotopy cones as the distinguished class.

Proof. Let us walk through some of the conditions of Cat(5.2):
(1)(a). A triangle isomorphic to a homotopy cone is a homotopy cone. This is obvious

from the definition.
(1)(b). Every morphismϕ : X → Y of Hot(A) embeds into a homotopy cone. Indeed,

take any morphism of complexesf : X → Y representingϕ. Thenϕ embeds into the cone
of f .

(1)(c) If X is any complex, then triangle(X,X, 0; 1X, 0, 0) is a homotopy cone. Indeed,
by the Characterization in (2.7) the triangle is isomorphicin Hot(A) to the cone of the identity
of the complexX.

(2) The rotation axiom is a consequence of the following: Consider a morphism of com-
plexesf : X→ Y and its cone

Z

k h

X
f

Y,

Then the following two triangles,

Z

k h

X(1)
−f (1)

Y,

and

Z(−1)
−k(−1) h

X
f

Y,

are, respectively, homotopy equivalent to the cone ofh and the cone of−k(−1).
(3) The prism axiom is a consequence of Lemma (2.4).
(4) We leave the verification of the octahedron axiom, and theverification of (2), as an

exercise.

(2.10). Clearly, with notations corresponding to the notations used for subcategories of
complexes, there are natural triangulated subcategories of Hot(A):

Hot+(A), Hot−(A), Hotb(A), HotC(A),

whereC in the last notation is a given thick subcategory ofA.
Of the general properties of triangulated categories we mention here the following:
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Homotopy Hot 2.7

Corollary. For any fixed complexA, the functor

HomHot(A)(A, − ) : Hot(A)→ Ab

is exact, that is, any exact triangle(2.8.1)induces a long exact sequence of groups,

· · · → HomHot(A, Y )→HomHot(A, Z)→HomHot(A,X(1))→HomHot(A, Y (1))→· · · .

In particular, for a morphism of complexesf : X → Y it follows that f is a homotopy
equivalence if and only if the cone off is contractible.

By the characterization in (2.4), a morphism of complexesf : X → Y is a homotopy
equivalence, if and only if for every objectA of A the induced morphism of complexes of
abelian groups HomA(A,X)→ HomA(A, Y ) is a quasi-isomorphism.

A special property of the triangulated category Hot(A) is that thep’th cohomology
Hp : Hot(A)→ Ab (for any fixedp) is an exact functor on Hot(A). Indeed,Hp(X(n)) =

Hp+n(X), and so the assertion follows from (1.7): For any exact triangle (2.8.1) there is an
induced long exact sequence inA:

· · · → Hp(Y )→ Hp(Z)→ Hp+1(X)→ Hp+1(Y )→ · · · .

Note also that the functor,

Hot(T ) : Hot(A)→ Hot(B),

for any given additive functorT : A → B, is exact, that is, it takes exact triangles to exact
triangles.

(2.11). Let f : X → Y be a morphism of complexes, and letZ be its cone. It follows
from the long exact sequence of cohomology thatf is a quasi-isomorphism if and only if
the coneZ is acyclic. It follows easily that the class of acyclic complexes, as a class in the
homotopy category, is a triangular subclass, and that the system of quasi-isomorphisms is the
corresponding system of morphisms. As a consequence we obtain the following result.

Proposition. The system of quasi-isomorphism is a saturated denominatorsystem in the
homotopy categoryHot(A).

We emphasize in particular thedenominator propertyand theequalizer property:
(LOC 1) Any pair of morphisms of complexess : X → X′ andf : X → Y wheres is a

quasi-isomorphism may be completed to a homotopy commutative diagram,

X
f

Y

s s′

X′
f ′

Y ′,

wheres ′ is a quasi-isomorphism. An conversely, iff ′ ands ′ are the given morphisms with
s ′ a quasi-isomorphism, then they may be completed withs, f to a homotopy commutative
diagram with a quasi-isomorphisms.

(LOC 2) If two morphisms of complexesf, g : X → Y are equalized up to homotopy
by a quasi-isomorphisms : X′ → X then they may be coequalized up to homotopy by a
quasi-isomorphismt : Y → Y ′.
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Hot 2.8 The homotopy categories

(2.12) The homotopy theorem of injectives.LetX ∈ A• be an acyclic complex andQ ∈ A+

a right complex of injective objects. Then any morphism of complexesf : X → Q is
homotopic to zero.

Proof. We have to construct a family of morphismss : X→ Q(−1) such thatf = s(1)∂ +
∂(−1)s. The morphismssp : Xp → Qp−1 will be constructed inductively. Consider the
equations in degrees at mostn,

f p−1 = sp∂p−1+ ∂psp−1 for p 6 n. (2.12.1)

SinceQ ∈ A+, we haveQp = 0 (andf p = 0) whenp ≪ 0. So, withsp := 0 for p ≪ 0,
we may assume that (2.12.1) holds whenn ≪ 0. Proceed by induction: Assume thesp are
defined forp 6 n such that (2.12.1) holds. We have to chosesn+1 such that the equation
in (2.12.1) holds forp = n + 1, that is, such thatf n = sn+1∂n + ∂n−1sn. Now, for the
morphismh := f n − ∂n−1sn : Xn→ Qn, we see that

h∂n−1
X = (f − ∂s)∂ = f ∂ − ∂s∂ = ∂(f − s∂) = ∂∂s = 0.

Henceh extends to a morphismh′ : Cok∂n−1
X → Qn. Now, asX is acyclic in degreen,

Cok∂n−1
X = Im ∂nX injects intoXn+1 andQ is injective. Therefore,h′ extends to a morphism

h′′ : Xn+1→ Qn. By construction,

h′′∂n = h = f n − ∂n−1sn.

Hencesn+1 := h′′ is the proper choice.

(2.13) Corollary. Every acyclic right complexQ of injectives is contractible. Every quasi-
isomorphismQ→ Q′ between right complexes of injectives is a homotopy equivalence.

Proof. To prove the first part, note that, by the Theorem, the identity 1Q is homotopic to zero;
henceQ is contractible by Characterization (2.4). Iff : Q → Q′ is a quasi-isomorphism,
then the cone off is a acyclic, since cohomology is an exact functor. Hence thesecond part
is a consequence of the first part.

(2.14) Corollary. LetA,B be objects and letX andQ be positive complexes overA andB
respectively, say with co-augmentationsε : A→ X andη : B → Q. Assume thatA→ X is
a resolution, that is, the mapping cone,

X : · · · → 0→ A
ε
X0 X1 X2 · · ·

is acyclic, and thatQ is a complex of injectives. Then any morphismf : A→ B extends to
a morphism of complexes̃f : X→ Q,

A
ε

X

f f̃

B
η

Q,
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andf̃ is unique up to homotopy.

Proof. The two compositions in the square are morphisms of complexes fromA, concentrated
in degree 0, to the positivecomplexQ. Therefore the two compositions are equal if and only if
they are homotopy equivalent. Thus the we are looking for morphismsf̃ making the diagram
commutative up to homotopy, that is, morphismsf̃ in the homotopy category such thatf̃ ε
is the given compositionηf .

By the preceding corollary, HomHot(X,Q) = 0. Hence, by the dual of the long exact
sequence of Corollary (2.10), the morphismε induces an isomorphism,

HomHot(X,Q)
∼−→ HomHot(A,Q),

So, the morphismεf on the right hand side is hit by a unique morphism on the left hand
sides.

(2.15) Exercises.
1. Let f : X → Y be a monomorphism of complexes, split monic in every degree.Let
W := Cokf andZ := Conf be the cokernel and the cone off . Prove that the induced
morphismZ→ W is a homotopy equivalence. [Hint: Use (1.6?) on the complexes obtained
by applying the functor Hom(A,− ).]

2. Let f : X → Y be a map of complexes. Then withZ := Conf there is a natural short
exact sequence, split in every degree,

0→ Y
h
Z

k
X(1)→ 0.

Consider the cone Conh of h. By the previous excercise, the induced morphism Conh →

X(1) is a homotopy equivalence, that is, an isomorphism in the homotopy category. So,
replacing Conh byX(1) we have obtained a homotopy cone,

Z

k h

X(1)
f (1)

Y.

The conclusion is incorrect, cf. the homotypy cones in Theorem (2.9)/2). Where is the error
in the argument?

3. In the second square of (2.6) the counter clocwise compositionZ′′ X′′ X is
determined by the following computations:

(1 0)(1 0)σ = (1, 0)

(
1 0 0 0
0 1 0 0

)
σ = (1 0 0 0)σ = (−1 0 0 0).

Explain the computations, especially the first equation.
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3. Bicomplexes.

(3.1) Definition. A bicomplexin A is a diagram,

...
...

· · · Xp,q+1 ∂1 Xp+1,q+1 · · ·

∂2 ∂2

· · · Xp,q
∂1

Xp+1,q · · · ,

...
...

(3.1.1)

of objectsXp,q and morphisms∂pq1 : Xp,q → Xp+1,q and∂pq2 : Xp,q → Xp,q+1 for p, q in
Z, such that

∂1∂1 = 0, ∂2∂2 = 0, ∂1∂2+ ∂2∂1 = 0. (3.1.2)

The first two equations mean that eachrow X•,q and eachcolumnXp,• is a complex. The
last equation means that each small square in the diagram is anticommutative; in particular,
the morphisms∂p,•1 do not define a morphism of complexesXp,•→ Xp+1,•.

There is an obvious abelian category of bicomplexes inA, denotedA•,•.

(3.2). The supportof a bicomplex is the set of pairs(p, q) ∈ Z × Z such thatXp,q 6= 0.
With restrictions on the support we obtain several natural subcategories of bicomplexes. For
instance, the categoryA+,>0 consists of all bicomplexes having support in a region of the
form [N,∞)× [0,∞) for some integerN . With similar notations we obtain subcategories
with support in regions as indicated on the figure:

A+,>0 A+,+ Ab,• A•,+

(3.3) The total complex. We denote byA•,•> the full subcategory ofA•,• consisting of
bicomplexesX such that on every the linep+ q = n there is only a finite number of nonzero
Xp,q . Note thatA•,•> includes any of the three first subcategories indicated on the figure in
(3.2), but not the fourth.

For everyX in A•,•> there is an associatedtotal complexTot(X) defined as follows: In
degreen,

Totn(X) =
∏

p+q=n

Xp,q , (3.3.1)
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and the differential∂ : Totn→ Totn+1 is the sum∂ = ∂1+∂2 of the two (diagonal) morphisms
determined by the two differentials∂1 and∂2. It follows from theequations (3.1.2) that∂∂ = 0.
So the total complex determines a functor, obviously exact,

Tot : A•,•> → A•.

Clearly, A+,+ andAb,• are contained inA•,•
>

, and restriction of the total complex functor
defines functors Tot :A+,+ → A+ andAb,• → A•.

A bicomplex has shifts in two directions: The primary shifted bicomplexX(1, 0) has
X(1, 0)p,q = Xp+1,q and both differentials are multiplied by−1; the secondary shiftX(0, 1)
is defined similarly. Clearly, ifX ∈ A

•,•
> then

Tot(X(1, 0)) = Tot(X(0, 1)) = Tot(X)(1). (3.3.1)

Clearly, if A has
∏

N
’s, the total complex may be defined by (3.3.1) for any bicomplex;

alternatively, the finite direct sum could be replaced by an infinite direct sum.

(3.4) Definition. It is often useful to view a bicomplex asbifamily, that is, a(Z×Z)-indexed
family X = (Xp,q) of objects, with two given morphisms of families∂1 : X→ X(1, 0) and
∂2 : X → X(0, 1) satisfying the equations in (3.1.2). Note that the functor Tot is defined on
the category of families corresponding toA•,•> . The differential in Tot(X), for a bicomplex
X ∈ A

•,•
> , is in fact the sum∂Tot = Tot(∂1)+ Tot(∂2).

(3.5) Commuting a bicomplex. In a bicomplexX, each columnXp,• is a complex, but the
differential∂1 : Xp,• → Xp+1,• is not a morphism of complexes since the small squares in
Diagram (3.1.1) are not commutative. In other words, a complex of complexes corresponds
to acommutativediagram (3.1.1) (with∂2

1 = ∂
2
2 = 0), and not to a bicomplex.

Since each small square in the diagram of a bicomplex is anticommutative, a sign change in
1 or 3 of its arrows will make the small square commutative. There are several conventions for
chosing sign changes that make the whole diagram of a bicomplex commutative, and hence
turn a bicomplex into a complex of complexes. The same choicewill then turn a complex of
complexes into a bicomplex.

A sign functionfor the Diagram (3.1.1) is a±1-valued functionε defined on the underlying
graph. So, for the two edges beginning atp, q the function has a valueεpq1 in the primary
direction and a valueεpq2 in the other direction. The sign function isodd, resp.even, if for
any small square of the diagram the product of the four signs corresponding to the four edges
is equal to−1, resp. equal to 1.

Let ε be sign function. For any diagramX of the form (3.1.1), denote byεX the diagram
obtained fromX by multiplying the morphism∂p,qi with the sign determined byε, that is,

ε∂
p,q

i := εp,qi ∂
p,q

i , i = 1, 2.
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Observation 1. If ε is an even sign function, then there is a canonical choice of signsαp,q =
±1 for all p, q ∈ Z such thatα0,0 = 1 and such that for any diagramX of the form(3.1.1)
multiplication byαp,q in Xp,q defines an isomorphismX ∼−→ εX.

Proof. Defineαp,q as follows: Choose a path from(0, 0) to (p, q) in the graph underlying
the diagram, and letαp,q be the product of the signs given byε on the edges in the path. The
product is independent of the choice, sinceε is even. As a consequence,αp+1,q = ε

p,q
1 αp,q ,

and it follows thatα∂1 = ε∂1α and, similarly,α∂2 = ε∂2α. Henceα : X→ εX is a morphism
of diagrams.

Observation 2. Let ε be an odd sign function. IfX is a complex of complexes, thenεX is
bicomplex. Ifη is a second odd sign function, then the bicomplexesεX andηX are canonically
isomorphic.

Proof. The first assertion is immediate, the second follows from Observation 1, sinceη/ε is
even and transformsεX into ηX.

An odd sign functionε transforms a complex of complexesX into a bicomplexεX, and
X 7→ εX is obviously a functor isomorphism(A•)• ∼−→A•,•. We denote by(A•)•

>
the

subcategory ofA•)• corresponding toA•,•> . For a complex of complexesX in (A•)•
>

, the total
complex Totε(X) := Tot(εX) is defined. Clearly,X 7→ Totε X is a functor,

Totε : (A•)•
>
→ A•.

A different odd sign function defines a functor Totη which, by Observation 2, is canonically
isomorphic to Totε. In fact, the two complexes Totε X andT otηX have the same degreen
component

⊕
p+q=nX

p,q , and the isomorphism is given by a diagonal automorphism with
the signs±1.

In the sequel we use the following sign function,

ε
p,q
i =

{
1 if i = 1,

(−1)p if i = 2.
(3.5.1)

Its effect on a diagram (3.1.1) is to multiply all the differentials in the odd columns by−1.

(3.6) Lemma. The functorTotε : (A•)•
>
→ A•, whereε is the sign function(3.5.1), commutes

with shifts, commutes with the formation of the cone, and respects homotopy.

Proof. The first assertion is the equality, for a complexX in (A•)•
>

,

Totε(X(1)) = (Totε(X))(1); (3.6.1)

the shift on the left side is theprimary shift: X is a complex· · · → Xp
∂1 Xp+1→ · · · with

a differential (called the primary differential). In turn eachXp, being a complex, is viewed as
column, with a differential∂2, called the secondary differential. The primary shift moves the
Xp and multiplies the differential∂1 by−1. The columns inX of even index are placed in
odd degrees inX(1), and so, when formingε(X(1)), their differentials are multiplied by−1.
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Hot 3.4 The homotopy categories

So, compared with the differentials ofεX, all differentials ofε(X(1)) have been multiplied
by−1. In other words,ε(X(1)) = εX(1, 0). Hence (3.6.1) follows from (3.3.1).

Consider next a morphismf : X → Y of complexes(A•)•
>

and its mapping coneZ =
X(1)⊕ Y . As a bifamily we haveZ = X(1, 0)⊕ Y ; the primary and secondary differentials
of Z are:

∂1 =

(
−∂X,1 0
f ∂Y,1

)
and∂2 =

(
∂X,2 0

0 ∂Y,2

)

Passing to the bicomplexεZ, the primary differential is unchanged:ε∂1 = ∂1; in the secondary
differential, for a column of degreeq, the differential∂X,2 is in a column of degreeq +1 and
∂Y,2 is in a column of degreeq. So the secondary differential is changed to the following,

ε∂Z,2 =

(
ε∂X,2 0

0 ε∂Y,2

)

Apply the functor Tot, and add the Tot of the two differentials: It follows that Totε Z is the
family (TotX)(1)⊕ TotY with the differential,

ε∂TotZ =

(
−Tot ε∂X,1− Tot ε∂X,2 0

Totf Tot ǫ∂Y,1+ Tot ε∂Y,2

)
,

which is the differential of the cone of Tot(f ) : Totε(X)→ Totε(Y ).
Finally, assume thatf : X → Y is null homotopic as a morphism of complexes, say

f = ∂Y s + s∂X wheres is a family of morphismss : X → Y(−1) that is, a family of
morphismss : Xp → Yp−1. Note that each ofXp andYp−1 is a complex, and sos is a
morphism of complexes. In other words,s commutes with the secondary differentials,

s∂X,2 = ∂Y,2s.

Now, passing fromX andY to the bicomplexesεX and εY , the differentials ofXp and
Yp−1 are multiplied with opposite signs. Hence commutation becomes anti-commutation,
s ε∂X,2+ ε∂Y,2s = 0., and it follows that

Tot s Tot ε∂X,2+ Tot ε∂Y,2 Tot s = 0.

Hence

Tot(f ) = Tot(∂1s + s∂1) = Tot(∂1s + s∂1+ s∂2+ ∂2s) = ∂Tot Tot s + Tot s ∂Tot,

and Totf is null homotopic.

(3.7) The Column Theorem. If a bicomplexX in A•,•> has acyclic columns, then the total
complexTot(X) is acyclic. If, in a complex of complexesX ∈ (A•)•

>
, each componentXp

is an acyclic complex, theTotε X is acyclic.
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Proof. Clearly, the two assertions are equivalent. We prove the second. Consider, as in
Hot(1.9) the truncated complexesX>p and the mapping cone,

X>p

Xp(−p−1) ∂
X>p.

(3.7.2)

Each vertex is a complex of complexes. Apply the functor Totε. The lower left vertex is
the complex havingXp concentrated in degreep + 1. It follows from the Lemma that
Totε Xp(−p− 1) is the internal shiftXp(−p− 1) of the complexXp. So the Lemma yields
this mapping cone:

Totε X>p

Xp(−p − 1) ∂ Totε X>p.

(3.7.2)

By hypothesis, the lower left vertex is acyclic. Therefore,by the long exact cohomology
sequence of the cone, we obtain for all integersn an isomorphism,

H n(Totε X
>p) ∼−→H n(Totε X

>p).

NowX is in (A•)•
>

. So, for a fixedn there are only finitely many nonzero componentsXp,q

on the linesp+ q = n− 1,p+ q = n, andp+ q = n+ 1. It follows, whenp ≪ 0 that the
complexes Totε X and Totε X>p have the same components of degreesn− 1, n, andn+ 1;
in particular, they have the same degree-n cohomology. Similarly, it follows forp ≫ 0 that
Totε X>p vanishes in degreen; in particular, its degree-n cohomology vanishes. Hence, with
p ≪ 0 andp′ ≫ 0,

H n(Totε(X)) = H
n(Totε(X

>p)) = · · · = H n(Totε(X
>p′)) = 0.

Therefore Totε(X) is acyclic.

Naturally there is a correspondingRow Theorem; it may be obtained from the bicomplex
version of the Column Theorem by interchanging rows and columns.

(3.7) The Row Theorem.If a bicomplexX in A
•,•
> has acyclic rows, then the total complex

Tot(X) is acyclic. IfX is an acyclic complex of complexesX ∈ (A•)•
>

, thenTotε X is acyclic.

(3.8). Assume there is given an additive subclassQ ⊆ A such that every objectA of A admits
a monomorphismA →֒ Q into an objectQ of Q. Then every objectA has a resolution with
objects fromQ, that is, an exact sequence,

0→ A
∂
Q0 ∂0

Q1 ∂1
Q2 · · · , (3.8.1)

withQi in Q. Indeed, the construction is inductive: Take a monomorphism∂ : A →֒ Q0 into
an objectQ0 of Q. LetA1 be the cokernel of∂ , and take a monomorphismA1 →֒ Q1 into
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an object ofQ. Let ∂1 be the compositionQ0 → A1 → Q1, and letA2 be the cokernel of
∂1. Continue by induction.

An additive classR ⊆ A is said to have (right) dimensionat mostN if, for every exact
sequence,

R0 ∂0 · · · RN−1 R 0,

such that the firstN objectsR0, . . . , RN−1 belong toR, also the last objectR belongs toR.
Clearly, if the additive classQ is of dimension at mostN , then the resolution (3.8.1) may be
taken to be of length at mostN , that is, withQi = 0 for i > N .

The condition forN = 0 means thatQ = A; for N = 1 it means that any quotient of an
object inQ belongs toQ.

(3.9) Lemma. Assume the conditions of(3.8)for the classQ. Then, every complexX in A•

admits a monomorphismX→ Y into a contractible complexY of objects fromQ, and every
positive complex admits a monomorphism into a positive complex of objects ofQ.

Proof. Chose for everyn a monomorphismιn : Xn →֒ Qn into an objectQn of Q. LetQ
be the family of objectsQn, and viewQ as a complex with zero differentials. LetY be the
mapping cone of the identity ofQ. Then

Y n =

Qn+1

⊕

Qn
, ∂Y =

(
0 0
1 0

)
,

andY is contractible. Moreover, the family
(
ι∂
ι

)
is a morphism of complexesX → Y , and

obviously a monomorphism.
If X ∈ A>0, we may takeQn = 0 for n > 0. ThenQ ∈ A>0, but Y hasQ0 as

a component in degree−1. However, truncation of the negative components, that is,the
redefinitionY n := 0 for n < 0, yields a positive complexY , as desired.

(3.10) The Density Theorem.Assume the conditions of(3.8) for the classQ. Then every
positive complexX in A>0 admits a quasi-isomorphismX ∼−→Y into a positive complexY
of objects ofQ. Moreover, ifQ is of finite dimension, then every complex inA• admits a
quasi-isomorphism into a complex of objects fromQ.

Proof. It follows from the Lemma thatX admits a monomorphism into a positive complex of
objects ofQ. Therefore, by the observation at the beginning of (???), applied to the abelian
categoryA>0 and the classQ>0, there is a resolution (3.8.1) ofX by objectsY n ∈ Q>0.
The resolution is the cone of the morphismX(0)→ Y , fromX as a complex concentrated in
degree 0 to the positive complexY ∈ (A>0)>0. This cone belongs to(A>0)+ ⊆ A•,•> , and,
by construction, its rows are exact. Therefore, the total complex of the cone is exact. So the
morphismX→ Tot(Y ) has exact cone. Consequently,X→ Tot(Y ) is a quasi-isomorphism.
Since Tot(Y ) is a positive complex with objects inQ, the first assertion has been verified.

The proof of the second assertion is similar: IfQ has dimension at mostN , then the class
of complexesQ• in A• has dimension of mostN . So the resolutionY may be taken to be a
finite resolution, of length at mostN . So the cone ofX → Y belongs to(A•)b ⊆ A

•,•
> . The

rest of the argument is identical to the argument of the first assertion.
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(3.11) Example. Fix a complexX ∈ A•. Recall that for an objectB of A we denote by
Hom•(X, B) the complex defined in Hot(1.13) (with the sign conventions on the differential).
The construction is clearly functorial inB, so it defines a functorA→ Ab•. Extending it to
complexes, we obtain a functor

A• → (Ab•)•.

It associates with complex of complexesY = · · · → Yp−1 → Yp → Yp+1 → · · · the
following complex of complexes,

· · · → Hom•(X, Yp−1)→ Hom•(X, Yp)→ Hom•(X, Yp+1)→ · · · .

Its degree-(p, q) term is the abelian group HomA(X−q , Yp). The categoryAb has infinite
products, so the total complex is defined for an arbitrary bicomplex. It is easy to that the total
complex of this bicomplex is the complex Hom•(X, Y ) defined in (1.10).
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4. Multicomplexes.

5. Additive functors.

6. Standard filtrations.
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Derivable functors in abelian categories

Let A andB be abelian categories.

1. The classical sequence of derived functors.

(1.0) Setup.An additive functorT : A→ B has obvious extensions to functors of complexes,

T : A• → B•, T : A+ → B+, etc.,

and to triangular functors on the homotopy categories,

T : Hot(A)→ Hot(B), T : Hot+(A)→ Hot+(B), etc.,

(1.1) Definition. An additive functorT : A → B is calledright uniformly derivable, or
simplyderivable, if there exists an additive classQ of objectsA satisfying the following two
conditions:

(i) Every objectA of A admits a monomorphismA →֒ Q into an object ofQ.
(ii) If U is an exact right complex of objects inQ, then the complexTU is exact.

A classQ with the two properties is said to beT -unfolding.
Note that the first condition is independent of the functorT ; we shall refer til the condition

by saying that the classQ is a (right)dense subclassof A.
If T is derivable, then then’th derived functorRnT is defined on a right complexX as

follows: Chose a quasi-isomorphisms : X→ U into a right complexU of objects from the
T -unfolding classQ; this is possible by The Density Theorem Hot(3.10). DefineRnT (X)

as then’th cohomology,
RnT (X) := H nT U. (1.1.1)

Note that the morphisms induces a morphismTX → T U and hence a morphism of coho-
mology

H n(T X)→ RnT (X). (1.1.2)

It is important to notice the following consequence of condition (2): If s : U → U ′ is a
quasi-isomorphism between right complexes of objects fromQ, thenT s : TU → T U ′ is a
quasi-isomorphism. Indeed, the cone ofU → U ′ is acyclic with objects inQ. Hence the
cone ofT U → T U ′ is acyclic by (2). Therefore,T U → T U ′ is a quasi-isomorphism.
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(1.2) Proposition. Assume thatT : A → B is derivable. Then the formation of the ob-
jectRnT (X), for right complexesX, determines a well-defined, triangular functor from the
triangulated homotopy category to the abelian categoryB,

RnT : Hot+(A)→ B.

Moreover, a quasi-isomorphismX → Y induces an isomorphismRnT (X) ∼−→RnT (Y ).
Finally, with respect to shifts, we have the equalityRnT (X) = R0T (X(n)).

Proof. Consider, in the first part of the proof, a morphismf : X → X′ of complexes inA+.
Chose quasi-isomorphismss : X→ U ands ′ : X′→ U ′ withU,U ′ ∈ Q+. We have to prove
that there is a natural morphismH n(T U) → H n(T U ′), depending only on the homotopy
class off . Apply the left denominator property Hot(2.8)(LOC 1) to themorphismss and
s ′f to obtain a homotopy commutative diagram inA+, with a quasi-isomorphismt ,

X
f

X′
s′

U ′

s t

U
h

V .

. (1.2.1)

There is a quasi-isomorphism fromV to a right complex inQ+; ReplacingV by the target,
we may assume thatV ∈ Q+. ThenT t is a quasi-isomorphismTU ′ → T V , and we define
H n(T U)→ H n(T U ′) as the composition, denotedh∗ for simplicity,

h∗ : H
n(T U)

H n(T h)
H n(T V )

H n(T t)−1

H n(T U ′).

We claim that the morphismh∗ : H n(T U)→ H n(T U ′) is independent of the diagram (1.2.1).
Indeed, consider a second homotopy commutative diagram, say with morphismŝh : U → V̂

and t̂ : U ′ → V̂ , and the corresponding morphism̂h∗. The equalityh∗ = ĥ∗ is obvious,
if the second diagram is obtained from the first by replacingV with the target of a quasi-
isomorphismV → V̂ . In general, apply the left denominator property Hot(2.8)(LOC 1) to the
morphismst : U ′→ V andt̂ : U ′→ V̂ . It follows, replacing if necessaryV andV̂ by targets
under quasi-isomorphisms, that we may assume in the homotopy category thatV = V̂ and
t = t̂. So it remains to prove thatH n(T h) = H n(T ĥ) if h, ĥ : U → V both make the diagram
(1.2.1) homotopy commutative. If this is the case, thenh andĥ are equalized in the homotopy
category by the quasi-isomorphisms. So, by equalizer property Hot(2.8)(LOC 1),h andĥ
are coequalized by a quasi-isomorphismu : V → Ṽ . ReplacingṼ by the target of a quasi-
isomorphism, we may assume thatṼ is inQ+. ThenT u is a quasi-isomorphism coequalizing
T h andT ĥ. ThereforeH n(T h) andH n(T ĥ) are coequalized by the isomorphismH n(T u).
HenceH n(T h) = H n(T ĥ).

TakeX′ = X andf = 1X in this result. In particular, then the top morphism in diagram
(1.2.1) is a quasi-isomorphism. Hence the bottom morphismh is a quasi-isomorphism. Con-
sequently,T h is a quasi-isomorphism, and the induced morphism is a canonical isomorphism
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H n(T U) ∼−→H n(T U ′). In other words, the objectRnT (X) := H n(T U) is well-defined.
Again, by the result in the first part,X 7→ RnT (X) is functor on the homotopy category,
since the diagram (1.2.1) is only assumed to be commutative up to homotopy.

To prove thatRnT is triangular, that is, takes exact triangles to exact sequences, consider an
exact triangle in the homotopy category Hot+(A). We may assume that the third vertexX′′ is
the cone of a morphismf : X→ X′ of complexes inA+. Chose a quasi-isomorphismX→ U

into a complexU ∈ Q+. By the left denominator property Hot(2.11)(LOC 1) there isa
commutative square in the homotopy category, with a quasi-isomorphisms ′,

X
f

X′

s s′

U
h

U ′.

We may assume thatU ′ ∈ Q+. LetU ′′ be the cone ofh. ThenU ′′ ∈ Q+, and the diagram
extends with a morphisms ′′ : X′′ → U ′′ to a morphism of triangles. As the two morphisms
s ands ′ are quasi-isomorphisms, so is the third. So, the sequenceRnT (X)→ RnT (X′)→

RnT (X′′) is, by definition, the sequence,H n(T U)→ H n(T U ′)→ H n(T U ′′) which is part
of the long exact cohomology sequence of the cone ofh, and hence exact.

Finally, it results immediately from the definition, that ifX→ Y is a quasi-isomorphism,
thenRnT (X)→ RnT (Y ) is an isomorphism.

(1.3) Notes. (1) If the categoryA has enough injectives, then the class of injectives is
unfolding for any additive functorT . Indeed, take asQ the class of injective objects ofA.
Then condition (i) is exactly the condition of having enoughinjectives. And (ii) is automatic,
because an acyclic right complexU of injectives is contractible; henceT U is contractible,
and hence acyclic.

(2) The derived functorsRnT are, in particular, defined on complexes concentrated in
degree 0, that is, they define functors,

RnT : A→ B.

To obtain the valueRnT (A) for an objectA ∈ A, choose a resolution,

0→ A→ Q0→ Q1→ · · · ,

withQi ∈ Q (this is possible by (i)). It defines a quasi-isomorphismA→ Q, andRnT (A) =
H n(TQ). Note that the morphism (1.1.1) forn = 0 is a transformation of functors,

TA→ R0T (A). (1.3.1)

The sequence 0→ A → Q0 → Q1 is left exact. Hence (1.3.1) is an isomorphism ifT is
left exact.
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(1.4) Properties of derived functors.Let us emphasize that the exactness part of Proposition
(1.2), given the commutation with respect to shifts, is the following assertion: Assume that
T : A→ B is derivable. Then every exact triangle in the homotopy category Hot+(A),

Z

w v

X
u

Y,

induces a long exact sequence connecting the functorsRnT :

· · ·

RnT (X)→ RnT (Y )→ RnT (Z)

Rn+1T (X)→ Rn+1T (Y )→ Rn+1T (Z)

· · ·

Several important properties are straight forward consequences of the definition. For
instance: IfX is a complex inA>N , thenRiT (X) = 0 for i < N . In particular, ifA is an
object ofA, thenRnT (A) = 0 for n < 0.

The most important is the following property, immediate from the definition:

Theorem. A quasi-isomorphismX → Y of complexes inA+ induces an isomorphism of
then’th derived functorRnT (X) ∼−→RnT (Y ).

For a short exact sequence 0→ X′→ X→ X′′→ 0 of complexes inA+, there is a long
exact sequence similar to the one above,

· · · →RnT (X′)→ RnT (X)→ RnT (X′′)

Rn+1T (X′)→ Rn+1T (X)→ Rn+1T (X′′)→ · · ·

Indeed, letZ be the cone of the morphismX′ → X. Then the induced morphismZ → X′′

is a quasi-isomorphism. By the theorem, the induced morphism RnT (Z) → RnT (X′′) are
isomorphisms. Hence the second long exact sequence is obtained from the first by replacing,
for eachn, RnT (Z) byRnT (X′′).

In particular, when applied to a short exact sequence 0→ A′→ A→ A′′→ 0 of objects
of A, it follows that the functorR0T : A→ B is left exact. Hence, the morphismT → R0T

is an isomorphism if (as noted in (1.3)(2)) and only ifT is left exact.

(1.5) Acyclic objects. If T : A→ B is derivable, then an objectQ of A is calledT -acyclic
if TQ→ R0T (Q) is an isomorphism andRnT (Q) = 0 for n > 0. Clearly, any object from
the givenT -unfolding class isT -acyclic. Conversely, we have the following assertion. It is
part of the assertion that the derived functorRnT is independent of the unfolding class that
is part of its definition.
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Observation. If T : A→ B is derivable, then the class ofT -acyclic objects isT -unfolding,
and it may be used in the computation of the derived functorsRnT .

Proof. Let Q be aT -unfolding class.
Weprovefirst forany right complexU consisting ofT -acyclicobjectsU i that themorphism

of (1.1.2) is an isomorphism:
H n(T U)→ RnT (U). (1.5.1)

Assume for simplicity thatU is positive:U i = 0 for i < 0. Recall that a quasi-isomorphism
fromU to a positive complex of objects fromQ may be obtained as follows: There exists an
exact sequence of positive complexes withU i ∈ Q>0:

· · · → 0→ U → U0→ U1→ U2→ · · · , (1.5.1)

and thenU → TotU • is the required quasi-isomorphism; in particular, thenRnT (U) =
H n(T TotU •). Thei’th row in (1.5.1) is a resolution ofU i . Apply the functorT to (1.5.1).
Since eachU j is T -acyclic, the resultingi’th row is still exact. Consequently,T U →
T TotU • is a quasi-isomorphism. Whence, (1.5.1) is an isomorphism.

Assume now thatU is an exact right complex ofT -acyclic objects. Then the zero-
morphismU → 0 is a quasi-isomorphism. So, by (1.4), we haveRnT (U) = 0. Therefore,
by the isomorphism (1.5.1),TU is exact. So condition (ii) holds for the class ofT -acyclic
objects. Moreover, condition (i) holds, because it holds for the classQ.

So the class ofT -acyclic objects isT -unfolding. If s : X → U is quasi-isomorphism of
right complexes andU is a complex ofT -acyclic objects, thenRnT (X) ∼−→RnT (U) since
s is a quasi-isomorphism, andRnT (U) = H n(T U) by (1.5.1). SoRnT (X) could have been
defined as the cohomology ofTU .

(1.6) Definition. Let T : A → B be an additive functor. LetT • be a positive complex of
additive functors fromA to B,

5• : · · · → 0→ 50→ 51→ 52→ · · · ,

with a givencoaugmentationǫ : T → 5•. So each5i is an additive functorA→ B, and the
composition5n → 5n+1→ 5n+2 is zero. In addition, the coaugmentation is a morphism
of functorsǫ : T → 50 such that the compositionT → 50 → 51 is zero. Note that5•

extends to complexes: IfX ∈ A• is a complex, then each5i(X) is a complex inB•, and

5•(X) : · · · → 0→ 50(X)→ 51(X)→ 52(X)→ · · ·

is a complex of complexes. IfX ∈ A+, sayX ∈ A>N , then each5i(X) belongs toA>N ;
hence5•(X) ∈ (A•)•

>
and we may form the associated total complex. ViewingTX as

a complex of complexes concentrated in degree 0, the coaugmentation is a morphism of
complexes (of complexes)ǫX : TX→ 5•(X), and it induces a morphism of total complexes:

ǫX : TX→ Tot5•(X). (1.6.1)
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The complex of functors5 with the coaugmentationǫ : T → 5• is called anexact
resolvent complexfor T , if the following two conditions hold:

(i) Every objectA of A embeds into an objectQ such that the following sequence is exact:

0→ T (Q)→ 50(Q)→ 51(Q)→ · · · . (1.6.2)

(ii) Each functor5i is exact.

(1.7) Theorem. Assume that the additive functorT : A→ B has an exact resolvent complex
ǫ : T → 5•. ThenT is derivable, and, for any complexX in A+ and any integern, there is
a canonical isomorphism inB,

RnT (X) ≃ H n(Tot5•(X)). (1.7.1)

Moreover, the classQ of objectsQ such that the sequence(1.6.2)is exact is equal to the class
of T -acyclic objects.

Proof. First, for any complexX ∈ A+ consider the complex of complexes,

5
•
(X) : · · · → 0→ TX→ 50(X)→ 51(X)→ · · · ,

with TX in degree−1. The coaugmentationǫ : TX→ 5•(X) is a morphism of complexes
(of complexes), and5

•
(X) is its mapping cone. Hence Tot5

•
(X) is the mapping cone of

the morphismεX in (1.6.1).
Now we make the following two observations:
(a) If Z ∈ A+ is an exact complex then, by condition (ii), the complex5•(Z) has exact

columns. Hence, by the Column Theorem, the complex Tot5(Z) is exact. As a consequence,
since Tot5• preserves cones, ifX → Y is a quasi-isomorphism of complexes inA+, then
Tot5•(X)→ Tot5•(Y ) is a quasi-isomorphism.

(b) Let U be a right complex of objects fromQ. Then the complex5
•
(U) has exact

rows. Hence, by the Row Theorem, Tot5
•
(U) is exact. The latter complex is the cone of

the morphismεU . Therefore, the morphismεU of (1.6.1) is a quasi-isomorphism.
Now, consider an exact right complexU of objects fromQ. It follows from (b) that

εU : T U → Tot5•(U) is a quasi-isomorphism, and it follows from (a) that Tot5(U) is
exact. Therefore,T U is exact. Hence condition (1.2)(ii) is satisfied. Since condition (1.2)(ii)
is part of the hypothesis, it follows that the classQ is T -unfolded.

LetX be a right complex and choose a quasi-isomorphisms : X → U into a right com-
plexU of objects fromQ. Then we have the following commutative diagram of degree-n

cohomology,
H n(T X)

ǫX H n(Tot5•(X))

s ≀ s

H n(T U)
ǫU
∼ H n(Tot5•(U)).
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The left vertical morphisms is an isomorphism sinceTX → TU is a quasi-isomorphism
by (a). The lower horizontal morphismεU is an isomorphism, sinceT U → Tot5•(U) is a
quasi-isomorphism by (b). Composition of the isomorphismsyields the isomorphism (1.7.1):

RnT (X) = H n(T U) ∼ H n(Tot5•(U)) ∼ H n(Tot5•(X)).

When the complexX is an objectQ ∈ A, concentrated in degree 0, the total complex
Tot5•(X) is simply the complex5•(A). So, by the isomorphism above, we have that
RnT (Q) = H n(5•(Q)). HenceQ is T -acyclic if and only if the sequence (1.6.2) is exact,
that is, if and only ifQ ∈ Q.

(1.8) Confusing example.LetA := B• be the abelian category of complexes inB. Consider
the following two functors:

I,K : A→ B,

given by I (A) = Im(A−1 → A0) andK(A) := Ker(A0 → A1). Let 5•(A) be the
truncated complex5•(A) = A>0, and view5• as the complex of functors5n : A → B,
given by5n(A) = An for n = 0, 1, . . . . So each functor5n is exact. With the obvious
coaugmentations given by the inclusionsI (A) →֒ K(A) →֒ A0, the complex5• is a
resolvent complex for both functorsI andK. Indeed, every objectA of A embeds into an
acyclic objectQ (for instanceA embeds into the mapping cone of the identity ofA, and
the mapping cone is even contractible), and it suffices to note that the sequence (1.6.2), for
T = K is exact ifQ is acyclic in positive degrees, and forT = I is exact ifQ is acyclic in
nonnegative degrees.

In particular, it follows that then’the cohomology of an objectA in B•, for n > 1, is the
n’th derived functor,

RnI (A) = RnK(A) = H n(A).

Forn = 0, we have thatR0I (A) = R0K(A) = K(A).
Note that the derived functorsRnK are defined on right complexes inX ∈ A+, that is, on

the category((B)•)+ of right complexes of complexes inB. It follows from the description
i (1.7) that ifX ∈ (B>0)+, then the valueRnK(X) is equalH n(TotX) for all n.

(1.9) Remark. An exact resolvent complex for the identity functor 1 ofA,

· · · → 0→ 1→ 50→ 51→ · · · (1.9.1)

is also called an (exact)resolutionof the identity, since, for instance by the theorem, the
sequence (1.9.1) is necessarily exact. Consider the following condition: Every objectA of A

embeds into an objectQ such that the sequence,

· · · → 0→ Q→ 50Q→ 51Q→ . . . ,

is contractible (in the terminology of relative abelian categories the sequence (1.9.1) is a
relative resolvent complex for the identity). Clearly, under this condition, if T : A → B is
any additive functor such that all the functorsT5n are exact, thenT → T5• is an exact
resolvent complex forT (in fact, a relatively exact resolvent complex).
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(1.10) Example. LetB be an object ofA with a projective resolutionP → B,

· · · → P2→ P1→ P0→ B → 0→ · · · .

Consider the functorT = Hom(B,−). Then there is aT -augmented complex of functors
A→ Ab,

· · · → 0→ Hom(B,−)→ Hom(P0,−)→ Hom(P1,−)→ · · · ,

and each functor Hom(Pi,−) is exact. The complex is a resolvent complex for Hom(B,−),
if and only if Hom(B,−) is derivable (for instance, ifA has enough injectives).

Note that in any case, the cohomologyH n Tot Hom(P,X), for any complexX ∈ A+

(in fact, for any complexX ∈ A• if Tot of a bicomplex of abelian groups is determined by
products), is the ext-group,

H n Tot Hom(P,X) = Extn(B,X).

Indeed, we have the equalities,

Extn(B,X) = HomD(B,X(n))
∼−→ HomD(P,X(n))

= HomHot(P,X(n)) = H
n Hom•A(P,X) = H

n Tot HomA(P,X).

The first is the definition of the ext-group as the hom-group inthe derived categoryD =
D(A), the second holds becauseP → B is a quasi-isomorphism, the third holds because
P is a left complex of projectives, the fourth holds by definition of the homotopy category
Hot = Hot(A), and the last holds by the definition of Hom• as Tot of a bicomplex.
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2. Derived categories of complexes.

(2.1) Setup.Recall that the homotopy categories Hot(A) and Hot+(A) of complexes and of
right complexes are triangulated categories. A morphism isa quasi-isomorphism if it induces
an isomorphism in cohomology, or, equivalently, if its coneis acyclic.

The class of quasi-isomorphisms is a saturated denomonatorsystem in the homotopy
category. Thefull derived categoryof A is the category obtained by localizing the homotopy
category Hot(A) at the class of quasi-isomorphisms; it is denoted D(A). The objects of D(A)
are the complexesX of objects ofA. The morphisms in D(A) fromX toY are represented by
pairs(s, f ), wheres : Y → YtX→ is a quasi-isomorphism, andf : X→ Yt is a morphism
of complexes. The well-known equivalence relation of pairstakes into account that the
localization is obtained from the homotopy category where the morphisms are homotopy
classes of morphisms of complexes.

A similar derived category D+(A) is obtained by localizing Hot+(A) at the class of
quasi-isomorphisms. The subcategory Hot+(A) of Hot(A) is localizing with respect to
quasi-isomorphisms: IfX is a right complex ands : X → X′ is a quasi-isomorphism into
an arbitrary complexX′, then there exists a right complexX′′ and a quasi-isomorphism
t : X′→ X′′. As a consequence, the derived from Hot+(A) is a full subcategory,

D+(A) ⊆ D(A).

3. The functors Ext and RHom.
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Simplicial cohomology

1. The basic simplicial categories.

The categories(s), (ss), and(sss). Simplicial objects. Simplicial sets. Augmentation.
Simplicial categories. The associated complex, and its cohomology. Simple retraction.

143



ss 2.0 Simplicial cohomology

144



Basic examples ss 2.1

2. Basic examples.

The functor [ ]s: (s)→ (GrCat), [ ]ss: (ss)→ (Cat), [ ]sss: (sss)→ (PreCat).

Powers: The co-s-objectn 7→ A[n] , thes-objectn 7→ A⊕[n] ; the notationA⊕I indicates
the direct sum (the co-product) of anI -indexed family of objects all equal toA).

The functorsn 7→ R
[n] andn 7→ R

⊕[n] . Then notationR⊕I is rather ambigous, since it
depends on the category in whichR is considered as an object. In the context here we will
think of the abelian category ofR-modules. In particular, then for finite sets we may identify
R
I andR

⊕I , but the dependencies onI are different: the formation ofRI is contravariant in
I , that ofR⊕I is covariant inI .

For instance, for a morphismϕ : n → p in s, that is, a map of setsϕ : [n] → [p], there
are induced morphism morphimsϕ : R

⊕[n] → R
⊕[p] andϕ∗ : R

[p] → R
[n] ; they are given,

respectively, by

ϕ(t0, . . . , tn) = (u0, . . . , up), ui =
∑

ϕ(j)=i

tϕj ;

ϕ∗(u0, . . . , up) = (t0, . . . , tn), tj = uϕj .

n 7→ 1nsing= { t ∈ R
[n] | tj > 0,

∑
tj = 1 }

subfunctor ofn 7→ R
⊕[n] .

The functor
[ ] : (ss)→ (Cat).

For any small categoryI , let CI = Funct(I,C) denote the category of functorsI → C.
Its objects are the functorsI → C, and its morphisms are the transformation of functors.
The formation is contravariant inI : for any functorϕ : J → I , there is an induced functor
CI → CJ . If K andJ are small categories, thenKI = Funct(I,K) is a set; so we obtain at
categoryCat of small categories such that

KI = Funct(I,K) = HomCat(I,K);

in particular, each Hom-set in(Cat) is a category.
For any small categoryI , we obtain anss-object in(Cat):

n 7→ I [n] = HomCat([n], I ).

The categoryI [n] has as objects the set of alln-stringsof I :

i0→ · · · → in
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For any small categoryI , let I∗ be the category,

I∗ = HomCat(I, [1]ss).

Note that an object inI∗ is a division of the objects ofI into two disjoint classes,I = I0∪ I1,
with the property that there are no arrows from an object inI1 to an object inI0.

Let (Cat00) be the category of small categories with chosen extremal objects (an initial
object and a terminal object); the morphisms in(Cat00) are the functors preserving the
extremal objects. Clearly, for two objectsI, J in (Cat00), we may view the Hom-set,

HomCat00(I, J ) ⊆ HomCat(I, J ),

as a full subcategory.
Note thatI∗ is in (Cat00): its two extremal objects are the two constant functors. So we

may viewI 7→ I∗ as a contravariant functor(Cat)→ (Cat00). By composition, we obtain
a contravariant functor,

(ss) [ ]
(Cat)

( )∗

(Cat00),

and hence for everyJ in (Cat00) a co-ss-category,

n 7→ HomCat([n]∗, J ).

Note that the elements of [n]∗ are the increasing maps [n] → [1]. For 0 6 i 6 n + 1, let
i∗ : [n] → [1] be the increasing map such thati∗(x) = 0 for x < i andi∗(x) = 1 otherwise
(in particular, 0∗ is the constant map 1, and(n+ 1)∗ is the constant map 0). Then [n]∗ is the
ordered set,

[n]∗ = { (n+ 1)∗ < n∗ < · · · < 0∗ }

In other words, the objects of the category HomCat00([n]∗, J ) is the category ofterminated
n-stringsof j ,

a→ jn→ · · · j1→ b,

wherea andb are the terminal objects ofJ .
WhenJ = [0, 1] is the unit interval as an ordered set we obtain the description,

HomCat00([n]∗, [0, 1]) = {(tn, . . . , t1) | 0 6 tn 6 · · · 6 t1 6 1},

4. 2.20 (1) Prove that the two contravariant functors,(Cat)→ (Cat00)and(Cat00)→ (Cat),
are adjoint:

HomCat(I, J
∗) = HomCat00(J, I

∗).

(2) Prove that [n]∗∗ = [n] for n = −1, 0, . . . .
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3. Simplicial sets.

4. Homology of simplicial sets. Acyclic simplicial sets.
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5. Standard resolutions and canonical resolutions.

(5.1) The star product. Consider functorsF,G : K → K′ andF ′, G′ : K′ → K′′. Let
ϕ : F → G andϕ′ : F ′→ G′ be transformations of functors. Then there is astar productof
transformations,

ϕ′ ∗ ϕ : F ′F → G′G,

of functorsK → K′′ defined as follows: For any objectX in K, we have the morphism
ϕ(X) : FX → GX in K′ and hence, sinceϕ′ is a transformation of functors, a commutative
diagram inK′′,

F ′FX
F ′(ϕ(X))

F ′GX

ϕ′(FX) ϕ′(GX)

G′FX
G′(ϕ(X))

G′GX.

Define (ϕ′ ∗ ϕ)(X) as the composition in the diagram,F ′FX → G′GX. The arrows in
the diagram are given by transformations, denoted respectivelyF ′ϕ, ϕ′G,G′ϕ, andϕ′F . In
particular, the star product is a transformation of functorsK→ K′′.

The formation of the star product is functorial in the following sense: Assume there are
further functorsH : K → K′ andH ′ : K′ → K′′, and transformationsψ : G → H and
ψ ′ : G′→ H ′. Then we have the equality,

(ψ ′ ∗ ψ)(ϕ′ ∗ ϕ) = (ψ ′ϕ′) ∗ (ψϕ), (5.1.1)

of transformationsF ′F → H ′H .
It is easy to extend the definition to a star product of more that two transformations: For

composable functors and transformationsϕi : Fi → Gi for i = 0, . . . , n the star product is a
transformation,

ϕ0 ∗ · · · ∗ ϕn : F0 · · ·Fn→ G0 · · ·Gn,

with functorial properties extending (5.1.1).

(5.2) Setup. Fix in the following a categoryK, a functorF : K→ K, and a transformation,

δ : 1→ F,

from the identity functor 1 to the functorF . Consider forn > −1 the composition,

F [n] =

n+1︷ ︸︸ ︷
F · · ·F ;

for n = −1, the composition is the identity functor. Letf : p → n be a morphism in(sss),
that is, a strictly increasing mapf : [p] → [n]. Associate withf a transformation (denoted
by the same symbol)f : F [p] → F [n] as follows: Forj = 0, . . . , n, if j is in the image off ,
let Fj := F and letϕj = 1: Fj → F be the identity transformation; otherwise, letFj := 1
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be the identity functor and letϕj = δ : Fj → F be the given transformation (beware that the
symbol 1 is used both for the identity functor ofK and for the identity transformation of a
given functor). Define the transformationf as the star product,

f = ϕ0 ∗ · · · ∗ ϕn : F [p] =

n+1︷ ︸︸ ︷
F0 · · ·Fn→

n+1︷ ︸︸ ︷
F · · · F = F [n] .

Clearly, with this definition,n→ F [n] is a functor from the category(sss) to the category of
endomorphisms ofK. In other words, it is a co-sss-object of endomorphisms ofK,

F [ ] : 1→ F →→ F [1] →→→ F [2] →→→→
· · · . (5.2.1)

It is called the (co-augmented)standard objectassociated to the transformationδ : 1→ F .
Evaluation at any objectX of K yields a co-sss-objectF [ ]X of K,

Note that face morphisms corresponding to the mapsδni : n→ n+1 have a simple inductive
description: under the identificationF [n+1] = F [n]F ,

δnn+1 = 1 ∗ δ : F [n] → F [n]F, δni = δ
n−1
i ∗ 1: F [n−1]F → F [n]F,

where the factor 1 in the first star product is the identity transformation ofF [n] and in the
second product (for 06 i 6 n) is the identity transformation ofF .

(5.3) Examples. (1) ForK = (Cat), consider the functorI 7→ I+ that adds a final object to
the categoryI . The obvious inclusion,

I → I+,

is transformation of functorsδ : 1→ ( )+. The corresponding standard object, evaluated on
any categoryI is a functor(sss)→ (Cat). In particular, evaluation at the empty category∅
yields the standard functor,n 7→ [n], from (sss) to (Cat).

(2) ForK = (Top), consider the functorX 7→ C(X), whereC(X) is the cone overX (the
mapping cone of the identity ofX). The obvious inclusion,

X →֒ C(X),

is a transformation of functors 1→ C. The corresponding standard object, evaluated on
X = ∅, is the topological realization,n 7→ 1ntop, restricted to(sss).

(3) Consider a pair of adjoint functors,K
λ

ρ
L, with ρ right adjoint toλ. LetF := ρλ.

The adjunction isomorphism,

HomL(λX, Y ) = HomK(X, ρY ),

is, like any functorial map from the left side set to the rightside set, given by a functorial
morphismX→ ρλX, that is, by a transformation 1→ ρλ = F .
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(5.4) The Standard Contraction Lemma. (a) Let S : K′ → K be a functor such that the
transformationδ ∗ 1: S → FS has a retraction. Then the co-sss-object of functorsK′→ K,

F [ ]S : S → FS →→ F [1]S →→→ F [2] →→→→
· · · ,

has a simple contraction.
(b) Let T : K→ K′ be a functor such the transformation1 ∗ δ : T → T F has a retraction.

Then the co-sss-object of functorsK→ K′,

T F [ ] : T → T F →→ T F [1] →→→ T F [2] →→→→
· · · ,

has a simple contraction.

Proof. For (a), letr = r0 : FS → S be a retraction for the transformationδ ∗ 1: S → FS.
Forn > 1, definern : F [n]S → F [n−1]S as the star product,

rn = 1n ∗ r : F [n]S = F n(FS)→ F nS = F [n−1]S,

where 1n is the identity transformation ofF n. From the description of the face morphisms
δni , it follows easily thatrn+1δnn+1 = 1 and thatrn+1δni = δ

n−1
i rn for 0 6 i 6 n. Hence the

rn form a simple retraction of the co-sss-object.
The proof of (b) is similar.

(5.5) Example. (1) Fix a categoryJ . Consider the transformationI → I+ of (5.3)(1),
and the corresponding co-sss-object of endomorphisms of(Cat). Composition with the
(contravariant) functorT = HomCat( , J ) gives ansss-object of contravariant functors from
(Cat) to (Sets). Evaluation atI is the followingsss-set:

Hom(I, J )← Hom(I+, J )←← Hom(I++, J )←←← · · · . (5.5.1)

Assume that the categoryJ has a final objecte. Then there is an obvious functorr : J+→ J

equal to the identity onJ ⊂ J+. So, for any functorf : I → J we obtain a functor
rf+ : I+ → J+→ J extendingf . In other words,f → rf+ is a section of Hom(I+, J )→
Hom(I, J ), and in fact a section of the transformationT ( )+ → T . Therefore, by the Standard
Contraction Lemma, ifJ has a final object, then, for any categoryI , thesss-set (5.5.1) has a
simple contraction. In particular, forI = ∅, the followingsss-set has a simple contraction:

∗ ← Hom([0], J )←← Hom([1], J )←←← Hom([2], J )
←←←←
· · · . (5.5.2)

The Hom-sets are for the category(Cat); each [n] is considered as a partially ordered set,
and hence as a category. Thus Hom([n], J ) is the set ofn-stringsj0→j1→· · ·→jn in J .

A modification of the functor( )+ for the category of sets yields a similar result: IfM is a
set, letM+ be the set obtained by adding an extra element toM. By the same arguments we
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obtain the following result: IfM is a nonempty set, then the followingsss-set has a simple
contraction:

∗ ← M [0] ←← M [1] ←←← M [2] ←←←←
· · · . (5.5.3)

(2) Fix a topological spaceY . Consider the transformationX→ CX of (5.3)(2), and the
corresponding co-sss-object of endomorphisms of(Top). Composition with the (contravari-
ant) functorT = HomTop( , Y ) gives ansss-object of contravariant functors from(Top) to
(Sets). Evaluation atX is the followingsss-set:

Hom(X, Y )← Hom(CX, Y )←← Hom(C2X, Y)
←←← · · · . (5.5.4)

The Hom-sets are the sets of continuous maps. In particular,with X = ∅, we obtain the
topologicaln-simplex1n = Cn∅, and thesingularsss-setof Y ,

∗ ← Hom(10, Y )←← Hom(11, Y )←←← Hom(12, Y )
←←←←
· · · . (5.5.5)

Assume that the topological spaceY is contractible, that is, the inclusionY → CY has a
retractionr. As above, we obtain for any mapX→ Y an extensionCX→ Y , wich defines
a section of the map Hom(CX, Y )→ Hom(X, Y ). Therefore, by the Standard Contraction
Lemma, ifY is contractible, then, for any topological spaceX, thesss-set (5.5.4) has a simple
contraction; in particular, the singularsss-set ofY has a simple contraction.

(5.6) The standard complex. If, in the setup of (5.2), the categoryK is additive then there
is a co-augmented cochain complex of functors associated tothe co-sss-objectF [ ] :

Cstand : 0→ 1→ F [0] → F [1] → F [2] → · · · . (5.6.1)

It is called thestandard complexassociated to transformationδ : 1→ F . The differential
dn : F [n] → F [n+1] is the alternating sum

dn =
∑n+1

i=0
(−1)iδni .

Forn = −1, the definition reduces to the given transformationδ : 1→ F . More generally, if
K is an arbitrary category andT : K→ B is a functor into an additive categoryB, then there
is a standard complexTCstandassociated to the co-sss-objectT F [ ] .

(5.7) Proposition. LetA be an abelian category, letF : A→ A be an additive endomorphism,
and letδ : 1→ F be a transformation. Assume the following conditions:(i) F is exact,(ii)
the transformationδ : 1→ F is monic, and(iii) the transformationδ ∗ 1: F → FF has a
retraction. LetT : A → B be an additive functor into an abelian category such thatT F is
exact. Then the standard complex,

T Cstand : 0→ T → T F [0] → T F [1] → T F [2] → · · · , (5.7.1)
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is a resolvent complex forT . In particular, the standard complex is a resolution of the identity
of A:

0→ 1→ F [0] → F [1] → F [2] → · · · . (5.7.2)

Proof. SinceF andT F are exact, it follows that the functorsT F [n] , for n > 0, in (5.7.1) are
exact.

The condition (iii) implies, by (5.4) withS := F , that the co-sss-objectF [ ]F has a
contraction. Therefore, the complex (5.7.2) is contractible when evaluated on an object of the
formFX. Hence, so is the complex (5.7.1). In particular, the complex (5.7.1) is acyclic when
evaluated on an object of the formQ = FX. It follows from condition (ii), that every object
X has an embedding into an object of this form. Therefore (5.7.1) is a resolvent complex for
T . The assertion for the identity is the special caseT = 1.

(5.8) The canonical complex.Assume thatA is an abelian category, thatF : A → A is
an additive functor and thatδ : 1→ F is a transformation. In particular, then the standard
complexCstandassociated toδ is defined. A second complex associated toδ is obtained as
follows: For any objectX of A, let κ(X) : FX → NX be the cokernel of the morphism
X→ FX. ThenN is an endomorphism ofA, κ : F → N is a transformation, and we have a
right exact sequence of functors 1→ F → N → 0. By composing with the powersN i , we
obtain right exact sequences,

1→ F → N → 0,

N → FN → N2→ 0,

N2→ FN2→ N3→ 0,

. . .

Hence, with the compositionsFNn → Nn+1 → FNn+1 as differentials, we obtain a co-
augmented cochain complex of functors,

Ccan : 0→ 1→ F → FN → FN2→ FN2→ · · · , (5.8.1)

called thecanonical complexassociated to the transformationδ. Its degree-n part isFNn,
for n > 0. From the right exact sequences we obtain for the cohomology, also forn = −1,

H n(Ccan) = Ker(Nn+1→ FNn+1).

In particular, the canonical complexCcan is acyclic if and only if 1→ F is monic .
It is easy to check that the transformations defined by the star product,

1 ∗ κ∗n : F [n] = FF n→ FNn,

define a morphism of complexes,

0 1 F [0] F [1] F [2] · · ·wwwww
wwwww

0 1 F FN FN2 · · ·

from the standard complexCstandto the canonical complexCcan.
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(5.9) Proposition. Assume in the setup of(5.8) that the transformationδ ∗ 1: F → F 2 has
a retraction. Then the complex,

CcanF,

i.e., the canonical complex composed with the functorF , is contractible.

Proof. Let us say for the moment that an endomorphismGof A isspecialif the transformation
δ ∗ 1:G→ FG has a retraction. Clearly, ifG is special andH is any endomorphism, then
GH is special. Note also that ifG is special andG→ H is a transformation with a retraction
(or with a section), thenH is special. By hypothesis,F is special.

Consider the right exact sequence 1→ F → N → 0, and compose it withG to obtain
the right exact sequence,

G→ FG→ NG→ 0.

Assume thatG is special. Then the sequence is split exact. Hence the epimorphismFG→
NG has a section. Moreover,FG is special becauseF is special. Therefore,NG is special.

Apply the argument repeatedly. It follows, forn = 0, 1, . . . , thatNnF is special. There-
fore, the right exact sequences of (5.8) become split exact when composed withF . Conse-
quently, the complexCcanF , built out of these sequences, is contractible.

(5.10) Corollary. In the setup of(5.7), the same conclusion holds if the standard complex is
replaced by the canonical complex.

(5.11) Theorem.Assume in the setup of(5.8) that,(i) the transformationδ ∗ 1: F → FF

has a retraction, and(ii) the sequence,

0→ F1 1∗δ
FF

1∗κ
FN → 0,

is split exact. Then the morphism of complexesCstand→ Ccan is a homotopy equivalence.

Proof. Consider, forn > 0, the following diagram of functors:

1 δ
F

∂ · · · ∂
FNn d0

F [1]Nn d1
F [2]Nn d2

· · ·wwwww
wwwww

wwwww
1 δ

F
∂ · · · ∂

FNn ∂
FNn+1 d0

F [1]Nn+1 d1
· · · .

The top sequence hasFNq in degreeq for 0 6 q 6 n, andF [p]Nn in degreep + n. The
morphisms labelled∂ are the differentials of the canonical complexCcan. The morphisms
labelledd are induced from the differentials ofCstand; in fact, the top sequence from the index
n is the complexCstandN

n obtained from the nonaugmented complexCstandby composition
withNn. Since the last morphism∂ in the top row it the compositionFNn−1→ Nn→ FNn,
the compositiond0∂ in the top row is equal to zero. Hence the top row is a complex. Denote
it Cn. Then the bottom row is the complexCn+1. The nontrivial vertical morphisms in the
diagram are the transformations, forp > 1,

1 ∗ κ ∗ 1 : F [p]Nn = F pFNn→ F pNNn = F [p−1]Nn+1. (5.11.1)
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It is easily seen that the diagram is commutative. Hence the diagram defines a morphism of
complexes,

tn : Cn→ Cn+1 .

The complexC0 is the standard complexCcan. Moreover, the morphismt : Ccan→ Cstand
is the infinite composition,

t = · · · t2t1t0,

which is finite in every degree. Therefore it suffices to provethattn is a homotopy equivalence.
In degreeq 6 n, the morphism is the identity. Considertn in degreen+ p, for p > 1. It is
the morphism (5.11.1). In particular, it is induced by the morphismFF → FN . Therefore,
by condition (ii), it is a split epimorphism, with kernel equal toF pNn. In fact, it is not hard
to see that the kernel oftn, as a complex, up to a shift in degree, is the complex,

CcanFN
n.

The condition (i) implies, by (5.4), that the complexCcanF is contractible. Hence so is the
complexCcanFN

n. Therefore eachtn, and hence alsot , is a homotopy equivalence.

(5.12) A relativized version. The previous results are even more appealing(?) in the setting
of relativized abelian categories. Consider for simplicity the adjoint functors case: There is

given a pair of adjoint functors of abelian categories,A
λ

ρ
A0, with ρ right adjoint toλ,

and the transformationδ is the canonical transformation,δ : 1→ ρλ, of endomorphisms of
A. (Similarly, there is a canonical transformationε : λρ → 1, of endomorphisms ofA0.)

For an abelian categoryA, indicate with the notationAsplit thatA is considered as a relative
abelian category: the relative monomorphisms are the splitmonomorphisms. Nowλ is a left
adjoint, and hence right exact. Therefore, a second relativization of A, indicated with the
notationAλ,split, is obtained viaλ: a morphisms in Aλ,split is a relative monomorphism if
λ(s) is a split monomorphism. So, almost by definition,λ is a relatively exact functor,

λ : Aλ,split→ (A0)split. (5.12.1)

Any additive functorT : A→ B of abelian categories is a relatively exact functorAsplit →

Bsplit. So the functorF = ρλ is a relatively exact functor,

F : Aλ,split→ Asplit; (5.12.2)

in particular,F is a relatively exact endomorphism ofAλ,split.
The category of functors intoA (from any fixed source) is relativized similarly: A transfor-

mationS → S′ is relatively monic if the transformationλS → λS′ is split monic. According
to this definition, the natural transformationδ : 1→ ρλ, or

δ : 1→ F, (5.12.3)

is a relative monomorphism of functors. Indeed, 1∗ δ : λ→ λF is retracted byε ∗ 1.
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(5.13) Proposition. In the setup of(5.12), the standard complex and the canonical complex,

Cstand : · · · → 0→ 1→ F [0] → F [1] → F [2] → · · · ,

Ccan : · · · → 0→ 1→ F → FN → FN2→ · · · ,

define relatively exact resolvent complexes for the identity as a functorAλ,split → Asplit. In
particular, any morphism between the two complexes which isequal to the identity in degree
−1, is a homotopy equivalence.

Proof. Recall that ifT : A → B is an additive functor between relative abelian categories,
then a complex of functorsA→ B,

C : · · · → 0→ T → C0→ C1→ C2→ · · · ,

is a relatively exact resolvent complex forT , if the following two conditions hold:
(i) EachCn is relatively exactA→ B.
(ii) For every objectA of A there is a relative monomorphism into an objectQ for which

the complexC(Q) is relatively exact inB.
Consider the standard complex. First, to verify (i), note that F : Aλ,split → Aλ,split is

relatively exact. HenceF n : Aλ,split → Aλ,split is relatively exact for alln > 0. Therefore,
viewingF as the relatively exact functor (5.12.2), it follows thatF [n] = FF n is relatively
exactAλ,split→ Asplit. To verify (ii), note thatA→ FA is a relative monic, and thatCstandF

is contractible by (5.4)(a); in fact,Cstandλ is contractible sinceδ ∗ 1: λ→ Fλ is retracted by
1 ∗ ε.

Consider the canonical complex, and the condition (i). The functorN is defined as the
cokernel of 1→ F , that is, by the right exact sequence,

0→ 1→ F → N → 0. (*)

Apply λ. Since 1→ F is relatively monic, the resulting sequence,λ(* ), is split exact. Plug
in (as columns) a relatively short exact sequence inAλ,split; the result is 3× 3 commutative
diagram inA0 with split exact rows. The first column is split exact inA0. As λF = Fλ, it
follows that the second column is split exact. Hence the third column is split exact. Therefore,
the functorN is relatively exactAλ,split → Aλ,split. By the argument used above forF , it
follows thatFNk is relatively exactAλ,split→ Asplit. Condition (ii) follows from (5.9).

(5.14). As a consequence, any additive functorT : A→ B, viewed as a functor of relative
abelian categoriesAλ,split→ Bsplit, has relatively resolvent complexes, for instanceT Cstand
andT Ccan.

Corollary. Assume in the setup of(5.12)thatF = ρλ is exact and thatδ : 1→ ρλ is monic.
If T : A → B is any additive functor such thatT F is exact, thenTCstand andT Ccan are
resolvent complexes forT .
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6. Cohomology of categories I(Draft).

(6.1) Setup. Fix a small categoryI and an abelian categoryA. Assume that products inA
indexed byI (that is, indexed by setsK of cardinality at most equal to the cardinality of the
union of the Hom-sets ofI ) exist. These products, as functors from the category ofK-indexed
families of objects ofA to the categoryA, are left exact. It is essentially Grothendieck’s axiom
AB4* that they are exact.

Consider the categoryAI of I -systemsin A (or A-valued coefficient systems onI ), that is,
the category of functorsF : I → A. In this notation,A|I | is the category ofI -familiesin A,
that is, the category of allI -indexed familiesi 7→ Gi of objects ofA. Note that a sequence
of I -systems,

0→ F′→ F→ F′′→ 0, (6.1.1)

is exact inAI if and only if the following sequences inA, for all x ∈ I , are exact:

0→ F′x → Fx → F′′x → 0 . (6.1.2)

In other words, if� : AI → A|I | is the obvious forgetful functor, then a sequence inAI is
exact if and only if its image under� is exact inA|I |.

The sequence (6.1.1) is calledrelatively short exactif all the sequences (6.1.2) are split
exact; a complexF of I -systems is calledrelatively exactif all the complexesFx in A are
contractible. In the language of relative abelian categories, the categoryAI is split relativized
via the functor�.

By the Kan construction, the forgetful functor� has a right adjoint functorρ,

� : AI → A|I |, ρ : A|I | → AI .

It associates with anI -family G = {Gz} theI -systemρG defined by

(ρG)x =
∏

x→z

Gz ;

for an arrowf : x → y in I , the morphismf : (ρG)x → (ρG)y is given by

pry→z f = prx→z ,

where the right side arrowx → z is the composition of the left side arrow withf . Note that
the functorρ : A|I | → AI is left exact; in the presence of AB4*, it is even exact.

An I -system of the formρG is calledcoinduced. In the setup of relative abelian categories,
anI -system is relatively injective if and only if it is a direct summand of a coinducedI -system.

Letπ := ρ� be the composition, andδ : 1→ π the adjunction morphism; in addition, let
κ : π → ν be the cokernel ofδ. For anI -systemF, the morphismδ : F→ πF is determined
by the morphisms,

δx : Fx →
∏

x→y

Fy ,
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whose projection, prx→y δx , on an arrowx→y is the morphismFx → Fy induced by the
I -systemF. Note that the index set of the product contains the identityarrow of x; the
corresponding projection ofδx is the identity ofFx . So the cokernel(νF)x may be identified
with the product,

(νF)x =
∏′

x→y

Fy,

where the product is over all arrows different from the identity of x. More precisely, ifπ ′Fx
is product on the right side, thenπFx = Fx ⊕ π

′Fx . Accordingly, δx = (1, δ′x)
tr with

a morphismδ′x : Fx → π ′Fx . So (νF)x = π ′Fx andκ : πFx → π ′Fx is the morphism
(−δ′x, 1).

The transformationδ : 1→ π induces the standard complexCstandwithCnstand= π
[n] and

the canonical complexCcan with Cncan= πν
n. The functorsπ [n] andπνn are determined as

follows:
(π [n]F)x =

∏

x→x0→···→xn

Fxn, (πνnF)x =
∏′

x→x0→···→xn

Fxn;

the first product is over all(n+ 1)-strings of the categoryI , the second is over those(n+ 1)-
strings where none of the lastn arrows are identities. The two complexes define relatively
exact resolutions of the identity ofAI . In particular, since a relative monomorphism is a
monomorphism, they are also exact resolutions.

LetB be an abelian category andT : AI → B an additive functor. Then arelatively exact
resolvent complexfor T is T -augmented complex of functorsAI → B,

C : · · · → 0→ T → C0→ C1→ C2→ · · · , (6.1.3)

such that,

(i) if Q is an inducedI -system, thenC(Q) is a contractible complex ofB.
(ii) each functorCi takes relatively short exact sequences ofAI into split exact sequences

of B; and,

Relatively exact resolvent complexes are unique, up to homotopy. And they exist:T Cstand

andTCcan are examples. SinceCstand is an exact resolution of the identity, it follows in
particular that its first part, 0→ 1 → C0

stand→ C1
stand, is exact. Therefore, ifT is left

exact, then the sequence 0→ T → TC0
stand→ T C1

stand is exact; hence so is the sequence
0→ T → C0→ C1, for any relatively exact resolvent complex (6.1.3). In other words,T
is the kernel ofC0→ C1.

Note that if, in a relatively resolvent complex (6.1.3), each functorCn is exact, then the
complex is an exact resolvent complex forT ; in particular, thenT is derivable.

(6.2) The inverse limit. The inverse limit is a functor lim←−I : AI → A. A relatively exact
resolvent complex for this functor,

C : · · · → 0→ lim←−I → C0→ C1→ C2→ · · · , (6.2.1)
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will simply be called aresolvent complex for the categoryI . Thep’th cohomology ofI with
coefficientsin F is, by definition, thep’th cohomology of the nonaugmented complexC(F);
it is independent of the choice of complex, and it is denoted

Hp(I,F) or lim←−
(p)
I F or lim←−

(p)
x∈I Fx .

Since the inverse limit is a left exact functor, it is necessarily equal to the kernel ofC0→ C1,
that is,

lim←−I F = H0(I,F).

In the presence of AB4*, the functor lim←−
(p)
I is thep’th derived functor of lim←−I ; in general, it

is the relatively derived functor.
Clearly, for an induced systemρG we obtain for the inverse limit,

lim←−
x∈I

(ρG)x = lim←−
x∈I

∏

x→y

Gy =
∏

y∈I

Gy . (6.2.2)

Hence, from the standard complex associated with the transformation 1→ π , we obtain a
resolvent complex with

CnF = lim←−I π
[n]F =

∏

x0→···→xn

Fxn . (6.2.3)

It will be denotedC(I,F). Similarly, from the canonical complex we obtain a resolvent
complex with

CnF = lim←−I πν
nF =

∏′

x0→···→xn

Fxn, (6.2.4)

where the product is overn-strings ofI with no identities.

(6.3) Observation. Consider for an indexz of I and an objectA of A theI -family G with
Gy = 0 for y 6= z andGz = A. The corresponding coinducedI -systemρG, denotedρzA,
is determined by

(ρzA)x =
∏

x→z

A = AHom(x,z), and lim←−I ρzA = A;

the last equation follows from (6.2.2), or directly. Clearly any coinducedI -systemρG is a
product ofI -systems of this special form; in fact,ρG =

∏
z ρzGz. Hence, if the functorsCn

in a complex (6.2.1) are relatively exact and commute with products indexed byI , then the
complex is resolvent forI if and only if all the complexesC(ρzA) are contractible.

(6.4) Example.Consider the “one-point-category” (or better “one-arrow-category”) 1. It has
one object, denoted 1, one arrow, denoted 1, and hence one endomorphism, denoted 1, one
transformation, denoted 1,. . . . Clearly,A1 = A and the inverse limit is the identity. The
standard and canonical resolvent complex for the category 1are the following:

· · · → 0→ A===A 0
A===A 0 · · · and · · · → 0→ A===A→ 0→ · · · .
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Consider similarly the categoryI = (•′→ •← •′′), with three objects and two nontrivial

arrows. AnI -systemF is a diagramA′
f ′

A
f ′′

A′′ in A. It is easy to see that a resolvent
complex of functors for this category is determined by the following complex:

C(F) : · · · → 0→ A′ ×A A
′′→ A′ ⊕ A′′

f ′−f ′′
A 0→ · · · .

(6.5) Example. Take as categoryI the category(0→→1). Here anI -systemF is a pair of
morphismsf, g : F0→ F1. The following complex is resolvent forI :

C : · · · → 0→ lim←−I → C0 f−g
C1→ 0→ 0→ · · · , with CiF = Fi .

Indeed, each functorCn is relatively exact. The two complexesC(ρzA)with z = 0 andz = 1
are:

0→ A
1
A

0 0→ 0, 0→ A
(1,1)tr

A2 (1,−1)
A→ 0;

clearly, both complexes are contractible.
As a consequence,

H0(F0→→F1) = Ker(f − g), and H1(F0→→F1) = Cok(f − g),

and cohomology in degree higher than 1 vanish.

(6.6) Note. An I -systemF : I → A may alternatively be viewed as a (covariant) functor
F : Iop→ Aop, that is, as anIop-system inAop. As such, itsp’th cohomology is an object in
Aop. As an object inA, it is called thep’th homologyof I with coefficients inF, and denoted

Hp(I,F) or lim−→
(p)
I F or lim−→

(p)
x∈I Fx .

A contravariant functorG : I → A may be viewed as anIop-system inA. As such, the
homology and cohomology are objects ofA,

Hp(I
op,G) and Hp(Iop,G). (6.6.1)

The indication in (6.6.1) that the opposite category ofI is considered is hardly necessary since
it is only in the case of a constant functor that its variance is not obvious. And even in the
case of a constant functor, the indication is not necessary.Indeed, consider more generally
a local systemF on I , that is, a functorF : I → A transforming any arrow ofI into an
isomorphism ofA. Then there is an associated contravariant functorF−1 : I → A. It is given
by F−1

x := Fx ; if f : x → y is an arrow ofI , thenF−1(f ) : Fy → Fx is the inverse of the
isomorphismF(f ) : Fx → Fy . Consider the standard complexes (6.2.3) forF andF−1:

Cn(I,F) =
∏

x0→···→xn

Fxn and Cn(Iop,F−1) =
∏

x0←···←xn

Fxn .
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SinceF is local system, there is an obvious isomorphismtn : Cn(F) → Cn(F−1), and it is
easy to see that the morphisms(−1)n(n+1)/2tn form an isomorphism of complexesC(F)→
C(F−1). In particular, there is an identification,

Hp(I,F) = Hp(Iop,F−1). (6.6.2)

(6.7) Example. Let s be one of the simplicial categories(s), (ss), or (sss). An s-systemF in
A is a co-s-object ofA; it may be visualized as a diagram,

F : F0→→ F1→→→ F3→→→→
· · · ,

where only the face morphismsδni have been indicated. LetC(F) be the associated complex,
that is,Cn(F) = Fn with the differentialdn =

∑
(−1)iδni . The following complex is

resolvent for the categorys:

C : · · · → 0→ lim←−s
→ C0→ C1→ C2→ · · · ;

in particular, the inverse limit lim←−s
F is equal to the kernel ofd0 = δ0

0 − δ
0
1 : F0→ F1.

Indeed, eachCn is exact and relatively exact, and commutes with products. It remains to
consider the complexC(ρpA) of a coinduced system of the formρpA. The complex will be
denoted̃C(p,A). Clearly,C̃−1(p,A) = lim←−s

ρpA = A and, forn > 0,

C̃n(p,A) =
∏

n→p

A = AHoms(n,p).

In fact, the complex̃C(p,A) is the associated complex of the co-s̄-object obtained as the
composition ofT : n 7→ Homs̄(n, p) andS 7→ AS ,

C̃(p,A) : · · · → 0→ A→ AHoms(0,p)→ AHoms(1,p)→ AHoms(2,p)→ · · · . (6.7.1)

It remains to prove the following:

Lemma. The complex(6.7.1), for a fixed objectA of A and a fixedp > 0, is contractible.

Proof. Note that Hom̄s(n, p) is a singleton whenn = −1. So then’term in the complex is
equal toAHoms̄(n,p) also whenn = −1.

Below, we define, especially fors = (sss), a contraction for the complex. Later we will
give a different proof. Let us, just for fun, note that the assertion for the two cases(ss)
and(s) follows from the Standard Contraction Lemma of Section 5. For s = (ss) note that
the set [p] is a partially ordered set. Hence [p] may be viewed as a category, and clearly
HomCat([n], [p]) = Homss(n, p). Therefore, thesss-set of (5.5.2), withJ = [p], is the
following:

∗ ← Homss(0, p)←← Homss(1, p)
←←← Homss(2, p)

←←←←
· · · . (6.7.2)

161



ss 6.6 Simplicial cohomology

Since [p] (as a category) has a final object, it follows from Section (5.5) that thesss-set has
a simple contraction. Therefore, the complex (6.7.1), obtained from (6.7.2) via the functor
S 7→ AS , is contractible. The argument fors = (s) is similar, using (5.5.3) withM := [p].

Of course, the contraction of̃C(p,A) given by the considerations in (5.5) may be deter-
mined explicitly. SetTn := Homs(n, p). For any mapf : [n] → [p], let f̃ : [n+ 1]→ [p]
be the map withf̃ (i) = f (i) for i 6 n andf̃ (n + 1) = p. Note fors = (s) ands = (ss),
that if f ∈ Tn, thenf̃ ∈ Tn+1. Consider the morphisms

sn+1 : ATn+1 → ATn given by pr(f )sn+1 = pr(f̃ ),

where pr(f ) is the projectionATn → A corresponding to the indexf ∈ Tn. The morphisms
define the contraction of (6.7.1) since the following equation is easily verified:

sn+1dn − dn−1sn = (−1)n+1. (6.7.3)

In the cases = (sss), the definition of the morphismss have to be modified. In this case, the
elements ofTn are the strictly increasing mapsf : [n] → [p], andf̃ is only strictly increasing
if f is frontal, that is, iff (n) < p. Defines : ATn+1 → ATn by

pr(f )s =

{
pr(f̃ ) if f is frontal,

0 otherwise.

Let f : n→ p be a morphism in(sss). Clearly,

f̃ δni =

{
f if i = n+ 1;

(f δn−1
i )˜ if i 6 n.

Consequently, iff is frontal, then pr(f )sδnn+1 = pr(f ) and if i 6 n then

pr(f )sδni = pr(f̃ )δni = pr(f̃ δni ) = pr((f δn−1
i ) )̃ = pr(f )δn−1

i s;

Hence,
pr(f )sd − pr(f )ds = (−1)n+1 pr(f ).

On the other side, iff is not frontal, then pr(f )sd = 0; moreover, ifi < n thenf δn−1
i is not

frontal, and then pr(f )δn−1
i s = pr(f δn−1

i )s = 0. Hence,

pr(f )sd − pr(f )ds = −(−1)n pr(f )δn−1
n s = (−1)n+1 pr((f δn−1

n ) )̃ = (−1)n+1 pr(f ),

where the last equation holds becausef (n) = p. Therefore, with this definition ofs, equation
(6.7.3) holds also whens = (sss). HenceC̃(p,A) is contractible in all three cases.
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(6.8) Example.LetS be a simplicial set, that is, ans-object in the category of sets, visualized
by a diagram,

S0←← S1
←←← S2

←←←←
· · · .

Then there is category associated toS: The objects of the category are thesimplicesof S
(the elements in the disjoint union of the setsSn), the morphisms from a simplexy ∈ Sp to a
simplexx ∈ Sn are the morphismsf : p→ n in s for whichf ∗x = y. With this structure on
S as a category, anS-systemF associates with each simplexx ∈ Sn an objectFx of A, and
with each morphismf : p→ n in s a morphismFf ∗x → Fx (with obvious compatibilities).
The following complex of functors is resolvent for the category S:

C : · · · → 0→ lim←−S → C0→ C1→ C2→ · · · , with CnF :=
∏

x∈Sn

Fx;

it is easily seen that theCnF, in a natural way, form a co-s-object ofA and the complexC(F)
is the associated complex.

Indeed, each functorCn : AS → A is obviously relatively exact, and commutes with
products. It remains to prove, for a fixed simplexz ∈ Sp and an objectA of A, that the
complexC(ρzA) is contractible. Clearly, for a simplexx in S, sayx ∈ Sn,

(ρzA)x =
∏

x→z

A =
∏

f ∗z=x

A,

where the product is over all morphismsf : n→ p in s for whichf ∗z = x. By taking the
product overx ∈ Sn, it follows that

C
n
(ρzA) = A

Homs̄(n,p).

Hence, by the lemma in (6.7), the complexC(ρzA) is contractible. As a consequence, the
inverse limit lim←−S F is equal to the kernel of the morphism,

d0 = δ0
0 − δ

0
1 :

∏

x∈S0

Fx →
∏

x∈S1

Fx .

(6.9) Example. Let G be a group, considered as category of one object and the elements
of G as morphisms. Then aG-system inA is an objectA of A with a given representation
G → Aut(A); it is also called a (co-)G-object ofA. Its inverse limit is often denotedAG

(which should not be confused with a coinducedG-system, of the form
∏
g∈G A for an object

A of A).
The standard complex (6.2.3) or the canonical complex (6.2.4) define the cohomology of a

G-object. For special groups, special resolvent complexes are given in the examples section.
Let us just note here, for the cyclic groupG = Z/2 of order 2 and a constantZ/2-objectA,
that the canonical complex is the following:

0→ A
1
A

0
A

2
A

0
A

2
A→ · · · ;

in particular,H0(Z/2, A) = A, H n(Z/2, A) = 2A (the kernel of 2A) whenn > 0 is odd,
andH n(Z/2, A) = A/2 (the cokernel of 2A) whenn > 0 is even.

163



ss 6.8 Simplicial cohomology

(6.10) Example. Let I be aunique factorization category, that is, there is a subsetP of
arrows ofI such that any morphismf of I factors uniquely as a compositionf = p1 · · ·pk
with arrowspν in P . Then there is a resolvent complex forI ,

C : · · · → 0→ lim←−
I

→ C0 d0
C1→ 0→ 0→ · · · , (6.10.1)

with
C0F =

∏

x

Fx , C1F =
∏′

u→x

Fx,

where the second product is over the arrows inP . TheC0 above is theC0 of the standard
resolvent complex (6.2.3) and theC1 above is a quotient of the standardC1; accordingly, the
differentiald0 in (6.10.1) is the differenced0 = δ′0− δ

′
1 where pru→x δ

′
0 = prx and pru→x δ

′
1

is the projection pru onFu followed by the morphismFu→ Fx .
To prove the assertion, consider the evaluation ofC on a coinduced systemρzA. It yields

the complex,

0→ A→
∏

x→z

A→
∏′

u→x→z

A→ 0, (6.10.2)

where the second product is over stringsu→x→zwith u→x in P . Consider the morphisms,

s :
∏

x→z

A→ A, and t :
∏′

u→x→z

A→
∏

x→z

A,

wheres is the projection pr1 on the identity ofz and

prx→z t =
∑

x→u→y→z

pru→y→z ,

where the sum, for a given arrowf : x → z is over all factorizationsf = (x → u→ y → z)

with an arrowu → y in P . Of course the sum if finite: iff = p1 . . . pk is the “prime”
factorization off , then the possibleu → y in the sum are thepν . It is easy to see that the
pair (s, t) defines a splitting of the complex (6.10.1).

Note that unique factorization holds for partially orderedsets with the property that each
interval [x, y] is a finite totally ordered set; in particular, it holds for the ordered sets(Z,6)
and(N,>). It also holds for a free monoid (generated by an alphabetP ), considered as a
category with one object. And it holds for the categories in (6.5).

(6.11) Definition. Consider, for an objectA of A the constant functorA : I → A. Clearly,
there is a canonical morphismA→ lim←−I A, and hence for every resolvent complexC for I
a reduced complex,

C̃(A) : · · · → 0→ A→ C0(A)→ C1(A)→ · · · ,
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obtained by a change in the coaugmentation. For instanceC may be taken as the standard
resolvent complexC(I, ). Note that the two complexesC(A) andC̃(A) differ only in their
term of degree−1. The cohomology of the complex̃C(A) is thereduced cohomologyof I
with constant coefficientsA, denotedH̃p(I, A). It differs from the cohomologyHp(I, A)

only in degree−1 and 0. Moreover,̃H−1(I, A) = H̃0(I, A) = 0 if and only if lim←−I A = A.
Thereduced homologỹHp(I, A) is defined similarly.

The categoryI is calledacyclic if one of the following equivalent conditions hold:
(i) H̃n(I,Z) = 0 for all n. Equivalently,Hn(I,Z) = 0 for n > 0 andH0(I,Z) = Z.
(ii) H̃ n(I, A) = 0 for all n and all abelian groupsA.
(iii) C̃(I, A) is contractible for anyA in any abelian categoryA.
To see that the conditions are equivalent, letC̃• := C̃•(I,Z) be the reduced homology

complex corresponding to the constant systemZ. Then (i) holds if and only if̃C• is acyclic.
Now C̃• is a left complex of freeZ-modules; hence it is acyclic if and only if it is contractible.
Therefore (i) holds if and only if̃C• is contractible.

On the other hand, for any abelian groupA, we have that

C̃(I, A) = Hom(C̃•, A).

HenceC̃(I, A) is acyclic for all abelian groupsA if and only if C̃• is contractible. Thus (i)
and (ii) are equivalent.

If C̃• is contractible, then a homotopys : C• → C•(−1) from the identity 1 to 0, yields by
transposing, a homotopy

str : C(I, A)(1)→ C(I, A),

from 1 to 0, for any objectA in any abelian categoryA. Therefore (iii) is a consequence of
(i). Conversely, it is obvious that (i) and (ii) follow from (iii).

(6.12) Lemma. (0) An acyclic category is nonempty and connected.
(1) If I is acyclic, then so isIop.
(2) A nonempty filtering (to the left or to the right) category is acyclic.
(3) A nonempty directed union of acyclic categories is acyclic.

Proof. (0) Assume thatI is acyclic. Then, in particular, the first part of the reducedhomology
complex is exact:

C1(I,Z)→ C0(I,Z)→ Z→ 0.

Here
C0 =

⊕

x∈I

Z, C1 =
⊕

x1→x0

Z.

SinceC0→ Z is surjective, it follows thatI is nonempty. For any pair of indicesx0, x1 in I ,
the elementx0− x1 in C0 is a cycle, and hence the boundary of an element inC1. From that
element inC1 it is easy to connectx0 andx1 with arrows.

(1) The assertion follows from the considerations in (6.6).
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(2) Assume thatI is filtering to the right. Then, as is easily seen, the direct limit,

lim−→I
: (Ab)I → (Ab),

is an exact functor, and the direct limit of the constant systemZ is equal toZ. Therefore,
since the standard complex is an exact left resolution of theidentity of (Ab)I , it follows that
left complexC•(I,Z) is exact.

(3) Again, the assertion holds, because the direct limit over a directed set is an exact
functor.

(6.13) The restriction. Let ϕ : J → I be a functor of small categories. AnyI -system
F : I → A restricts to aJ -systemFϕ : J → A and restriction is a functor Res:AI → AJ ,
often denotedϕ∗ or �I

J ; it is obviously exact and relatively exact. Clearly, for the standard
resolvent complexes there is an obviousrestriction morphism,

C(I,F)→ C(J,ResF). (6.13.1)

(6.14) Proposition. In the setup of(6.13), the following conditions are equivalent:

(i) The restriction morphism(6.13.1)is a homotopy equivalence.
(ii) All left fibers J/x, for x ∈ I , of the functorϕ : J → I are acyclic.

Proof. Recall that the left fiberJ/x, over an objectx of I , is the category whose objects are
pairs(v, f ), with v is an index inJ andf is a morphismf : ϕv → x; a morphism from
(v, f ) to (u, g) is a morphismh : u→ v in J such thatf ϕ(h) = g.

Clearly, there is a canonical (functorial) morphism lim←−I F→ lim←−J ResF. The target is the
kernel ofC0(J,ResF) → C1(J,ResF). So the right side complex in (6.13.1) may be co-
augmentated with the object lim←−I F in degree−1. LetC̃(J,F) be the co-augmented complex.
In degree−1 it has the same term as the co-augmented complexC(I,F) corresponding to
the left side of (6.13.1). So we obtain an extension of (6.13.1),

C(I,F)→ C̃(J,F), (6.14.1)

and (6.13.1) is a homotopy equivalence if and only if (6.14.1) is.
Let us evaluated the right side of (6.14.1) at a coinduced system of the formρzA. In degree

−1 we obtain lim←−I ρzA = A. Clearly, for the restriction, we have

(ResρzA)v = (ρzA)ϕv =
∏

ϕv→z

A;

the product on the right side is exactly over all objects in the fiberJ/z. More generally, it
follows easily thatCn(J,ResρzA) = Cn(J/z, A). In fact, it is easy to obtain the equality of
complexes,

C̃(J, ρzA) = C̃(J/z, A), (6.14.2)

166



Cohomology of categories I (Draft) ss 6.11

where the right side is the reduced complex of the constant systemA on the fiberJ/z as in
(6.11).

Now, for the equivalence of the two conditions, assume (ii).To prove that (6.14.1) is a
homotopy equivalence, if suffices to prove that the right side is resolvent forI . Clearly, each
functorCi(J,Res( )) is relative exact and commutes with products. So it remains to verify
that each complex̃C(J, ρzA) is contractible. The verification is immediate, given (6.14.2)
and (ii).

Conversely, assume that (6.14.1) is a homotopy equivalence. Then, in particular, the left
side of (6.14.2) is homotopy equivalent toC(I, ρzA). The latter is contractible, sinceρzA is
a coinducedI -system. So the right side of (6.14.2) is contractible, thatis, (ii) holds.

(6.15) Example.A categoryI with an initial objectb is acyclic. This is contained in Lemma
(6.12)(2). It may also be obtained from (6.14). Indeed, the left fibers of the inclusion{b} → I

are one-point categories, and hence trivially acyclic. So the restriction morphism (6.14.1), for
a constantI -systemA, is a homotopy equivalence fromC(I, A) to the contractible complex
C̃({b}, A). It follows easily thatC(I, A) is contractible and equal tõC(I, A).

As a second application, consider the complex in (6.7.1). Assume first thats = (ss).
Consider each finite set [p] as a partially ordered set, and hence as a category, denoted[p]ss.
A morphismf : n→ p in (ss) may be identified with a weakly increasing sequence,

f0 6 f1 6 · · · 6 fn,

of elements of [p], and hence as ann-string in the category [p]ss. It follows easily that the
complexC̃(p,A) of (6.7.1), fors = (ss), is equal to the complex̃C([p]ss, A), obtained by
reaugmentating the standard complex. Hence it is contractible, because the category [p]ss
has an initial object.

For the simplicial category(s), view the set [p] is a groupoid, denoted [p]s, with one
arrow i → j for any pair of elementsi, j in [p]. Again, the complex̃C(p,A) of (6.7.1),
for s = (s), is equal to the complex̃C([p]s, A), and hence contractible, because [p]s has an
initial object.

Finally, assume thats = (sss). Up to homotopy equivalence, the complexC̃(I, A) may
be obtained by reaugmentating the canonical complex instead. Clearly, with this definition,
for I = [p]ss, the complex̃C([p]ss, A) is equal to the complex̃C(p,A) for s = (sss). So
C̃(p,A) is contractible, because the category [p]ss is acyclic.

(6.16) Definition. Obviously, if the categoryAI has finite relative cohomological dimension
d, that is, if anyI -systemF has a relatively exact relatively injective resolution of lengthd,
then the cohomologyHp(I,F) vanishes forp > d. This is in particular the case whenI has
finite Krull dimensiond, that is, whend is the longest length of string of nontrivial arrows of
I . Indeed, in this case, we haveCpcan= 0 for p > d.
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7. Cohomology of simplicial objects.

8. Cohomology of simplicial sets.

9. Cohomology of pos’s.

10. Cohomology of combinatorial spaces.
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Examples; illustrations

1. The Koszul komplex.

(1.1) Setup. Fix a commutative ringA and anr-tuple f = (f1, . . . , fr ) of elements ofA.
Let Ip be the set of all subsets of cardinalityp of the the set{ 1, . . . , r }. For everyA-module
M, consider the product,

K
p

f (M) := MIp , theA-module of all mapsx : Ip → M.

Identify the elements ofIp with p-tuples(i1, . . . , ip) of integersi1 < · · · < ip in the interval
[1, r], and hence the elements ofMIp with functionsx(i1, . . . , ip). In this notation define
∂ : Kp → Kp+1 by

∂x(i0, . . . , ip) :=
p∑

ν=0

(−1)νfiνx(i0, . . . , îν, . . . , ip), (1.1.1)

where the “hat” indicates an omitted index. Then,

Kf (M) : 0→ K0
f → K1

f → · · · → Kr
f → 0,

is a positive complex, theKoszul(cochain)complexof M. with Koszul cohomology groups,

Hpf (M) = Hp(Kf (M)).

Note thatI0 andIr are one-point-sets consisting, respectively, of the emptysequence∅ and
the full sequence 1, 2, . . . , r. Hence we may identifyK0 = M andKr = M. Clearly,
H0 ⊆ M is the submodule consisting of elementsx ∈ M with fνx = 0 for all fν , andH r is
the quotientH r = M/fM.

The dual construction leads to theKoszul chain complex: Consider the direct sumM⊕Ip

with canonical embeddingsιi1,...,ip : M → M⊕Ip . Then there is a chain complex,

K f
• (M) : 0→ K f

r → · · · → K f
1→ K f

0→ 0, K f
p := M⊕Ip .

with differential∂ : Kp+1→ Kp given by the formula,

∂ ιi0,...,ip :=
p∑

ν=0

(−1)νfiν ιi0,...,̂iν ,...,ip . (1.1.2)
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Let us make it a little more concrete: The moduleKp+1 = M⊕Ip+1 is the direct sum of
identical copies ofM, sayMi0,...,ip = M, indexed by sequences(i0, . . . , ip) ∈ Ip+1. So for
anyx ∈ M there is an elementxi0,...,ip ∈ Mi0,...,ip ∈ M, and the elements inKp+1 are sums of
elements of this form, for varyingx andi0, . . . , ip. To define the differential∂Kp+1→ Kp,
it suffices to define it on an element of the formxi0,...,ip , for x ∈ M. The formula (1.1.2)
yields this:

∂ xi0,...,ip :=
p∑

ν=0

(−1)νfiν xi0,...,̂iν ,...,ip . (1.1.3)

It should be emphasized that in spite of the striking similarity between (1.1.1) and (1.1.3),
the objects that appear in the formulas are of a very different nature: In the first formula,x is
a functionIp → M, in the second,x is an element ofM.

The caseM := A leads to the chain complexK f
• (A) and the augmented chain complex,

0→ Kr (A)→ · · · → K1(A)→ K0(A)→ A/(f )→ 0. (1.1.4)

It is easy to obtain isomorphisms,

K f
• (M) = K

f
• (A)⊗M, Kf (M) = HomA(K

f
• (A)),M).

The modulesKp(A) = A⊕Ip er freeA-modules of rank|Ip| =
(
r
p

)
, and so the differentials

are described by matrices of various sizes. For instance, ifr = 4, the Koszul chain complex
has the form

· · · → 0→ A
∂4

A4 ∂3
A6 ∂2

A4 ∂1
A 0 · · ·

The moduleK2 = A
(42) has basisei1,i2 (= 1i1,i2 in the notation of (1.1.3)), say in the order

e12, e13, e14, e23, e24, e34, andK1 has basise1, e2, e3. So∂e12 = f1e2 − f2e1, etc. So it it
immediate to write up the matrix for∂1:

∂2 =



−f2 −f3 −f4 0 0 0
f1 0 0 −f3 −f4 0
0 f1 0 f2 0 −f4
0 0 f1 0 f2 f3


 .

As we will see, the sequence (1.1.4) is exact, whenf is a regular sequence inA. If
(1.1.4) is exact, then the Koszul chain complexK f

• (A) is a resolution ofA/(f ), and we obtain
isomorphims,

Hif (M) = ExtiA(A/f ,M), Hf
i (M) = TorAi (A/f ,M).

(1.2) The Koszul complex of a complex.It is a terrific excercise to prove the following:
For any sequencef0, f1, . . . , fr of r + 1 elements ofA there is a canonical isomorphism of
chain complexes,

Kf0,f1,...,fr (M) = Con(f0, K
f1,...,fr (M)), (1.2.1)
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whereCon(f,X), for a complexX andf ∈ A, denotes the mapping cone of multiplication
by f onX.

Hint. Let f be the sequence(f1, . . . , fr) and indicate with a prime objects associated to the
extended sequencef ′ = (f0, f ), with indices 0, . . . , r. HenceI ′p consist of alle sequences
i1, . . . , ip with 0 6 i1, . . . 6 ip 6 r, etc. In particular, theI ′p+1 is the disjoint union of
two subsetsIp andIp+1 consisting, respectively, of sequences 0, i1, . . . , ip and of sequences
i0, i1, . . . , ir with i0 > 0. Accordingly, we may split:K ′p+1 = Kp ⊕Kp+1. Now check that
the differential∂ ′p under the splitting corresponds to the differential of the mapping cone of
f0 : K → K.

It is natural to take (1.2.1) as the definition of the Koszul complex of a complexX of
A-modules. So we define:

Kf (X) := Con(f,X), Kf1,...,fr (X) := Kf1(Kf2,...,fr (X));

for the Koszul co-chain complex we use the cocone:

Kf (X) := C̊on(f,X), Kf1,...,fr (X) := Kf1(Kf2,...,fr (X));

(1.3) Observations.(1) The formation of the Koszul complexK f (X) = Kf1,...,fr (X) is
functorial with respect toX, and defines an additive functorK f : Mod •A →Mod •A .

(2) The functorK f is exact.
(3) The functorK f commutes with formation of mapping cones.
(4) The functorK f respects homotopy.
(5)The functorK f respects quasi-isomorphisms. In particular, ifX is acyclic, thenK f (X)

is acyclic.

Hints. For all five observations it suffices to treat the caser = 1, f1 = f . (1) and (2) are
obvious: A morphismϕ : X → Y commutes with multiplication byf , because it is linear.
Hence it induces the diagonale morphism on the cones:Kf (ϕ) : Kf (X)→ Kf (Y ).

Consider (3). LetZ be the mapping cone ofϕ. Then there is natural isomorphism of
complexes from the mapping cone ofKf (ϕ) to the Koszul complexKf (Z). Indeed, the two
complexes, and their differentials, are the following:

⊕

X(2)
X(1)
Y (1)
Y

,




∂ 0 0 0
−f −∂ 0 0
ϕ 0 −∂ 0
0 ϕ f ∂


 , ⊕

X(2)
Y (1)
X(1)
Y

,



∂ 0 0 0
−ϕ −∂ 0 0
f 0 −∂ 0
0 f ϕ ∂


 ,

and an isomorphism from the first to the second is given by the matrix,



−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .
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Consider (4). Assume thatϕ = ∂s + s∂ , with a homotopys : X → Y(1). Use thats is
A-linear to prove that

K f (ϕ) =

(
ϕ 0
0 ϕ

)
=

(
−s 0
0 s

)(
−∂X 0
f ∂X

)
+

(
−∂Y 0
f ∂Y

)(
−s 0
0 s

)
.

Finally, consider (5). A quasi-isomorphismϕ : X → Y is characterized by the condition
that the mapping coneZ = Conϕ is acyclic. Therefore, by (3), it suffices to prove the special
case. Again, we may assume thatr = 1. Then, sinceH nX = 0, it follows from the long
exact cohomology sequence associated to the cone off : X → X thatH n(Kf (X)) = 0.
HenceKf (X) is acyclic.

Corollary 1. The Koszul complexKf1,...,fr (X) is, up to canonical isomorphism, invariant
under permutation of thefi .

Hint. We may assume thatr = 2, and then the isomorphismKf (Kg(X)) = Kg(Kf (X)) is
a special case of (3).

Corollary 2. Multiplication byfi inK f (X) is homotopic to zero. In particular, the homology
modulesH f

p(X) are annihilated by thefi and hence by all elements in the ideal(f1, . . . , fr)A.

Hint. By (4), we may assume thatr = 1. Now check the equation,
(
f 0
0 f

)
=

(
0 1
0 0

)(
−∂ 0
f ∂

)
+

(
−∂ 0
f ∂

)(
0 1
0 0

)
.

(1.4) Definition. The cokernel of multiplication byf onX is denotedX/f . Component
for component it is the quotientXn/f := Xn/fXn. The complex(X/f )/g is, component
for component, equal toXn/(f, g)Xn; we denote itX/(f, g), and defineX/(f1, . . . , fr )

inductively. There is a natural morphism,

Kf1,...,fr (X)→ X/(f1, . . . , fr)

defined inductively:Kf (X) is the cone off : X → X, so there is an induced morphism
Kf (X) → X/f . If the morphism (1.4.1) is defined forr elements we define it forr + 1
elements as a composition:

Kf0,f1,...,fr (X) = Kf0(Kf1,...,fr (X))→ Kf0(X/(f1, . . . , fr))→ X/(f0, f1, . . . , fr).

An elementf ∈ A is said to beregular onX, if multiplication byf onX is injective. The
sequence(f1, . . . , fr ) is said to be anX-regular sequence, if f1 is regular onX, andf2 is
regular onX/f1, etc, that is,fi+1 is regular onX/(f1, . . . , fi) for 0 6 i < r.

Proposition. If (f1, . . . , fr ) is anX-regular sequence, then the canonical morphism is a
quasi-isomorphismKf1,...,fr (X) → X/(f1, . . . , fr). If (f1, . . . , fr ) is anM-regular se-
quence, then the Koszul complex is a left resolution ofM/(f1, . . . , fr ),

0→ Kr (M)→ · · ·K1(M)→ K0(M)→ M/(f1, . . . , fr)→ 0.

(1.5) Excercises.
1. Describe the matrix∂3 in the Kozsul complexKf1,f2,f3,f4(A), cf. (1.1)
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2. The de Rham complex.

(2.1) Setup. LetM be a smoothr-manifold (C∞-manifold or, simply, an open subsetM ⊆
R
r ). Denote byCp(M) the vector space ofp-forms onM. So ap-form ω has, locally, in

local coordinatesx1, . . . , xr , a unique expansion as a sum,

ω =
∑

16i1<···<ip6r

fi1,...,ipdxi1 ∧ · · · ∧ dxip ,

where the coefficientsfi1,...,ip are smooth functions. The differentiald : Cp(M)→ Cp+1(M)

is a linear map, defined by additivity from the expansion as follows:

d

(
f dxi1 ∧ · · · ∧ dxip

)
= df ∧ dxi1 ∧ · · · ∧ dxip ,

wheredf =
∑r
j=1

∂f
∂xj
dxj .

Thede Rham complexof M is the complex,

CdR(M) : · · · → 0→ C0(M)→ C1(M)→ · · · → Cr (M)→ 0→ · · · .

Acyclicity of the complex is essentially commutation:∂2f/dxidxj = ∂2f/dxjdxi . The
cohomology is thede Rham cohomologyHp

dR(M).
The degree-0 part,C := C0(M), is the algebra of smooth functions onM and eachCp(M)

is aC-module. Note that, locally, the top partCr(M) is free of rank 1 as aC-module.
The differential of a function is zero, if and only if the function is locally constant. So, the

zeroth cohomologyH0
dR(M) is the vector space of locally the constant functions, of dimension

equal to the number of connected components. In particular,the de Rham complex may be
co-augmented with the vector space of constant functions (say R if we consider real valued
functions onM). In other words there is a morphism of complexesR(0)→ CdR; its mapping
cone is thereduced de Rham complex,

C̃dR(M) : · · · → 0→ R→ C0(M)→ C1(M)→ · · · → Cr (M)→ 0→ · · · ,

with C̃−1(M) = R. The reduced complex is exact if and only if the deRham complex CdR is
a resolution ofR. According to the Poincaré Lemma, this is case whenM is an open interval
in R

r (r > 0); indeed, as is easily seen, then the reduced complexC̃dR(M) is contractible.

(2.2) Note. With some knowledge of sheaf theory you will realize that thede Rham complex
is really a complex of sheaves on the manifold,

C̃dR : · · · → 0→ R
#→ C0→ C1→ · · · → Cr → 0→ · · · ,

whereR
# is the sheaf of locally constant functions. The reduced complex is an exact complex

of sheaves onM.
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3. The Euler characteristic.

(3.1) Setup.For simplicity, work with real vector spaces. A complexX is said to beperfect,
or tohave an index, if its cohomology is finite, that is,Hp(X) is finite dimensional for allp
and non-zero only for finitely manyp. Theindexof a perfect complexX is the integer given
as the alternating sum,

χ(X) :=
∑

i

(−1)i dimH i(X).

(3.2) The additivity properties of the index.
(1) If X is perfect, then so are its shiftsX(n), and

χ(X(n)) = (−1)nχ(X).

(2) Consider an exact triangle,

X′′

X′ X

If two of its vertices,X,X′, andX′′, are perfect, then so is the third, and

χ(X) = χ(X′)+ χ(X′′).

(3) If X is a finite comples, that is, eachXp is finite dimensional and only finitely many
Xp are nonzero, thenX is perfect, and

χ(X) =
∑

(−1)i dimXi .

(3.3) The Euler characteristic. If M is a compact manifold, then the de Rham complex
CdR(M) is perfect, and

χ(CdR(M)) = χE(M),

whereχE(M) is the Euler–Poincaré index, defined from a triangulation ofM as the alternating
sum,

χE(M) = #(0-simplices)− #(1-simplices)+ #(2-simplices)− #(3-simplices)± · · · .

(3.4) Example. The circleS1 is triangulated as the boundary of the triangle: 3 vertices and
3 edges:χE(S

1) = 3− 3= 0.
The sphereS2 is triangulated as the boundary of a tetrahedron: 4 vertices, 6 edges, and 4

faces:χE(S
2) = 4− 6+ 4= 2.
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4. Oriented chains on a triangulated space.

(4.1) The affine simplices.Forp = 0, 1, 2, . . . consider theaffinep-simplex1p defined as
a subset ofRp+1:

1n = { (t0, . . . , tp) | ti > 0,
∑

ti = 1}.

In particular,1p is a compact topological space (a metric space) with the structure induced
from R

p+1.
The vertices of1p are thep + 1 points denoted simply as follows:

0= (1, 0, . . . , 0), 1= (0, 1, . . . , 0), . . . , p = (0, 0, . . . , 1).

As the notation indicates, the vertices of1p will often be identified with the finite set ofp+1
integers [p] := {0, 1, . . . , p}.

Every map of setsϕ : [p] → [q] induces an affine mapϕ∗ or simplyϕ : 1p → 1q ; the
image of a pointt ∈ 1p is the points = ϕ(t) ∈ 1q with j ’th coordinatesj defined as a sum,

s = ϕ(t), sj =
∑

i 7→j

ti,

where the sum, as indicated, is over alli = 0, . . . , p such thatϕ(i) = j .
In particular, forp > 1, let∂k = ∂

p−1
k : [p− 1]→ [p] be the strictly increasing injection

avoiding k for k = 0, . . . , p. Thesep + 1 injections inducep + 1 affine embeddings
∂k : 1p−1→ 1p of 1p−1 as afaceof 1p.

(4.2) Regular simplices of a topological space.LetX be a topological space. A (regular)
p-simplexs in X is an equivalence class of embeddingsσ : 1p →֒ X; two embeddings
σ, σ ′ : 1p →֒ X are equivalent, ifσ ′ = σα with a permutationα of [p]. So s is represented
by (p + 1)! embeddingsσ : 1p →֒ X; they have the same image inX, denoteds, and they
all map the set of vertices of1p to the same set ofp + 1 different points ofX, called the
set ofverticesof s; the set of vertices ofs will be denoted{s}. Each vertexx ∈ {s} has an
opposite face, denotedsx : if s is represented byσ : 1p →֒ X andx = σ(k), thensx is the
(p − 1)-simplex represented byσ∂k. The union of the facessx is theboundary ofs, denote
ṡ, and its complement in̄s is theinterior of s, denoteds◦ ,

ṡ :=
⋃

x
sx, s

◦
:= s̄ − ṡ.

A 0-simplex inX is just a pointx of X; it has one vertex, it has one (empty) face and hence
empty boundary, and it is equal to its interior.

Note that the vertices of ap-simplexs is an unordered set; in fact, a choice of an order
on the set{s} of vertices,{s} = {x0, . . . , xp}, is the same as a choice of a representative
σ : 1p → X for s. Two representativesσ, σ ′ : 1p → X of s differ by a unique permutation
α of [p], that is,σ = σ ′α. We will define anorientation ofX as an equivalence class of
pairs(σ, ε), whereσ is a representative ofs andε is a sign, equal to±1. Two pairs(σ, ε)
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and(σ ′, ε′) represent the same orientation ofs if the unique permutationα with σ = σ ′α has
sign equal toεε′. There are two possible orientations. Ifp > 0, an orientation may always
be given by a pair withε = 1, an so we may think of the two orientations as the division of
the representatives ofs into two classes, each of which consist of embeddings differing by an
even permutation. Ifp = 0, thens is simply a pointx of X, with the unique representative
x : 0 7→ x, and it has two orientations:(x, 1) and(x,−1).

An orientation of ap-simplexs (for p > 1) induces an orientation of each of its faces as
follows:

Consider the facesx opposite a vertexx of s. Let the given orientation ofs be determined
by the pair(σ, ε), whereσ : 1p →֒ X representss. Sayx = σ(i). Then the facesx is
represented by the embeddingσi := σ∂pi . We orientsx by the pair(σi, (−1)iε). To prove
that the orientation is independent of the choice, considerat second pair(σ ′, ε′) representing
the given orientation. Thenσ = σ ′α for a permutationα of [p], and ε = ε′ signα. If
j = α(i), thenσ ′(j) = σ(i) = x. Hencesx is represented byσ ′j = σ ′∂j . So we want

to prove that the pairs(σi , (−1)iε) and(σ ′j , (−1)jε) determine the same orientation ofsx .
Equivalently, ifα0 is the unique permutation of [p−1] determined by the equationα∂i = ∂jα0,
then we want to prove the equation signα0 = εε

′(−1)i+j signα.
Check it!.

(4.3) Triangulations. Let 6 be a triangulation of X, that is, a collection6 of regular
simplices ofX satisfying the following conditions:

(1) X is the disjoint union
X =

⋃

s∈6

s
◦
,

(2) If s is in6 then every face ofs is in6.
(3) The maps 7→ {s} is injective on6, that is, if two simplices ofσ has the same set of

vertices, then they are equal.

Chose once and for all an orientation of every simplexs of6. There is no harm assuming
that 0-simplices, the pointsx of X, are given their positive orientation, determined by(x, 1).

Let6p denote the set ofp-simplices of6 (so6 = 60 ∪61 ∪ · · · ). Define

Corient
p (6,X, k) := k⊕6p ;

in other words,Cp = Corient
p (6,X, k) is the freek-module generated by thep-simplices

of 6; its elements are formalk-linear combinations
∑
λss of p-simplicess from 6. The

elements ofCp are calledorientedp-chainsonX (with respect to6).
Let ∂ : Cp → Cp−1 (for p > 1) be thek-linear map defined on the generatorss of Cp as

the sum,
∂(s) =

∑

x∈{s}

±sx.

The sum is over thep+1 verticesx of s, andsx is the face ofs opposite ofx. The sign in front
of sx is ‘+’ or ‘−’ according to whether the orientation onsx induced from the orientation of
s is equal to or opposite to the orientation ofsx as an element of6.

180



Oriented chains on a triangulated space Expl 4.3

It is easy to see that the sequence,

· · · → Cp
∂
Cp−1 · · · C0→ 0→ 0→ · · · ,

is a complex, theoriented chain complexCorient(6,X) of the triangulation, with homology
modulesHorient

p (6,X).
The complexCorient(6,X) is essentially independent of the chosen orientations of6. If

the ringk is a field, and the complexCorient(6,X) is perfect, then its Euler–Poincaré index
is defined:

χ(6,X) :=
∑

p
(−1)p dimHp(6,X).

If the triangulation6 is finite, then eachCp is of finite dimension, equal to|6p|, and so

χ(6,X) =
∑

p
(−1)p|6p|,

independent ofk.

(4.4) Stoke’s Theorem. Assume thatX in addition is a smooth manifold, and that the
triangulation is smooth, that is, the simplices of6 are represented by smooth embeddings
σ : 1p →֒ X. Note that1p is a manifold with boundary: a mapσ : 1p → X is smooth if it
is, locally on1p, the restriction of a smooth map defined on an open subset ofR

p+1. Then a
p-formω ∈ C

p

dR(X)may be integrated over a regularp-simplexs ∈ 6p: The pull backs∗ω
is ap-form on1p. If we identify1p with the subset ofRp obtained by discarding the 0’th
coordinate:

1p = { (t1, . . . , tp) | ti > 0,
∑

ti 6 1}

thens∗ω is ap-form in the variablest1, . . . , tp, and hence of the formf dt1∧ · · · ∧ dtp. We
set

〈ω, s〉 :=
∫

s

ω :=
∫

1p
f dt1 · · · dtp.

Extending by linearity fromp-simplicess ∈ 6p to arbitrary chains inCorient
p (6,X), we

obtain a pairing (a bilinear form),

C
p
dR(X)× C

orient
p (6,X)→ R,

or, equivalently, a linear map from the vector space ofp-forms to the dual of the vector space
of orientedp-chains,

C
p
dR(X)→

(
Corient
p (6,X)

)∗
.

It is a consequence of Stoke’s Theorem that the linear maps, for varyingp, form a map of
complexes,

CdR(X)→
(
Corient(6,X)

)∗
.
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5. Combinatorial chains on a triangulated space.

(5.1) Combinatorial simplices. LetX be a topological space with a given triangulation6.
Then acombinatorialp-simplexof X (or better, of(X,6)), is a(p + 1)-tuple(x0, . . . , xp)

of points ofX such that{x0, . . . , xp} is the set of vertices of some (regular) simplexs of 6,
necessarily uniquely determined by the pointsxi . It is not assumed that thexi are different,
and sos may be aq-simplex for someq 6 p. If q < p then the combinatorial simplex is
calleddegenerate. Note that there are degenerate combinatorialp-simplices of any dimension
p. Let6comb

p be the set of combinatorialp-simplices, and let,

Ccomb
p (6,X, k) := k⊕6

comb
p .

Let ∂ : Cp → Cp−1 (for p > 1) be thek-linear map defined on the generators(x1, . . . , xp)

of Cp as the sum,

∂(x1, . . . , xp) =

p∑

i=0

(−1)i(x1, . . . , x̂i, . . . , xp),

where the hat indicates an omitted coordinate.
It is easy to see that the sequence,

· · · → Cp
∂
Cp−1 · · · C0→ 0→ 0→ · · · ,

is a complex, thecombinatorial chain complexCcomb(6,X) of the triangulation, with ho-
mology modulesH comb

p (6,X).

(5.2) Comparison. A linear maph : Ccomb
p (6,X) → Corient(6,X) is defined by the

following values on the generators(x0, . . . , xp) ∈ 6
comb
p . If (x0, . . . , xp) is degenerate,

h(x0, . . . , xp) = 0. Otherwise{ x0, . . . , xp } is the set of vertices of a regularp-simplex
s ∈ 6. There is a unique representativeσ : 1p →֒ X of s such thatxi = σ(i) for
i = 0, . . . , p. Set

h(x0, . . . , xp) := ±s

where the sign equals ‘+’ if (σ, 1) determines the given orientation ofs, and equals ‘−’
otherwise.

Note that the functionh(x0, . . . , xp) is alternating in its domain of definition: fori 6= j
the function vanishes ifxi = xj and it changes sign ifxi andxj are interchanged.

It is easy to see that the linear maps, from combinatorial chains to oriented chains, form a
map of complexes,

Ccomb(6,X)→ Corient(6,X)
)
.
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6. Singular chains on a topological space.

(6.1) Singular simplices. Let X be a topological space. Asingularp-simplexonX is a
continuous mapσ : 1p → X. The set of singularp-simplices is denoted1p(X), that is,

1p(X) := Homcont(1
p, X).

For each mapϕ : [q] → [p] there is a continuous mapϕ : 1q → 1p and hence an induced
map of sets1p(X)→ 1q(X)given byσ 7→ σϕ. In particular, the maps∂p−1

i : [p−1]→ [p]
(for i = 0, . . . , p) induce mapsσ 7→ σ∂

p
i from1p−1(X) to1p−1(X). The(p−1)-simplex

σi := σ∂i is thei’th face ofσ .
LetCp = C

sing
p (X, k) be the free module generated by the singularp-simplices,

C
sing
p (X, k) := k⊕1p(X),

and let∂ : Cp → Cp−1 (for p > 1) be thek-linear map given on the generatorsσ of Cp as
the sum,

∂(σ ) =

p∑

i=0

(−1)iσi .

It is easily seen that the following sequence is a complex, thesingular chain complexof X:

· · · → Cp
∂
Cp−1 · · · C0→ 0→ 0→ · · · .

The homology of the complex is thesingular homologyof X with coefficients ink,

H
sing
p (X, k) := Hp(C

sing(X, k)).

(6.2). Assume that a triangulation6 of X is given. Let(x0, . . . , xp) be a combinatorialp-
simplex. The the set{x0, . . . , xp} is the set of vertices of a unique regularq-simplexs in 6.
Chose a representativeσ : 1q → X of s. Then there is a unique surjective mapϕ : [p] → [q]
such thatxi = σ(ϕi) for i = 0, . . . , p. Moreover, the compositionσϕ : 1p → 1q → X,
which is a singularp-simplex inX, is independent of the choice of representativeσ . So there
is a well defined map6comb

p → 1(X) from the set of combinatorialp-simplices to the set of

singularp-simplices. It induces a linear mapCcomb
p (6,X, k)→ C

sing
p (X, k), and in fact a

map of complexes,
Ccomb(6,X, k)→ Csing(X, k).
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7. Fundamental theorems of singular homology.

(7.1) The reduced singular chain complex.LetX be a topological space. The definition
of1p and1p(X)makes sense also whenp = −1: The affine simplex1−1 is the empty set
(defined as the empty subset ofR

0), and there is exactly one(−1)-simplex∅ → X. Hence
C

sing
−1 (X, k) = k, and we may consider the augmented complexC̃ = C̃ sing(X, k),

C̃ : · · · → Cp
∂
Cp−1 · · · C0→ C−1→ 0→ · · · .

Its homology, denoted̃H sing
p (X, k), is thereduced singular homologyof X.

Note thatC(X) andC̃(X) are covariant as functors ofX: A continuous mapf : X → Y

induces maps of sets1p(X)→ 1p(Y ), defined byσ 7→ f σ , and hence maps of free modules
C̃p(X, k)→ C̃p(Y, k), forming a map of complexes̃C(X, k)→ C̃(Y, k).

(7.2) Fundamental theorems.

Theorem I, the extremes. C̃(∅) = k(−1), C̃(pt) ⋍ 0.

Theorem II, the homotopy axiom. A homotopy of mapsf0 ⋍ f1 : X→ Y , induces
a homotopy of chain maps̃C(f0) ≃ C̃(f1) : C̃(X)→ C̃(Y ).

Theorem III, the axiom of small simplices. Assume thatX =
⋃
U∈U U is an open

covering ofX. Let C̃(U, X) be the subcomplex of̃C(X) generated by singular simplices
σ : 1p → X which areU-small, that is, have their image contained inU for someU ∈ U .
Then the inclusioñC(U, X)→ C̃(X) is a homotopy equivalence.

Theorem IV, the K
··
unneth formula. For any two spacesX, Y there is a homotopy

equivalenceC(X × Y) ⋍ C(X)⊗ C(Y).

(7.3) And their consequences.

A. The equivalence theorem. A homotopy equivalenceX ⋍ Y induces a homotopy
equivalencẽC(X) ⋍ C̃(Y ).

B. The Mayer–Vietoris theorem. For open subsetsU1, U2 ⊆ X there is an exact
triangle in the homotopy category,

C̃(U1 ∪ U2)

C̃(U1 ∩ U2) C̃(U1)⊕ C̃(U2).

187



Expl 7.2 Examples; illustrations

C. The cone theorem. Let f : X → Y be a continuous map, and letZf = Con(f )
denote the mapping cone off , see below. Then there is a homotopy equivalence,

C̃(Con(f )) = Con(C̃(f )),

In particular, there is an exact triangle in the homotopy category,

C̃(Zf )

C̃(X)
C(f )

C̃(Y ).

D. The suspension theorem. LetX(1) = SX denote the suspension ofX, see below.
Then there is a homotopy equivalence

C̃(X(1)) ⋍ C̃(X)(1).

(7.4) Cone and suspension.Letf : X→ Y be a map. Then themapping coneof f , denoted
Z = Con(f ) is the topological space,

Con(f ) :=
{p0} ∪ X×I ∪ Y

p0=(x, 0), (x, 1)=f x
,

obtained from the disjoint union of a pointp0, the productX × [0, 1], and the spaceY , by
identifying for allx the point(x, 0) with p0 and the point(x, 1) with f x in Y .

p0 X×I Y

f (X)

Con(f )

The mapping cone of the constant mapX→ pt is the (double)suspensionof X, denoted
SX orX(1),

SX = X(1)

For pointed spaces the definitions are similar: The pointed cone, or simply the cone, of a
pointed map,

Con(f ) :=
X×I ∪ Y

(x, 0)=(x0, t), (x, 1)=f x
,

andSX := (pointed) cone of constant mapX→ pt.
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(7.5) Example. Forn > 0 there is an explicit identification of the pointed suspension of the
n-sphere,

S Sn = Sn+1. (7.5.1)

Indeed, an isomorphism is given af follows: LetDn be the equatorial disk ofSn+1, with
boundarySn, letp0 = (1, 0, . . . , 0) be the base point andn = (0, . . . , 0, 1) the North pole.
Letπ+ : Dn→ Sn+ be the inverse stereographic projection centered at the South pole−n, from
the disk onto the Northern hemisphere; it is given, for pointsx in the equatorial hyperplane
orthogonal ton, by the formulaπ+(x) = (λ− 1)n+ λx, whereλ = 2/(1+ |x|2). Then the
isomorphism (7.5.1) is given by the expression,

(z, s) 7→

{
π+(µtz), t = 2s, for 0 6 s 6 1

2,

π−(µtz), t = 2− 2s, for 1
2 6 s 6 1;

hereµt is the multiplicationµtz = tz + (1 − t)p0 around the centerp0, andπ− is the
projection onto the Southern hemisphere.

Stereographic projection preserves spheres. In particular, under the isomorphism the
sphereSn × s ⊂ S Sn is mapped to a small sphere inSn+1. In fact, the imageπ+µt (Sn) is
the intersection ofSn+1 and the hyperplane throughp0 orthogonal totn+ (1− t)p0.

A direct proof of the latter fact is a simple computation: Let

x := µtz = tz+ (1− t)p0, and u = π+x = (λ− 1)n+ λx,

whereλ = 2/(1+ |x|2). Then,

(u− p0) · n = λ− 1,

(u− p0) · p0 = λx · p0 − 1= −λt
(
1− z · p0

)
+ (λ− 1).

Clearly,

|x|2 = t2+ (1− t)2 + 2t (1− t) z · p0 = 1− 2t (1− t)
(
1− z · p0

)
.

Setc := 1+ |x|2. Thencλ = 2, andc(λ− 1) = 1− |x|2 = 2t (1− t)
(
1− z · p0

)
. Hence,

c (u− p0) · n = 2t (1− t)
(
1− z · p0),

c (u− p0) · p0 = −2t
(
1− z · p0

)
+ 2t (1− t)

(
1− z · p0

)
= −2t2

(
1− z · p0

)
.

As a consequence,u− p0 is orthogonal totn+ (1− t)p0, as asserted.�
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8. Homology and cohomology of the spheres.

(8.1) Example. It may be proved for thepunctured plane
•

R
2 := R

2 \ {0} that de Rham

cohomologyHdR(
•

R2) is given byHp = R for p = 0, 1 andHp
dR = 0 for all otherp.

Equivalently, the reduced de Rham cohomology is given byH̃ ∗dR = R(−1). More generally,
reduced de Rham cohomology of the punctured(n+ 1)-space is given by the equation,

H̃ ∗dR(
•

R
n+1) = R(−n) (8.1.1)

It follows that up to quasi-isomorphism,̃CdR(
•

R
n+1) = R(−n).

(8.2) Example. The affinen-simplex1n with its obvious triangulation hasHorient
0 =

H comb
0 = k andHp = 0 for all otherp, that is,

Horient
∗ (1n, k) = Horient

∗ (1n, k) = k(0). (8.2.1)

In fact, it is easy to see that the reduced complexesC̃orient(1n, k) and C̃orient(1n, k) are
contractible.

Work with the oriented complexes̃C = C̃orient, and consider the boundary
•

1n+1 of the
(n+ 1)-simplex. Its triangulation is obtained from the triangulation of1n+1 by omitting the
top simplex, corresponding to the identity1n+1→ 1n+1. So the two complexes̃C(1n+1, k)

andC̃(
•

1n+1, k) agree in degreesp 6 n. Moreover, under the identificationsCn+1(1
n+1) =

k andCn(1n+1) = Cn(
•
1n+1), the (n + 1)’st boundary map∂n+1 : may be viewed as a

linear map∂ : k → Cn(
•

1n+1, k). Equivalently,∂ may be viewed as a map of complexes

∂ : k(n)→ C̃(
•

1n+1, k), andC̃(1n+1, k) is the mapping cone of∂ . As the cone is contractible,
it follows that∂ defines a homotopy equivalence,

k(n) ∼−→ C̃orient(
•

1n+1, k). (8.2.2)

A similar result may be proved for the combinatorial simplexC̃orient(
•

1n+1, k).

(8.3) Example. Then-sphereSn := { x ∈ R
n+1 | ‖x‖ = 1}may be defined inductively as a

suspension:S−1 := ∅ andSn := S(Sn−1) for n > 0. Hence, by EXPL(7.2)I and (7.3)D, we
have

C̃sing(Sn) ≃ k(n). (8.3.1)

Note that, up to homotopy,
•

R
n+1 ≃

•

1n+1 ≃ Sn.

(8.4) Example. Real projectiven-spaceIP n = IP n(R) may be defined as the quotient
IP n := Sn/± 1 of Sn modulo the cyclic group C2 = ±1 acting via the antipodal involution.
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The quotient mapSn → IP n maps the equatorialSn−1 onto aIP n−1 ⊆ IP n, and, clearly,
IP n is the mapping cone of the quotient mapSn−1→ IP n−1. Consequently, there is an exact
triangle of reduced chain complexes in the homotopy category,

C̃sing(IP n+1, k)

C̃sing(Sn, k) C̃sing(IP n, k).

Now, C̃sing(Sn, k) = k(n). It follows by induction onn that there is a chain complex of the
form

D̃ : · · · → k
d3 k

d2 k 0→ 0→ · · · ,

with the rightmostk in homological degree 1, and a homotopy equivalence,

C̃sing(IP n, k) ≃ D̃6n,

whereD̃6n = D̃
>−n is then’th chain truncation of̃D. For the non reduced complex there is

a similar homotopy equivalence,

Csing(IP n, k) ≃ D6n,

whereD is obtained from̃D by replacing 0 byk in degree 0. It may by proved that the maps
di for oddi vanish and for eveni are multiplication by 2. SoD has the following form,

D̃ : · · · → k
2
k

0
k

2
k

0
k→ 0→ · · · ,

with the rightmostk in degree 0. Note in particular thatH n(IP n, k) = k whenn is odd and
H n(IP n, k) = 2k whenn is even.
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9. Some comparison theorems.

(9.1). Let 6 be a triangulation of a topological spaceX, with eachs ∈ 6 oriented. For
a combinatorial simplex(x0, . . . , xp) of (X,6), denote bys = t (x0, . . . , xp) the regular
simplex in6 with vertices{x0, . . . , xp}; the combinatorial simplex is degenerated ifs ∈ 6n
with n < p. Let t̃ : Ccomb

p → Corient
p be the linear map given on generators by the formula,

t̃ (x0, . . . , xp) = εt (x0, . . . , xp),

whereε is 0 if (x0, . . . , xp) is degenerated and, in the non degenerated case,ε is+1 or−1
according as the orientation oft (x0, . . . , xp) ∈ 6 is equal to or opposite to the orientation
given by the orderingx0, . . . , xp of the vertices.

It is easily seen that̃t is a map of complexes,

t̃ : Ccomb(X,6, k)→ Corient(X,6, k); (9.1.1)

it is in fact a homotopy equivalence (The Principle of alternating degeneration).

(9.2). On the other hand, associate with the combinatorialp-simplex(x0, . . . , xp) in (X,6)
the singularp-simplex

τ(x0, . . . , xp) : 1
p → X

defined as follows: Letn + 1 be the cardinality of the set{x0, . . . , xp}, and let s =
t (x0, . . . , xp) ∈ 6n be the regularn-simplex determined by the set of verticesxi . Let
σ : 1n → X be a representative ofs, determined by some ordering of then + 1 vertices in
s, say{y0, . . . , yn} = {x1, . . . , xp}. Then there is a corresponding surjectionβ : [p] → [n]
such thatxi = yβi , and the compositionτ = σβ : 1p → 1n→ X is independent ofσ . It is
easy to see that the map determined by(x0, . . . , xp) 7→ τ(x1, . . . , xp) is a map of complexes,

τ : Ccomb(X,6, k)→ Csing(X, k). (9.2.1)

(9.3) Lemma. If 6 is a finite triangulation ofX, then the mapτ of (9.2.1) is a homotopy
equivalence.

Proof. If X = 1n, with the natural triangulation, then via the augmentations, both complexes
are homotopy equivalent tok(0). Indeed, the reduced singular complex is contractible,
because1n is contractible (isotopic to a point), and for the reduced combinatorial complex
of 1n a contractionγ is defined as follows: Then-simplex1n hasn + 1 vertices (you
may identify them with the numbers 0, 1, . . . , n) and a combinatorial simplex is an arbitrary
sequence(x0, . . . , xp) (withp > −1) of these vertices. Fix a vertexy and defineγ : Ccomb

p →

Ccomb
p+1 by

γ (x0, . . . , xp) = (y, x0, . . . , xp);

it is easy to check that∂γ + γ ∂ = 1. Hence the reduced combinatorial complex isC̃comb is
contractible.
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So, the augmentations of the source and target ofτ are homotopy equivalences. Sinceτ
respects the augmentations, it follows thatτ is a homotopy equivalence.

In the general case, proceed by induction on the cardinalityof 6. Choses ∈ 6n with
maximaln. Then the subspacesX1 := s̄, X2 := X − s̊, andX0 := X1 ∩ X2, are naturally
triangulated, andX = X1 ∪ X2. For the pair(X1, X2) there is an obvious Meyer–Vietoris
triangle for the combinatorial complexesCcomb. Assume there is a similar sequence for the
singular complexesCsing. Thenτ is a morphism of triangles. By induction,τ is a homotopy
equivalence at two of the vertices,

Ccomb(X1 ∩X2)
∼−→Csing(X1 ∩X2), and

Ccomb(X1)⊕ C
comb(X2)

∼−→Csing(X1)⊕ C
sing(X2).

Hence, at the third vertexτ is a homotopy equivalence,

Ccomb(X) ∼−→Csing(X),

To obtain the Meyer–Vietoris triangle for the (closed) pair, we use a metric onX defined as
follows: Clearly, for any simplexs ∈ 6, there is a well-defined distance dists(x, y)defined for
pointsx, y ∈ s̄, independent ofs. So define dist(x, y) := dists(x, y) if x, y both belong tōs
for somes ∈ 6, and dist(x, y) := ∞otherwise. Then the subsetU0 := { x | dist(x,X0) < ε}

is open, and so are the subsetsU1 := X1∪U0 andU2 := X2∪U0. If ε is small (less than the
distance from the center of1n to the boundary), then the inclusionsX0 →֒ U0, X1 →֒ U1,
andX2 →֒ U2, are homotopy equivalences. Hence the required Meyer–Vietoris triangle for
(X1, X2) is obtained from the triangle for the open pair(U1, U2), cf. EXPL(7.2)B.

(9.4). Assume that6 is aC∞-triangulation of aC∞-manifold (so for a simplexs ∈ 6 the
representativesσ : 1p →֒ X areC∞-mappings). Then ap-formω ∈ Cp(X) can be integrated
over ap-simplexs (oriented as usual); the result is the integral,

〈ω, s〉 =

∫

σ

ω.

Accordingly there is a pairingCp(X)⊗RC
orient
p (X,6,R)→ R, or, equivalently, anR-linear

map,
Cp(X)→ C

p
orient(X, S,R), (9.4.1)

whereCporient on the right side is the dual of the vector spaceCorient
p . By Stoke’s Theorem,

the maps (9.4.1) define a map of complexes,

C•dR(X)→ C•orient(X, S,R). (9.4.2)

It is the contents of de Rham’s theorem, for a finite triangulation6, that the map (9.4.2)
is a quasi-isomorphism. The dual of the homotopy equivalence (9.2.1) is a homotopy
equivalenceC•sing(X,R)

∼−→C•orient(X,6,R); so there is an inverse homotopy equivalence

C•orient(X,6,R)
∼−→C•sing(X,R). Whence, by de Rham’s Theorem, there is a quasi-isomor-

phism,
C•dR(X)→ C•sing(X,R). (9.4.3)
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10. Some limits.

(10.1). Let I be a partially ordered set. Leti 7→ Xi be anI -system in the categorySetssuch
that the morphisms of the system are inclusions of subsets. To be precise, assume there is
given a setE, and thati 7→ Xi is anI -system in the categoryP(E) of subsets ofE (with
inclusions as morphisms). Clearly,

lim−→
i

Xi =
⋃

i

Xi, lim←−
i

Xi =
⋂

i

Xi, in the categoryP(E).

However, if the system is considered in the categorySets, then the equality lim−→Xi =
⋃

Xi

holds in general only ifI is filtering, and the equality lim←−Xi =
⋂

Xi holds in general only
if I is connected.

Assume instead thati 7→ Xi is a system of quotients with projections, that is, assume the
following: LetE be a fixed set, and letQ(E) be the category of quotients ofE: An object
of Q(E) is a quotientE/R of E modulo an equivalence relationR, and there is a morphism
E/R′ → E/R′′ if and only if R′ ⊆ R′′. Let i 7→ Xi = E/Ri be anI -system inQ(E).
Clearly,

lim−→i
E/Ri = E/

⋃
iRi, lim←−i E/Ri = E/

⋂
iRi, in the categoryP(E).

If the system is considered in the categorySets, then the equality lim−→E/Ri = lim−→E/
⋃
Ri

holds in general. In contrast, the lim←−E/Ri = lim←−E/
⋂
Ri is requires strong conditions on

the system.
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11. The derived functors of the limit functor.

(11.1) Setup.Let I be a (small) index category, andA an abelian category with exact
∏
I ’s.

Then the limit is a functor,

lim←−
I

: AI → A;

it associates with anI -systemX : I → A the limit lim←−i Xi . We will describe in (11.5)
below a resolvent complex for the limit functor. Its construction is a standard construction in
simplicial cohomology. Parts of that theory is sketched in (11.2) and (11.4).

(11.2). Denote by|I | the set of objects ofI , viewed as a discrete category. Then, corre-
sponding to the inclusion|I | →֒ I , there is a forgetful restriction functorλ : AI → A|I |;
it associates with anI -systemX : I → A the family {Xi} of objects (with no transition
morphisms).

The forgetful functorλ has a right adjointρ:

AI
λ

ρ
A|I |.

It is defined as follows: Fori ∈ I we let

(ρY)i :=
∏

i→j

Yj ;

the index set for the product is the set of morphismsα : i → j in I from the given objecti; it
is also denotedi/I . The morphisms in theI -systemρY are obtained by simple projections:
A morphismγ : i → k in I induces a map setsk/I → i/I (defined byα 7→ αγ ), from the
index set used for the product(ρY)k to the index set used for(ρY)i . Accordingly, there is a
morphism induced byγ :

γ : (ρY)i =
∏

i→j

Yj → (ρY)k =
∏

k→j

Yj , given by prα γ = prαγ for α : k→ j.

It is easy to see thatρY is anI -system, and thatρ is a functor. A direct systemX in AI of
the formX = ρY with anI -family Y will be called atrivial or co-inducedsystem. It is easy
to determine the limit of a trivial system:

lim←−
i∈I

(ρY)i =
∏

i∈I

Yi . (11.2.1)

Do it!

197



Expl 11.2 Examples; illustrations

(11.3). For the composition of functorsρλ : AI → A|I |→ AI there is a natural “adjunction”
morphism,

ǫ : X → ρλX , (11.3.1)

(the unit of the adjunction) from the systemX to the trivial systemρλX . The morphismǫ
is, at an indexi, the morphism,

ǫi : Xi →
∏

i→j

Xj , (11.3.1)

whose projection prϕ ǫi at an indexϕ : i → j of the product is equal to the transition morphism
ϕ∗ : Xi → Xj . The identity 1= 1i of i is among the indices, and pr1 ǫi is the identity ofXi .
So pr1 is a retraction forǫi . In particular,ǫi is a monomorphism for everyi. Therefore, the
morphism (11.3.1) is a monomorphism of systems.

In particular, everyI -systemX in A admits a monomorphism into a trivialI -system.

(11.4) The standard complex.Let π := ρλ be the compositionAI → A|I | → AI . Then,
with the compositions of functors,

π [n] :=
n+1︷ ︸︸ ︷

π π · · ·π,

there is an associated coaugmented “standard complex”, with π [p]X in degreep:

π̃X : 0→ X
ǫ
π [0]X → π [1]X → π [2]X → · · · . (11.4.1)

It may be described explicitely as follows: In degreep,
(
π [p]X

)
i
=

∏

i→jp→ ··· →j0

Xj0.

The index set is the set of all composablep-strings(ϕ0, . . . , ϕp) from the given indexi:

i
ϕp

jp
ϕp−1

· · ·
ϕ0

j0.

The differentialdp : π [p]X → π [p+1]X in the complex is determined by its projections onto
the factors of the target. Corresponding to the indexi

ϕp+1
jp+1

ϕp
· · ·

ϕ0
j0 the

projection is given by the expression,

prϕ0,...,ϕp+1
d = ϕ0 prϕ1,...,ϕp+1

+

p+1∑

ν=1

(−1)ν prϕ0,...,ϕν−1ϕν ,...,ϕp+1
.

The indices on the projections in the sum are the strings obtained from the given string by
replacing to consecutive morphisms by their composition.

It is a general fact thatthe standard complex(11.4.1)is contractible whenX is a trivial
system, that is, ifX = ρY for some familyY .

As everyI -system admits a monomorphism into a trivialI -system, and the functorπ , and
hence all the functorsπ [n] are exact, we conclude that the standard complex (11.4.1) defines
a resolution of the identity ofAI . In fact, for any additive functorT : AI → B from AI to
an abelian categoryB such that the functorsT π is exact, it follows that the coaugmented
complexT π̃χ defines a resolvent complex for the functorχ → T χ . In particular, thenT is
(uniformly) derivable and the trivialI -systems areT -acyclic.
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(11.5) Proposition. A resolvent complex for the limit functorlim←−I : AI → A is given by the
following coaugmented complex of functors5i defined on systemsX : I → A,

5̃X : 0→ lim←−
I

X
ǫ
50X

d0
51X

d1
52X

d2
· · · , (11.5.1)

where
5pX = lim←−π

[p]X =
∏

jp→jp−1→···→j0

Xj0,

and the differentiald : 5p → 5p+1 is given by the projections,

prϕ0,...,ϕp
d = ϕ0 prϕ1,...,ϕp

+

p∑

ν=1

(−1)ν prϕ0,...,ϕν−1ϕν ,...,ϕp
+(−1)p+1 prϕ0,...,ϕp−1

.

Proof. The complex is obtained by applying the limit functor lim←−I to the complex (11.4.1).
Each functor5p is exact, sinceA has exact

∏
I ’s. It was noted in (11.3) that everyI -system

admits a monomorphism into a trivialI -system. Moreover, ifX is a trivial system, then the
complex (11.5.1) is exact, since it is obtained from the contractible complex (11.4.1). Thus
the conditions for a resolvent complex of functors have beenverified.

(11.6). It follows from this result that the functor lim←− : AI → A is uniformly derivable. The

p’the derived functor is denoted lim←−
(p)
I or Hp(I ; ); its value lim←−

(p)
I X = Hp(I,X ) is the

p’th cohomology of the categoryI with coefficients in the systemX . It is, by (11.5), equal
to the cohomology of the complex in (11.5.1) without coaugmentation,

lim←−
(p)

I X = Hp(I,X ) := Hp(5X). (11.6.1)

It is a consequence of the result that trivialI -systems are acyclic for the limit functor lim←−I .
Note that anyI -systemX has acanonical embeddinginto a trivial system, namely the

canonical embeddingX → Y := ρλX described in (11.5.2).

(11.7) Example.For special index categories there may be other exact resolving complexes.
Consider for instance the categoryI = (0→→ 1), with two morphisms in addition to the

two identities. AnI -systemX is a pair of morphismsf ′, f ′′ : X0→→ X1, and its limit is the
coequalizer,

lim←− (X0
f ′

f "
X1) = Ker(f ′, f ").

The following coaugmented complex,

0→ Ker(f ′, f ")→ X0
f ′−f "

X1→ 0→ · · · ,
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is a an exact resolving complex for lim←−I . Indeed, the functorsX 7→ X0 andX 7→ X1 are
exact functorsAI → A and evaluation at a trivial systemρY is the exact complex,

0→ Y0× Y1→ Y0× Y1× Y1
pr′ − pr′′

Y1→ 0→ · · · ,

where pr′ and pr′′ are the projections on the second and third factor. Hence, for the derived
functors,

Rp Ker(X0
f ′

f "
X1) =





Ker(f ′, f ") if p = 0,

Cok(f ′, f ") if p = 1,

0 otherwise.

(11.8) Example. As a second example, consider the categoryI := 1′→ 0← 1′′. Then an
I -systemX is a diagram,

X ′′

f ′′

X ′
f ′

X0;

the limit is the fibered productX ′ ×X0 X
′′. It is easy to see that the following coaugmented

complex,

0→ X ′ ×X0 X
′′→ X ′ × X ′′

f ′ pr′ −f ′′ pr′′
X0→ 0→ · · · ,

defines a resolvent complex for the limit. So, for this index categoryI ,

H0(I,X ) = X ′ ×X0 X
′′, H1(I,X ) = X0/(Im f ′ + Im f ′′),

andHp = 0 for p > 1.

(11.9) Remark. The cohomology to the categoryI sketched here, with coefficients in an
I -systemX , is one out of four parallel theories: For aninverseI -systemZ : I → A,
the cohomology is defined by replacingZ by the direct systemopZ : Iop → A, that is,
Hp(I,Z) := Hp(Iop, opZ).

In addition, a direct systemX : I → A may be viewed as a direct systemopX op: Iop→

Aop, with values in the dual categoryAop; thep’th cohomology of the latter system, as an
object inA, is called thep’th homology of the categoryI with coefficients in the system
X, and denotedHp(I,X ). There is a similar definition of homology with coefficients in an
inverse system.

(11.10) Exercises.
1. Let f : X → Y be a morphism ofI -systems inC. Assume for everyi thatfi : Xi → Yi

is a monomorphism. Prove thatf is a monomorphism in the categoryCI . What about the
converse?

2. Let Q = {Qi} be a family (indexed by the objects ofI ) of injective objects ofA. Prove
that the family is an injective object in the abelian category A|I | of families. Prove that the
trivial I -systemρQ is an injective object in the categoryAI of I -systems.
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12. The spectral sequences of Hom(B,lim).
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13. The derived functors of the limit functor over N.

(13.1) Setup. Let A be an abelian category with exact
∏

N
’s. View the setN with its usual

order as a category. Then an inverseN-systemX in A is a system of morphisms,

· · ·
ϕ3

X3
ϕ2

X2
ϕ1

X1 . (13.1.1)

Equivalently, we will in this section viewN with the order· · · > 3 > 2 > 1, and consider
(13.1.1) as anN-system inA.

A trivial N-system, defined from a familyYn for n ∈ N, has the formX = ρY with

(ρY)n =
∏

n→j

Yj =
∏

j6n

Yj = Y1× · · · × Yn.

So, inductively,X1 = Y1 andXn = Xn−1× Yn. Equivalently, at systemX is trivial if every
transition morphismXn→ Xn−1 is a split epimorphism.

(13.2) Observation.The following augmented complex of functors50,51 : AN → A de-
fines an exact resolvent complex forlim←−N

:

5(X ) : · · · → 0→ lim←−
N

X → 50X
d
51X → 0→ · · · , (13.2.1)

where50X = 51X :=
∏

Xn andd : 50X → 51X is given by itsn’th projection,

prn d = ϕn prn+1− prn, for n > j.

Proof. Indeed,50 and51 areclearly exact functors, and lim←−N
X is thekernel of thedifferential

d. Assume thatX = ρY is trivial. Then

lim←−
N

ρY =
∏

n

Yn, and 50
Y = 51

Y =
∏

n>j
Yj ,

where the product is over all pairs(n, j) with n > j . The differentiald is given by its
projections:

prn,j d = prn+1,j − prn,j ,

corresponding to the index(n, j). So it remains to prove thatd is an epimorphism. In fact,
it is easy to prove thatd is a split epic with a sections : 51→ 50 defined by its projections,

prn,j s =
∑

n>k>j
prk,j .

It is a consequence of the result that the derived functors oflim←−n∈N
are determined as

follows: lim←−
(0)
n
χn = lim←−n χn = Kerd, lim←−

(1)
n
χn = Cokd, and lim←−

(p)
n
χn = 0 for p > 1.

In particular, an anN-systemQ is lim←−N
-acyclic if and only if the morphismd = d(Q) in

(13.2.1) is an epimorphism.
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(13.3) Application. Assume the conditions of(13.1). Consider anN-systemX in A•, that
is, anN-system of complexes,

· · ·
ϕ3

X3
ϕ2

X2
ϕ1

X1 . (13.3.1)

Assume that in each degreep theN-system· · · → X
p
3 → X

p
2 → X

p
1 is lim←−N

-acyclic. Then
there is for everyp an exact sequence inA:

0→ lim←−
n

(1)Hp−1(Xn)→ Hp(lim←−
n

Xn)→ lim←−
n

Hp(Xn)→ 0. (13.3.2)

Proof. Consider the sequence of complexes,

0→ lim←−
n

Xn→
∏

n

Xn
d
∏

n

Xn→ 0→ · · · . (13.3.3)

Limits of complexes are obtained degree by degree. Hence thesequence (13.3.3) is in degree
p the sequence corresponding to theN-systemn 7→ X

p
n . By assumption, the sequence

(13.3.3) is exact in each degree. Therefore it is an exact sequence of complexes. Consider
the corresponding long exact cohomology sequence. The cohomology of a product is the
product of cohomology sinceA has exact

∏
N

’s. So the long exact sequence has this form

∏

n

Hp−1(Xn)
d
∏

Hp−1(Xn)→ Hp(lim←−
n

Xn)→
∏

n

Hp(Xn)
d
∏

n

Hp(Xn).

The short exact sequence (13.3.2) is a consequence.

Corollary. If the system(13.3.1)is lim←−N
-acyclic in each degree and if each complexXn is

exact, then the limitlim←−n Xn is an exact complex.

(13.4). Under the hypothesis in (13.1), we may define the functor Tot from bifamiliesX =
{Xpq} to families,

(TotX)p =
∏

j∈Z

Xp−j,j .

With the usual definition of the differential we may view Tot as a functorA•,• → A•, from
bicomplexes to complexes.

Corollary. If a bicomplexX ∈ A•,+ has exact rows, then the total complexTotX is exact.

Proof. We may assume thatX ∈ A•,>1. Consider for eachn > 1 the truncated bicomplex
X•,6n. Then there is anN-system of bicomplexes,

· · · → X•,6n+1→ X•,6n→ · · · → X•,61,

and anN-system of complexes,

· · · → TotX•,6n+1→ TotX•,6n→ · · · → TotX•,61.
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The limit is easily computed: In degree degreep, theN-system is the following:

n 7→ (TotX•,6n)p =
∏

n>j

Xp−j,j ,

and hence equal to the trivialN-system determined by the familyXp−j,j for j ∈ N. So the
limit is the product

∏
j X

p−j,j ; in fact, it is easy to see that

lim←−
n

TotX•,6n = TotX.

Now, the bicomplexX•,6n has at mostnnon-vanishing rows,and they are exact by hypothesis.
HenceX•,6n ∈ A•,•> , and, by The Row Theorem, the total complex TotX•,6n is exact.
Moreover, we noticed above that theN-system of complexes in each degree is a trivialN-
system, and hence lim←−N

-acyclic. Therefore, the assertion follows from the Corollary in (13.3).
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14. Mittag-Leffler systems.

(14.1) Setup.Let kMod be the category of modules over the commutative ringk, for instance
(with k = Z) the categoryAb of abelian groups. Consider anN-system inkMod,

· · · χ3
ϕ3

χ2
ϕ2

χ1.

For simplicity we will writeϕ for the transition mapχn+1 → χn whenever the source is
obvious from the context.

Recall that the systemχ is lim←−N
-acyclic if and only if the following map is surjective:

d :
∏

n

χn→
∏

n

χn, given by prn d = ϕ prn+1− prn .

In coordinates the mapd is described as follows:

(x1, x2, x3, . . . ) 7→ (ϕx2− x1, ϕx3− x2, ϕx4− x3, . . . ).

Sod is surjective if and only if for any sequence(a1, a2, a3, . . . ) with an ∈ χn, the following
system of equations has a solution(x1, x2, x3, . . . ):

ϕx2− x1 = a1, ϕx3− x2 = a2, ϕx4− x3 = a3, . . . .

(14.2). The solvability is obvious if all the transition mapsϕ : χn+1→ χn are surjective. A
more general condition is contained in the following definition.

Definition. The systemn 7→ χn is called aMittag-Leffler systemif for everyn the following
descending sequence is stationary:

χn ⊇ ϕ(χn+1) ⊇ ϕ
2(χn+2) ⊇ · · · .

Lemma. A Mittag-Leffler system· · · → χ3→ χ2→ χ1 is lim←−N
-acyclic.

Proof. Case 1: Assume that every transition morphism is surjective. As noted above, the
solvability is trivial in this case.

Case 2: Assume for everyn that the compositionϕp : Xn+p → Xn is zero whenp ≫ 0.
Then a solution to the equations are given by the finite sums,

xn = an + ϕan+1 + ϕ
2an+2+ · · · .

The general case: Form, for everyn, the intersection,

χ ′n :=
⋂

p

ϕp(χn+p) ⊆ χn.

Clearly, theχ ′n form a subsystem of the systemχn. So there is an exact sequence ofN-systems,

0→ χ ′→ χ → χ/χ ′→ 0.

Use the Mittag-Leffler conditions onX to see thatχ ′ falls under case 1, and, again by the
Mittag-Leffler conditions, thatχ/χ ′ falls under case 2. Therefore, from the exact sequence

lim←−
(1)
N
χ ′→ lim←−

(1)
N
χ → lim←−

(1)
N
χ/χ ′,

it follows that lim(1)
N
χ = 0.
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(14.3) Corollary. If, in a short exact sequence ofN-systems inkMod,

0→ X → Y → Z → 0,

the systemX is a Mittag-Leffler system, then the following sequence is exact:

0→ lim←−n Xn→ lim←−n Yn→ lim←−n Zn→ 0.
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15. Cohomology of groups.

(15.1) Setup. Let G be a group, and viewG as a category (also denotedG) with one
object, and with the elements ofG as the endomorphisms; composition of endomorphisms is
multiplication in the group. In particular, in the categoryG every morphisms is invertible,
and the assignments 7→ s−1 identifiesG and the dual categoryGop.

Let C be an arbitrary category. Then aG-systemX in C is a functorX : G→ C; it is is
also called aG-object inC (strictly speaking, aG-object ought to be given as a contravariant
functor, but the two notions are equivalent via the identification ofG andGop). A G-object
in C is specified by an objectX of C (the image of the single object in the categoryG) and an
additional monoid mapG → EndC(X). As all morphisms inG are invertible, the monoid
map is a group homomorphism; it is called the associatedrepresentationof G,

G→ AutC(X) usually denoteds 7→ sX.

LetX be aG-object ofC. We shall use the following notations for the limit and the colimit,

lim←−GX = X
G = ŴGX, and lim−→G

X = X/G = ŴGX.

(Don’t confuse the notationXG with the product of identical copies ofX indexed by the
elements ofG; in connection withG-objects, the product will play a role, and it will be
denoted

∏
s∈GX. )

A common source for a givenG-objectX is given by an objectA of C, and a morphism
a : A → X satisfying the compatibility conditions:sXa = a for all s ∈ G. If the limit XG

exists, then the canonical projection (there is only one)ǫ :XG→ X is in fact a monomorphism
with sXǫ = ǫ for all s ∈ G. If C has equalizers and intersections of subobjects, thenXG is the
intersection of the equalizers of all pairs(1X, sX) for s ∈ G. If C has

∏
G’s and equalizers,

thenXG is the equalizer of the pair of morphisms,

X
∂0

∂1

∏

s∈G

X,

given by prs ∂
0 = 1X, and prs ∂

1 = sX.

(15.2). Fix an abelian categoryA with exact
∏
G’s. Let A be aG-object ofA. Thep’th

cohomologyof G with coefficients inA, denotedHp(G,A) is the the value atA of thep’th
derived functor lim←−G:

Hp(G,A) := lim←−
G

(p)A.

It may be defined as the cohomology of the standard complex associated to the limit functor
over an arbitrary index category. For the categoryG, the coaugmented standard complex has
the following form:

5̃: 0→ ŴGA
ǫ
50A

d
51A

d
52A · · · ,
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where5pA =
∏
(s0,...,sp)

A (the product is over all(p + 1)-sets of elements ofG) and

d : 5p → P p+1 is given by the projections,

prs1,...,sp+1
d = s1 prs2,...,sp+1

+

p∑

ν=1

(−1)ν prs1,...,sν ,snu+1,sp+1
+(−1)p+1 prs1,...,sp .

Note that a trivialG-object is determined from an objectY of A: It is theG-object

ρY =
∏

s∈G

Y,

where the transition morphismt∗ : ρY → ρY corresponding tot ∈ G is obtained by permu-
tation of the coordinates of the product: prs t∗ = prst . The trivialG-objects areŴG-acyclic.

(15.3) Example. Assume thatA = kMod is the category of modules over the commutative
ring. LetkG be the group algebra ofG overk. Then, clearly, the category ofkModG of G-
objects may be identified with the categorykGMod of left kG-modules. Viewk as a constant
G-object. Then it is easy to identify,

AG = HomkG(k, A),

and consequently we may identify the derived functors,

Hp(G,A) = ExtpkG(k, A).

Note that5p(A) is the product of identical copies ofAover the index set of all(s1, . . . , sp);
as such it may be identified with thek-module of all functions(s1, . . . , sp) 7→ f (s1, . . . , sp)

with values inA. In low degrees, the differential is given as follows:

(d0a)(s) = sa − a, s ∈ 50 = A,

d1f (s, t) = sf (t)− f (st)+ f (s), f ∈ 51,

d2f (s, t, u) = sf (t, u)− f (st, u)+ f (s, tu)− f (s, t), f ∈ 52.

In particular, the degree-1 cycles are the mapsf (s) for which d1f = 0; they are called
crossed homomorphismsG → A, and the degree-1 boundaries are theprincipal crossed
homomorpisms, of the forms 7→ sa − a for a ∈ A.
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16. Cohomology of some special groups and monoids.

(16.0) Exercise.Read the examples on the cohomology of a groupG via standard resolution
assuming only thatG is a monoid. Did you find any reservations?

(16.1) Setup. Let G be a monoid and letA be an abelian category with exact
∏
G’s. A

standard complex defines a resolvent complex for the limit functorŴG= lim←−G : AG → A,
defined on the categoryAG of co-G-objects.

For special groups or monoids there may be special constructions of a coaugmented re-
solvent complex forŴG:

5̃A : 0→ ŴGA→ 50A→ 51A→ · · · ,

where each5i is a functorA 7→ 5iA, defined on co-G-objects ofA. In each of the
examples below we construct such a complex where each5i is exact and such that the
coaugmented complex is contractible when evaluated on a trivial G-object. Then it results
from the general theory that the cohomologyHp(5A) of the complex5A is the cohomology
lim←−

(p)
G A = Hp(G,A).

(16.2) Example. Let G be the free (multiplicative) monoid with a single generatorf (in
additive notation,G is the monoidN0 of nonnegative integers). Then aG-objectA is an
objectA of A with a given endomorphismf = fA : A → A. The following coaugmented
complex:

5̃A : 0→ ŴGA→ A
f−1

A→ 0→ · · · ,

is a resolvent complex. Indeed, the functors50 = 51 are exact, given byA 7→ A (and
forget the endomorphismf ). A coinduced object has the formρB =

∏
n>0B, where the

endomorphismf = fρB is determined by prn f = prn+1. The complex5̃(ρB) is the
following:

5̃(ρB) : 0→ B
ǫ

τ

∏

n>0

B
f−1

σ

∏

n>0

B → 0→ · · · ,

split by the indicated morphisms defined byτ = pr0 and prn σ =
∑
j<n prn. Do check it!

As a consequence, for this monoidG,

H0(G,A) = ŴGA = Ker(A
f−1

A), H1(G,A) = Cok(A
f−1

A) = A/G,

andHp = 0 for p > 1.

(16.3) Example.LetG be the free group with a single generatore (in additive notation,G is
the groupZ of integers). Then aG-objectA is an objectA of A with a given automorphism
e = eA : A→ A. The the following coaugmented complex,

5A : 0→ ŴGA→ A
e−1

A→ 0→ · · · ,
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is a resolvent complex. Indeed, the functors50 = 51 are exact, given byA 7→ A (and forget
the automorphisme). A coinduced object has the formρB =

∏
n B (where the product

is overn ∈ Z), where the endomorphisme = eρB is determined by prn e = prn+1. The
complex5̃(ρB) is the following:

5̃(ρB) : 0→ B
ǫ

τ

∏

n

B
e−1

σ

∏

n

B → 0→ · · · ,

split by the indicated morphisms defined byτ = pr0 and prn σ =
∑

06j<n prn for n > 0 and
prn σ = −

∑
n6j<0 for n 6 0. Do check it! As a consequence, for this groupG,

H0(G,A) = ŴGA = Ker(A e−1
A), H1(G,A) = Cok(A e−1

A) = A/G,

andHp = 0 for p > 1.

(16.4) Example. Let G be a free (noncommutative) group with generatorsei for i ∈ I ;
denote by∅ the neutral element ofG (the empty word). Then aG-objectA is an objectA ∈ A

with a given family of automorphismsei = ei,A for i ∈ I . Consider the complex,

0→ ŴGA
ǫ
A

d
∏

i∈I

A→ 0→ · · · ,

whered is determined by its projections: pri d = ei,A − 1A for i ∈ I . Assume thatA = ρB
is the trivialG-object determined by an objectB of A. ThenA =

∏
w∈G B, andG acts

by permutation of the coordinates. We want to prove that the complex is contractible when
evaluated onρB, so we want to define homotopiesσ, τ :

0→ B
ǫ

σ

∏

w∈G

B
d

τ

∏

i∈I

∏

w∈G

B → 0,

The morphismσ is the projection on the index∅ (the unit of the groupG), that is,σ = pr∅.
The morphismτ is determined by its projections prw τ , and they are defined inductively on
the length of the wordw. For the empty word pr∅ τ = 0, and

preiw τ = prw τ + pri,w, pr
e−1
i
w
τ = prw τ − pr

i,e−1
i
w
.

(16.5) Example. Let G be the free abelian (multiplicative) monoid with basisf1, . . . , fr
(the additive version ofG is the monoidNr0 of r-sets(n1, . . . , nr ) of nonnegative integers).
Then aG-object is an objectA of A with a given family of commuting endomorphismsfi .
The trivialG-objectρB determined by an objectB is the productρB =

∏
n1,...,nr

B, over
N
r
0; the endomorphismfi : ρB → ρB is determined by its projections,

prn1,...,nr
fi = prn1,...,ni+1,...,nr . (16.5.1)
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Consider the functorŴf = Ŵf1,...,fr : AG → A defined by

Ŵf1,...,frA =
⋂

Ker(fi,A) = Ker(A f A⊕r),

wheref = fA : A→ A⊕r is the morphism with coordinatesfi,A. Clearly, in this notation,

ŴGA = Ŵf1−1,...,fr−1(A).

Note that the Koszul cochain complexK•(X) = K•(f1, . . . , fr;X) is defined in this general
setup for any complexX ofG-objects. For theG-objectA, viewed as a complex in degree 0,
the morphismK0(A)→ K1(A) is the morphismf : A→ A⊕r ; henceŴf (A) = H

0(f , A).

Lemma. The following coaugmented complexthe reduced Koszul complex),

K̃f (A) : 0→ ŴfA→ K0(A)→ · · · → Kr (A)→ 0→ · · · , (16.5.2)

defines a resolvent complex for the functorŴf .

Hint. In degreei the functorK i is given byK i(A) = A⊕(
r
i); it is clearly exact. So it remains

to prove that thereduced Koszul complex(16.5.1) is exact when evaluated at a coinduced
objectρB. Note thatŴf (ρB) = B, as it follows from the description (16.5.1).

Exactness is proved by induction onr. It r = 1, the coinduced object has the form
ρ1B =

∏
n>0B, and the reduced Koszul complex has the following form:

K̃(ρ1B) : 0→ B
ι

τ

∏

n>0

B
f

σ

∏

n>0

B → 0→ · · · ,

where pr0 ι = 1 and prn ι = 0 for n > 0. It is split by the indicated morphisms, defined by
τ = pr0 and pr0 σ = 0 and prn σ = prn−1 for n > 0. Do check it!

Now, for r > 1, the monoidG is the productG = G′ ×G1 whereG′ is the submonoid
generated byf1, . . . , fr−1 andG1 is generated byfr ; both submonoids are free. Accordingly,
a co-G-object may be viewed as a co-G1-object in the category of co-G′-objects,AG =
(AG

′
)G1, and the functorρ is a compositionρ = ρ1ρ

′:

ρ : A
ρ′

AG
′ ρ1

(AG
′)G1 = AG.

The Koszul cochain complex may be defined by a similar recursion: KfX = Kf ′,frX =

Kf ′KfrX. Now, letB be an object ofA, and setB1 := ρ′B; thenρB = ρ1B1. The following
two morphisms of complexes are homotopy equivalences,

B → Kf ′(ρ
′B) = Kf ′(B1)→ Kf ′Kfr (ρ1B1) = Kf (ρB),

the first by the induction hypothesis, the second because it is obtained by applyingKf ′ to the
morphismB1→ Kfr (ρ1B1) which is a homotopy equivalence by the caser = 1.
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Corollary. For the free abelian monoidG with generatorsf1, . . . , fr , the cohomology with
coefficients in a co-G-objectA is equal to the Koszul cohomology with respect to the sequence
f1− 1, . . . , fr − 1,

Hp(G,A) = H
p
f1−1,...,fr−1(A).

(16.6) Example.LetG = Z
r be the free rank-r abelian group, with multiplicative generators

e1, . . . , er . As in (16.5), the group cohomology is given by the Koszul cohomology,

Hp(G,A) = H
p
e1−1,...,er−1(A).

(16.7) Example. If A is a co-G-object inA, then the group homomorphismG → Aut(A)
extends to a ring homomorphismZG→ End(A), denotedλ 7→ λA, from the group ring of
G to the endomorphism ring ofA.

Assume thatG is a finite group. Then thenormN is the elementN =
∑
u∈G u ∈ ZG.

So the norm defines an endomorphismN = NA : A→ A. Again, sinceG is finite, there is a
morphismD = DA :

∏
s∈GA→ A defined byD =

∑
s∈G(sA − 1A) prs .

Clearly, sinceN(s−1) = (s−1)N in the group algebra, it follows thatND :
∏
s A→ A

andεN : A →
∏
s A are zero. So the imageNA := ImNA of the norm is a subobject of

ŴGA, and the imageDA := ImDA is contained in the kernelNA := KerNA of the norm.

Lemma. If A is co-G-induced,A = ρB, then the following two zero sequences are split by
the morphisms defined in the proof:

A
N

A
ε

∏

s∈G

A,
∏

s∈G

D A
N

A,

Proof. With A = ρB the first sequence is the following, split by the indicated morphisms:

∏

t

B
N

τ

∏

t

B
ǫ

σ

∏

s

∏

t

B;

hereN andε satisfy the equations prt N =
∑
u prtu and prt prs ε = prts − prt . The mor-

phismsτ andσ are determined by the projections, pr1 τ = pr1 and prt τ = 0 whent 6= 1
and prt σ = pr1 prt . It is easy to verify the equationNτ + σε = 1.

The second sequence is the dual of the first; so the result for the second second is a
consequence of the first.

(16.8) Example.LetG = Cd be the finite cyclic group of orderd with a generatore. (So the
additive version ofG is the groupZ/dZ.) Then the following coaugmented complex defines
a resolvent complex forŴG:

0→ ŴGA→ A
e−1

A
N

A
e−1

A
N · · · .
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As a consequence, forp > 0,

H2p−1(G,A) = NA/DA, H2p(G,A) = ŴGA/NA.

(16.9) Exercises.
1. Prove for a finite groupG and aG-objectA that thep’th cohomologyHp(G,A) for p > 0
is killed by the order ofG. [Hint: Consider for the standard complex5A the morphisms
σp+1 : 5p+1→ 5p determined by the projections,

prs1,...,sp σ
p+1 = (−1)p+1

∑

s∈G

prs1,...,sp,s .

Prove thatσ∂ + ∂σ = |G|. Is it unfair not to specify the range ofp?]

2. (1) LetG be the group of order 2. Give an example of a commutative groupwith aG-action
such thatHp(G,A) 6= 0 for everyp > 0.

LetG be the monoid of order 2 generated by anf with f 2 = f . Prove for any co-G-object
A thatHp(G,A) = 0 for all p. [Hint: prove thatŴG is exact.]

17. Thge Lyndon spectral sequence.

18. The spectral sequence of a Galois covering.

(18.1) Setup.Consider for a topological spaceX the set of singularp-simplices inX,

1p(X) = HomTop(1
p, X) p > −1.

Let A be an abelian category with
∏

’s, andA an object inA. We writeCsing(X,A) for
the productA1p(X). Then there is a positive complexC = Csing(X,A) with differentials
defined by formulas analogous to those defining the chain complex Csing(X,Z). With an
obvious coaugmentation fromC−1 = A there is a similarreduced singular cochain complex
C̃sing(X,A).

Alternatively the differentials between the objects ofCsing(X,A), and other related mor-
phisms, may be defined by the following process of of transposing linear maps between the
modules in the chain complexCsing(X,Z): For any setI the projections pri : A

I → A for
i ∈ I form a family of morphisms in the set HomA(AI , A), that is,i 7→ pri is a map of sets
from I to HomA(A

I , A). So it extends to a homomorphism of abelian groups,

Z
⊕I → HomA(A

I , A);

naturally, the image of en elementc ∈ Z
⊕I will be denoted prc : AI → I . If c is the finite

linear combinationc =
∑
i ci i, then prc is the sum morphism prc =

∑
i∈I ci pri in the group

HomA(A
I , A). With this notation there is for every linear mapϕ : Z

⊕I → Z
⊕J an associated

transposed morphism,

ϕtr : AJ → AI , defined by pri ϕ
tr = prϕi .

It is easy to see that transposing is functorial:

(ϕψ)tr = ψ trϕtr.

The differentials in the cochain complexCsing(X,A) may by obtained by transposing the
differentials ofCsing(X,Z).
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Expl 18.2 Examples; illustrations

(18.2) Example. Other linear maps may be transposed. For instance: For then-sphere
(n > 0) there is a homotopy equivalenceCsing(X,Z) = Z(0)⊕ Z(n). Consequently, for the
general cochain complex there is a homotopy equivalence

Csing(X,A) = A(0)⊕ A(−n).

(18.3) Setup. A mapf : X → Y (of topological spaces) is acovering projectionif Y may
be covered by open subsetsU such that the restricted mapfU : f−1U → U is isomorphic to
a projectionU × J → U with a discrete setJ (equivalently, iff−1U is a disjoint union of
open setsUα each being mapped homeomorphically ontoU . The covering istrivial , if f is
isomorphic to a projectionY × J → Y .

It is a standard fact that every covering of the unit square [0.1] × [0, 1] is trivial. It is a
consequence that every covering of a 1-connected (i.e., path connected and simply connected)
spaceY0 trivial. It follows that a covering has the followinglifting property: for every pair
of based mapsp, ϕ:

(X, x)

p

(Y0, y0) ϕ (Y, y),

wherep is a covering andY0 is 1-connected there is a unique map(Y0, y0)→ (X, x)making
the diagram commutative.

Consider a topological spaceX with a properly discontinuousaction of a groupG, in
other words, every pointx ∈ X has on open neighborhoodU such thatU ∩ sU = ∅ for all
elementss 6= 1 inG. It follows easily that the quotient map,

X→ X/G,

is a covering projection.
Clearly,G acts on each set1p(X) of singularp-simplices. By the lifting property, the

map induced byX→ X/G is surjective:

1p(X)→ 1p(X/G),

Let Tp ⊆ 1p(X) be a subset mapped bijectively onto1p(X/G). Assume thatp > 0 so that
1p 6= ∅. Then, by uniqueness of the lifting,1p(X) is the disjoint union of ‘translates’ ofTp,

1p(X) =
∨

t∈G

t (Tp).

The action ofG on the set1p(X) induces an action ofG on the productA1p(X). Moreover,
it is easy to see that the differentials in the complex commute with the action ofG; hence the
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Some special Galois coverings Expl 19.1

cochain complexCsing may be viewed as a complex of objects fromAG. Moreover, by the
description above,

A1p(X) =
∏

t∈G

ATp;

hence eachA1p(X) is a trivialG-object, induced by the objectATp = A1p(X/G). In particular,
there is an isomorphism,

ŴGCsing(X,A) = Csing(X/G,A). (18.3.1)

As the objects ofCsing(X,A) are co-inducedG-objects, and hence acyclic forŴG, the left
side of (18.3.1) is the hyper derived ofŴG evaluated at the complexCsing(X,A):

RŴGCsing(X,A) = Csing(X/G,A). (18.3.2)

A 2-spectral sequence falls out:

Hp(G,H q(X,A)⇒ H n(X/G,A). (18.3.3)

19. Some special Galois coverings.

(19.1) Setup. Let A be an object in an abelian categoryA. Assume that the groupG
acts properly discontinuously on a topological spaceX. Then there is an isomorphism of
complexes,

RŴGCsing(X,A) = Ŵ
GCsing(X,A) ≃ Csing(X/G,A); (19.1.1)

the first equality because the complexCsing(X,A) on the left side is consists of co-induced
G-objects which are acyclic forŴG. The functorRŴG respects quasi-isomorphisms and
exact triangles. Hence, from the mapping cone,

C̃sing(X,A)

A(0) Csing(X,A),

and the isomorphism (19.1.1), there is an induced exact triangle,

RŴGC̃sing(X,A)

RŴGA(0) Csing(X/G,A).

(19.1.2)

(19.2) Example.The groupG = Z acts as translations on the spaceR of reals. The quotient is
the 1-sphere:R/Z = S1. The spaceR is contractible, and so there is a homotopy equivalence
of chain complexesCsing(R,Z) ≃ Z(0). Hence there is an induce equivalence of cochain
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Expl 19.2 Examples; illustrations

complexesCsing(R, A) ≃ A(0). It is easily seen to beG-invariant, whenA is viewed as a
constantG-object. Consequently, by (19.1.1),

Csing(R/Z, A) = RŴ
GA(0).

So the cohomology ofS1 is the cohomologyH ∗(G,A) which, with the constant action of
G = Z onA, is the following:

H0
sing(S

1, A) = H1
sing(S

1, A) = A, H
p
sing(S

1, A) = 0 for p > 1.

(19.3) Example. The groupG = Z
r acts onr-spaceR

r . The quotient is a product of
1-spheres:Rr/Zr = (S1)r . HenceHp

sing((S
1)r , A) = Hp(G,A) (whereA is the constant

G-object); the latter cohomology is thep’th Koszul cohomology ofA corresponding to the
sequencef = 0. Hence,

H
p
sing((S

1)r) = A(
r
p).

(19.4) Example.The cyclic groupG = ±1 operates onSr via the antipodal mapx 7→ −x; the
quotientSr/± is the real projectiver-spaceIP r = IP r(R). There is a natural homotopy equiv-
alenceZ(r) ∼−→ C̃sing(Sr ,Z) and hence a homotopy equivalenceA(−r) ∼−→ C̃sing(X,A).
The equivalence isnot G-invariant. In fact, it is easy to see that the induced actionof the
element−1 ∈ G onH r

sing(S
r , A) = A is multiplication by(−1)r+1.

Let us writeA± for A with thisG-action (if r is odd, it is the constant action ofG onA,
and whenr is even, the element−1 ∈ G acts as multiplication by−1 onA). Then there
is a quasi-isomorphism of complexes ofG-objectsC̃sing(X,A)

∼−→A±(−r). So the exact
triangle (19.1.2) takes the following form,

RŴGA±(−r)

RŴGA(0) Csing(IP
r , A).

(19.4.1)

Thepth cohomology of the top vertex isHp−r (G,A±), and it vanishes whenp < r. So
the long exact cohomology sequence of the triangle yields isomorphisms,

H
p
sing(IP

r , A) = Hp(G,A) =





A whenp = 0;

2A when 0< p < r, p odd;

A/2A when 0< p < r, p even.

Without knowledge of the morphisms in the triangle, the exact sequence does not determine
the cohomologyHp

sing(IP
r , A) for p > r. A triangulation ofIP r may be obtained from a

G-invariant triangulation ofSr ; it is a consequence thatHp
sing(IP

r , A) = 0 for p > r. Given

this fact, the long exact sequence reduces to isomorphismHp−r (G,A±) ∼−→Hp+1(G,A)

for p > r and an exact sequence:

0→ H r (G,A)→ H r
sing(IP

r , A)→ H0(G,A±)→ H r+1(G,A)→ 0.
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Local systems; homotopy groups Expl 20.1

In turn, depending on the parity ofr, the exact sequence is the following:

0→ 2A→ H r
sing(IP

r , A)→ A→ A/2A→ 0 (r odd),

0→ A/2A→ H r
sing(IP

r , A)→ 2A→ 2A→ 0. (r even).
(19.4.2)

The exact sequence determines the cohomology in important cases, likeA = Z, A = R,
or A = F2. It is natural to expect from (19.4.2) in general thatH r

sing(IP
r , A) = A when

r is odd, andH r
sing(IP

r , A) = A/2A when r is even. In fact, there is an isomorphism

H
p
sing(IP

r , A) = Hp(C6r ) for allp, whereC6r is ther ’th cochain truncation of the following
positive complex (with the firstA in degree 0):

C : 0→ A
0
A

2
A

0
A

2
A

0
A · · · .

20. Local systems; homotopy groups.

(20.1) Setup. Fix a topological spaceX and a decent categoryC. Assume in particular the
C has small limits, and denote by 0 the initial object ofC. A C-valuedlocal systemonX is a
functor,

G : P(X)→ C,

whereP(X), the fundamental groupoidof X, is the following category: The objects of
P = P(X) are the points ofX, the morphisms inP from a ∈ X to b ∈ X are homotopy
classes of paths froma to b, and composition inP is concatenation of paths. The category
P = P(X) is indeed a groupoid: every morphism is an isomorphism.

Fix a pointb in X. The group AutP(b) (equal to EndP (b)) is the fundamental group
π = π1(X, b) of X atb. View the groupπ as a category with one object. Then the inclusion
is a functor,

b : π →֒ P, (20.1.1)

from the fundamental group to the fundamental groupoidP = P(X). The corresponding
restriction functor,

b∗ : CP → Cπ , (20.1.2)

associates to a local systemG the co-π -objectG(b). By the Kan-construction, the restriction
functor has a right adjoint functorρb : Cπ → CP . It associates with a co-π -objectA the local
system given as a limit,

(ρbA)(a) = lim←−
a/π

A, (20.1.3)

where the index categorya/π is the right fiber ata of the inclusionπ → P: Its objects are
the pathsξ : a → b, and there is only one morphism fromξ : a → b to η : a → b, which is
the loopηξ−1. Consequently,

(ρbA)(a) =

{
A if a, b belong to the same path component,

0 otherwise;

an explicit isomorphism in the first case being given by a choice of a path classa→ b.
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Expl 20.2 Examples; illustrations

Hence. , whenX is path connected: For anyb ∈ X the functorF 7→ F(b) is an equivalence
between local systems onX and co-π(X, b)-objects.

If a local systemG has values in an abelian category with
∏

’s we may form the complex
C(P,G)with cohomologyHp(P,G). If b ∈ X (andπ := π(X, b)), we have the restriction,

C(P,G)→ C(π,G(b)),

and, for a co-π -objectA the right adjunction,

C(P, ρbA)→ C(π,A).

As noted above these two maps of complexes are homotopy equivalences whenX is path
connected. In particular, in the path connected case, the cohomologyHp(P,G) is isomorphic
to the group cohomologyHp(π(X, b),G(b)).

(20.2). Special local systems are the homotopy groups: LetSn be then-sphere,

Sn = { x ∈ R
n+1 |

∑

i

x2
i = 1 },

as a pointed topological space (pointed by the north polep = (0, . . . , 0, 1). Letπn(X, b) be
the set of homotopy classes of maps (of pointed topological spaces)ϕ : (Sn, p) → (X, b).
The class inπn(X, b) represented byϕ is denoted [ϕ]. Clearly,π0(X, b) is the set of path
components ofX.

Assume thatn > 1. Then there is a well defined composition inπn(X, b) determined as
follows: Denote bySn−, Sn0 andSn+ the subsets ofSn determined, respectively, by the relations
x1 6 0, x1 = 0, andx1 > 0. By squeezing the equatorSn0 to a north pole we get a map,

∗ : Sn→ Sn ∨ Sn,

4trucm
For mapsϕ,ψ : (Sn, p) → (X, b) we obtain a map(ϕ, ψ) : Sn ∨ Sn → X and the

composition inπn(X, b) is determined by the formula,

[ϕ] ∗ [ψ ] := [ϕ ∗ ψ ].

It is a standard fact that the composition is well defined,andis a group law onπn(X, b), abelian
if n > 2. [Note that the obvious identificationπ1(X, b) = π(X, b) is an anti-isomorphism
with respect to the group structures as defined here.]

For a morphismξ : a→ b in the path categoryP and an elementz ∈ πn(X, b) there is an
elementξ∗z ∈ πn(X, a) determined similarly the the obvious mapSn → Sn ∨ I squeezing
the upper hemisphere toI . The mapξ∗ is a group ismomorhism,

ξ∗ : πn(X, b)→ πn(X, a),

and the formation ofπn(X, b) is an inverse local system onX, denotedπn(X), with values
in Setswhenn = 0, in Gr whenn = 1, and inAb whenn > 2.

Note that the isomorphismπ1(X, a)→ π1(X, b) corresponding to a morhismξ : a → b

is given by the formula,
ω 7→ ξ∗(ω) = ξ

−1 ◦ ω ◦ ξ.

We will need a few properties of theπn.
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Vector bundles Expl 35f.1

Fact 1. The Homotopy addition Lemma.20.3

21. Singular cohomology with coefficients.

22. The Hurewicz spectral sequence.

23. Homotopy axioms for singular cohomology.

24. Barycentric subdivision.

25. Cubical cohomology.

26. The Leray–Serre spectral sequence, version A.

27. The Leray–Serre spectral sequence, version B.

28. Geometric realization.

29. Base change, bundles, etc. for singular cohomology.

30. Cohomology of presheaves.

31. Cech cohomology of presheaves.

32. Homotopy axioms for Cech cohomology.

33. Alexander–Spanier cohomology.

34. Paracompact spaces and fine presheaves.

35. Duality on locally compact spaces.

35a. Verdier duality.

35b. The dualizing complex.

35c. Bivariant cohomology.

35d. Computations.

35e. Manifolds.
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35f. Vector bundles.

35g. Algebraic cycles.

35h. Algebraic cocycles.

35i. Complete intersections.
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Constructions Misc 1.1

Acyclic complexes

1. Constructions.

(1.1) Definition. Recall that iff : X→ Y is a chain map, then theconeof f is the complex
Conf with objectsX(1)⊕ Y and differential

(−∂ 0
f ∂

)
. The cone off fits into a triangle,

Conf
(1,0) (01)

X
f

Y,

where the notationZ X indicates indicates a chain mapZ X(1).
Dually, define theco-coneof f as the complex̊Conf with objectsX ⊕ Y(−1) and

differential
(
∂ 0
f −∂

)
. The co-cone fits into a similar diagram. Note the simple connection

between the cone and the co-cone:

C̊on−f = Conf (−1). (1.1.1)

(1.2) Lemma. Consider chain mapsf : X→ Y andg : Y → Z. Form the coneConf of f
and the co-cone̊Cong of g. Consider the resulting diagram,

X Conf

f̃

f

g̃Y

g

C̊ong Z

Then there is a unique correspondence between the followingthree sets: The liftings off to
the co-cone̊Cong, the extensions ofg to the cone off , and the homotopies fromgf to 0.
More precisely, ifh : X(1)→ Z is a family of maps, then the following conditions onh are
equivalent:

(i) The map
(
f
h

)
is a chain mapX→ C̊ong.

(ii) The map(h, g) is a chain mapConf → Z.
(iii) The maph is a homotopy,gf = h∂ + ∂h.
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Misc 1.2 Acyclic complexes

Moreover, if a lifting f̃ of f corresponds to an extensiong̃ of g under the correspondance
above (assuming necessarily thatgf is homotopic to0), then the coneC of f̃ is equal to the
co-cone ofg̃.

Proof. The proof is a simple computation. Note thatC hasX(1)⊕ Y ⊕ Z(−1) as objects,
and the following differential (

−∂ 0 0
f ∂ 0
h g −∂

)
.

(1.3) Remark. The maps of Lemma (1.2) appear as edges in the following octahedron

Conf
g̃

C Z

g

X
f

Y

f̃

C̊ong

The octahedron has eight faces. Four of the faces are “triangular”; the other faces are commu-
tative triangels. The square involving̊Cong, Y, C, and Conf is commutative. The square

involving Conf,X,Z, andC̊ong is commutative up to the homotopy defined by
(

0 1
0 0

)
.

(1.4) Lemma. Let K be a full triangulated subcategory of complexes andI a class of com-
plexes such that every complexX in K has a rightI-resolution. Then, for every chain map
f : X→ Y in K there is a factorization,

X
f

Y

Z

(1.4.1)

such thatX→ Z is a quasi-isomorphism andZ→ Y is a semi split epic with kernel inI.

Proof. Form the cone Conf of f . Let g̃ : Conf → I be an arbitrary quasi-isomorphism.
Consider the compositiong : Y → Conf → I . By construction,g̃ is an extension ofg.
Denote byZ = C̊ong the co-cone ofg. Then, by Lemma (1.2), there is a lifting̃f of
f corresponding tõg. Hence we have obtained a diagram (1.4.1). The mapf̃ is a quasi-
isomorphism because its cone is equal to the co-cone ofg̃. The mapZ→ Y is the projection
from the co-coneZ of g : Y → I . Hence the mapZ → Y is a semi split epic with kernel
equal toI (−1). Thus the assertion of the Lemma follows, because by assumption I can be
chosen such thatI (−1) belongs toI.
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Constructions Misc 1.3

(1.5) Construction. LetX be a complex. Recall that the truncated quotient complexτ6nX

(with a lower index) is the complex

τ6nX : · · · 0 Zn Xn−1 Xn−2 · · ·

whereZn is thenth cocycle object, that is, the cokernel of the differentialXn+1 → Xn (as
allways,Xn = X−n). The induced mapHpX→ Hp(τ6nX) is an isomorphism whenp 6 n;
the homologyHp(τ6nX) equals 0 forp > n. The truncated quotients fit into an inverse
system

· · · τ6nX τ6n+1X · · · X

havingX as inverse limit.
Let I be a triangular class of complexes bounded below such that every bounded be-

low complexX has a rightI-resolution. Then it follows from Lemma (1.4) that there is a
commutative diagram of inverse systems

0 τ60X · · · τ6nX τ6n+1X · · ·

0 I0 · · · In In+1 · · ·

where the vertical maps are quasi-isomorphisms and the mapsof bottom row are semi split
surjections of objects ofI. Indeed, assume that theIp ’s are found forp 6 n. To define the
In+1 at then+ 1’th level, apply Lemma (1.3) to the compositionτ6n+1X→ τnX→ In.

Consider the inverse limit lim←− In and the corresponding map of complexesX → lim←− In.
Question.Under what conditions is the mapX → lim←− In a quasi-isomorhism? Clearly, the
homology ofX is equal to the inverse limit of the homology of theIn’s,HpX = lim←−H

pIn.
Fix a degreep. Note that we have a commutative diagram

HpX ∼ lim←−H
p(τn)

≀

HpI lim←−H
p(In)

It follows that the mapHpX→ HpI is injective and thatHpI → lim←−H
p(In) is surjective.

In particular, the mapX → I is a quasi-isomorphism if and only iff for allp the canonical
map

Hp(lim←− In)→ lim←−H
p(In)

is an isomorphim.
It follows that the question has an affirmative answer if the inverse limit lim←− is exact.

Assume more generally that the direct product
∏

N is exact. Then it is well known that for
any inverse system overN of complexes and semi split epics there is an exact sequence

0 lim←−
(1) Hp−1(In) Hp(lim←− In) lim←−H

p(In) 0. (1.5.1)

In the case at hand, theHp−1(In)’s are essentially constant, and hence the lim←−
(1) vanishes.

Hence the answer is affirmative when the category has exact
∏

N’s.
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Misc 1.4 Acyclic complexes

(1.6) Lemma. Consider over the category(Ab)of Z-modules an inverse system of complexes,

0 I0 · · · In In+1 · · · ,

where the maps are semi split epics. Then the canonical map issurjective:

H0(lim←− In)→ lim←−H
0(In). (1.6.1)

Denote byKn the kernel of the surjectionIn→ In−1. Assume thatH0(Kn) = 0 for n≫ 0.
Then the canonical map is an isomorphism. If, in addition,H 1(Kn) = 0 for n≫ 0, then

H0(lim←− In)
∼−→H0(In) for n≫ 0.

Proof. The last assertion is a consequence of the preceding assertions since, under the addi-
tional assumptions, the inverse systemH0(In) is essentially constant.

The two first assertions of the Lemma is contained in the statement of (1.5). In fact, the
asserted surjectivity follows from the exact sequence (1.5.1). Morover, it follows from the
vanishing of theH0(Kn)’s that the mapsH−1(In)→ H−1(In−1) are surjective whenn≫ 0.
Therefore, as is well known, the lim←−

(1) in the exact sequence (1.5.1) vanishes, and hence the
asserted bijectivity is a consequence.

Here is a direct proof of the first two assertions: By hypothesis, there is a chain map
fn : In(−1) → Kn+1 and an identification ofIn+1 with the cone offn+1. HenceIn+1 =

In ⊕Kn+1 with the differential as in (1.1).
To prove the asserted surjectivity, represent an element onthe right hand side of (1.6.1) as a

sequence of cycles (of degree 0),(c0, c1, . . . ), such that the image ofcn+1 in In is homologous
to cn. It is asserted that there is a sequence(d0, d1, . . . ) such thatdn is homologous tocn and
the image ofdn+1 in In is equal todn. The elementsdn are constructed inductively. Assume
thatd0, . . . , dn = d have been found. The elementcn+1 has the form

(
c
k

)
, and the elements

homologous tocn+1 have the form
(
c

k

)
+

(
−∂ 0
f ∂

)(
c′

k′

)
=

(
c − ∂c′

k + f c′ + ∂k′

)
. (1.6.2)

By assumption, the image ofcn+1, that isc, is homologous tod. Hence the exists an element
c′ in In of degree−1 such thatc− d = ∂c′. It follows that an element on the right hand side
of (1.6.2) has the form

(
d
k′′

)
, as asserted.

To prove the asserted injectivity, consider an element in the kernel of (1.6.1). Represent
the element as a cyclec (of degree 0),(k0, k1, . . . ). Then the finite columncn with entries
k0, . . . , kn represents the image inH0(In). By assumption, the cyclecn is a boundary, that
is, it has the formcn = ∂dn, wheredn is an element of degree−1 in In, given by a sequence
l0, . . . , ln. It is asserted that an infinite sequencel0, l1, . . . can be found. The sequence is
defined inductively. The elementcn+1 is equal to

(
cn
k

)
. Let cn = ∂dn. By assumption, the

elementcn+1 is a boundary,cn+1 = ∂dn+1, wheredn+1 has the form
(
x
l

)
. It is asserted that

dn+1 dan be chosen of the form
(
dn
l

)
. The assertion is easily verified.
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(1.7) Corollary. Given an inververse system of semi split epics:

0← I0← · · · ← In ← · · · .

Assume that everyIn is homotopy injective. Then the inverse limitI := lim In is a homotopy
injective complex.

Proof. Recall that a complexI is homotopy injective if, for every acyclic complexX we have
that Hot(X, I) = 0, or equivalently, if the functorHom·(−, I ) takes acyclic complexes to
acyclic complexes.

To prove the Lemma, letKn be the kernel of the split epicIn → In−1. Then, each
Kn is homotopy injective. LetX be any complex. Then theHom·(X, In) form an inverse
system of split epics, andHom·(X,Kn) is the kernel of theN ’th map of the system. The
p’th cohomology of the complexHom·(X, Y ) is Hot(X[−p], Y ). Assume thatX is acyclic.
Then the cohomology ofHom·(X,Kn) vanishes in all degrees and for alln. Therefore, by
the Lemma, Hot(X, I) is equal to Hot(X, In) for n ≫ 0, and hence Hot(X, I) is equal to
0.

(1.8) Examples. (i) Every right complex of injectives is homotopy injective. The proof is
easy and well known.

(ii) Assume that the underlying abelean category has finite injective dimension, that is,
assume for somed that every object has an injective resolution of length at most d. Then
every complex of injective objects is homotopy injective. In fact, ifQ is any complex of
injectives andX is an arbitrary complex, then

Hot(X,Q) = HomD(X,Q). (1.8.1)

To prove the assertion, we need that any complexX admits a quasi isomorphism into a
comples of injectives. The latter result follows from the lemma below.

Clearly, it suffices to establish the isomorphism (1.8.1). Let us first note that any acyclic
complexQ of injectives is homotopy trivial. Indeed, for then cycle objectZn ofQ we have
an infinite left resolution,

· · · → Qn−2→ Qn−1→ Zn→ 0.

Since the resolution has length at least equal tod, it follows thatZn is injective. Therefore,
the inclusion ofZn in Qn is split. Hence the acyclic complexQ is homotopy trivial.

Now, the arrows in the group on the right side of (1.8.1) are represented by diagrams,

Q′

s

X Q,

wheres is a quasi-isomorphism. The morphisms may be followed by a quasi-isomorphism
into a complex of injectives. Hence we may assume thatQ′ is a complex of injectives.
It suffices to prove that the induced map, Hot(X,Q) → Hot(X,Q′) is an isomorphism.
Equivalently, ifQ′′ is the cone ofs, it suffices to prove that Hot(X,Q′′) = 0. However,Q′′

is a complex of injectives, and acyclic sinces is a quasi-isomorphism. HenceQ′′ is homotopy
trivial as was observed above. Therefore, Hot(X,Q′′) = 0.
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(1.9) Note. The result used in (1.8)(ii) that an acyclic complex of injectives is homotopy
trivial does require some additional hypothesis. Considerfor instance the ringR = Z/4 and
the infinite complexP with Pn = R and multiplication by 2 as differentials. ThenP is an
acyclic comples of projectives. Obviously,P is not homptopy trivial.

(1.10) Lemma. LetQ be an additive class of objects such that every object has an embedding
into an object ofQ. Then every complexX has an embedding into a complex of objects from
Q. Moreover, every positive complex has a quasi-isomorphisminto a positive complex of
objects fromQ. Finally, if Q has finite right dimension, then every complex has a quasi-
isomorphism into af complex of objects inQ.

Proof. Chose a family of embeddings,f : X →֒ P into a familyP of objects ofQ. Consider
P as a complex with zero differential, and form the coneQ of the identity 1:P → P . Thus
Q has objectsP (1)⊕P , and differential

(0 0
1 0

)
. Clearly,

(
f ∂
f

)
is a chain mapX→ Q. It is an

embedding, because its second projection is the chosen family of embeddingsf : X→ P .
To prove the second statement, letX be a positive complex. Chose as embeddingX →֒ Q

into a complexQ of objects fromQ, and truncateQ by definingQp := 0 forp < 0. Hence
an embeddingf : X→ Q into a positive complex is obtained. Embedd similarly the cokernel
of f , and continue to obtain an exact sequence of positive complexes,

0 X Q0 Q1 · · · . (1.10.1)

View the complex ofQp ’s as a first quadrant bicomplex. Then the exact sequence defines a
quasi-isomorphim into the total complex of this bicomplex.

To prove the last statement, note that a resolution similar to (1.10.1) can be formed for an
arbitrary complexX. If Q has finite dimension, the resolution may be chosen finite. Hence
the same argument as above applies.

(1.11) Lemma. LetM be thick sub-category, andI ⊆M a subclass of injective objects such
that every objectA in M embeds into an object ofI. Then every positive complexX with
cohomology inM admits a quasi-isomorphismX ∼−→ I into a positive complex of objects
from I.

Proof. LetX be a positive complex with cohomology inM. The positive complexI and the
quasi-isomorphismX→ I will be constructed inductively. It suffices to prove the following:
Given a complex of lengthn of objects ofI,

I : · · · 0 I0 · · · In 0 · · ·

and a chain mapf : X→ I whose cone Conf has cohomologyHp(C̊onf ) = 0 forp < n,
thenI can be extended with one extra objectIn+1 in degreen + 1 into a complexĨ andf
can be extended to a chain mapf̃ : X→ Ĩ whose cone has cohomologyHp(Conf̃ ) = 0 for
p < n+ 1.

To prove the assertion, embedd then’th cohomologyH n(Conf ) into an objectJ of I. If
Zn is then’th cycle object of Conf , there is an exact sequence

Conf n−1 Zn J.
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SinceJ is injective, the mapZn→ J can be extended to a map Conf n→ J . By construc-
tion, the latter map defines defines a chain mapg̃ : Conf → J (−n), such that̃g induces an
injection of cohomology in degreen. Since Conf has zero cohomology in degreep < n, it
follows that the co-cone of̃g has zero cohomology in degreep 6 n. Let g be the restriction
of g̃ to I , and denote bỹI the co-cone ofg. By Lemma (1.1), the extensioñg of g corresponds
to a lifting f̃ : X→ Ĩ of f , and the cohomology of the cone off̃ equals the cohomology of
the co-cone of̃g; hence the cone of̃f has cohomology equal to 0 in degreep 6 n. Thusf̃
has the required properties.

(1.12) Lemma. Consider a complexX of O-modules on a scheme. Assume thatX has quasi-
coherent cohomology. Chose as in(1.5) a quasi-isomorphism from the truncated quotients
into bounded below complexes of injectives. Then the construction lim←− In of (1.5) yields a
quasi-isomorphimX→ lim←− In.

Proof. It has to be shown that the canonical map (in degree 0 say),H 0(lim←− In)→ lim←−H
0(In)

is an isomorphism. Note that the inverse system on the right hand side is essentially constant:
Whenn≫ 0,H0(In) = H

0(X). Hence it has to be proved that the canonical map

H0(lim←− In)→ H0(In) (1.12.1)

is an isomorphism whenn ≫ 0. The two sides of (1.12.1) are cohomology groups of
complexes of sheaves. Hence they are equal to the sheaffifications of the cohomology of the
underlying complexes of presheaves. The map of presheaf cohomology is the map

H0(lim←− In(U))→ H0(In(U)) (1.12.2)

defined for all open subsetsU of X. Hence it suffices to prove that the latter map is an
isomorphism over every affine openU (whenn > n0, independent ofU ). The latter assertion
follows from Lemma (1.6). Indeed, assume thatU is affine. The complex of modulesKn(U)
is the complex of sections overU in an injective resolutionKn of H n(X)(−n). Therefore,
sinceHn(X) is quasi-coherent andU is affine, the only cohomology ofKn(U) is in degree
−n. In particular,H0(Kn(U)) = 0. Thus the conditions for applying Lemma (1.6) are
satisfied. It follows from Lemma (1.6) that (1.12.2) is an isomorphism.
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2. Injective complexes.

(2.1) Setup.Given a triangulated categoryK and a multiplicative systemS inK. Recall that
an objectq inK is calledS-injectiveif Hom(x, q) = 0 for any objectx which isS-equivalent
to 0. It follows from the long exact sequence ofHom that ifq isS-injective then, for any map
s : x → y of S, the induced mapHom(y, q)→ Hom(x, q) is an isomorphism. Similarly,
if two vertices of an exact triangle areS-injective, then so is the third.

In addition, recall that

ExtnS (x, y) := HomD(x, y[n]) = HomD(x[−n], y),

whereD := KS−1 is the localized category.

(2.2) Definition. A complexq which as an object in the homotopy category Hot(A) is
injective with respect to the multiplicative system of quasi-isomorphisms is calledhomotopy
injective.

(2.3) Lemma. Any right complexq of injectives is homotopy injective.

Proof. Let x be an acyclic complex and letf : x → q be a chain map. We have to prove that
f is homotopy trivial, that is, we have to show that there exists a family of mapss : x[1] → q

such that, for alln,
fn = ∂n−1sn−1+ sn∂n. (2.3.1)

The mapssn are constructed inductively. Sinceq is a right complex, the equations (2.3.1)
hold with sn := 0 for n ≪ 0. Assume that morphismssn are found forn 6 p such that
(2.3.1) holds. To constructsp+1, consider the morphismf ′ := fp+1−∂psp. As (2.3.1) holds
for n = p, we have that

f ′∂p = fp+1∂p − ∂psp∂p = fp+1∂p − ∂p(fp − ∂p−1sp−1).

The right side vanishes because∂∂ = 0 andf ∂ = ∂f . Hencef ′∂p = 0. It follows, sincex
is acyclic, thatf ′ : xp+1→ qp+1 extends to a morphism defined on the(p+ 2)’th boundary
object ofx. The latter morphism extends, sinceqp+1 is injective, to a morphism defined
on xp+2. Thusf ′ extends to a mapsp+1 : xp+2 → qp+1. Fromf ′ = sp+1∂p+1 and the
definition off ′, it follows that (2.3.1) holds forn = p + 1.

(2.4) Lemma. Consider an inverse system of split surjective epimorphisms of complexes,

0← q0← g1← · · · .

Assume thatA has infinite products. If eachqn is homotopy injective, then the inverse limit
q = lim←− qn is homotopy injective.

Proof. See [Der1].
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(2.5) Lemma. Fix a complexa. LetK be a triangular subcategory ofHot(A) such ifx → z

is a quasi-isomorphim andx belongs toK, then there exists a quasi-isomorphismz → x ′

with x ′ in K. Assume that the functorhom(a,−) is derivable onK. Then,

Rnhom(a, x) = Extn(a, x). (2.4.1)

In particular,
R0hom(a, x) = HomD(a, x), (2.4.2)

whereD = D(A).

Proof. Sincehom(a,−) is derivable onK, there is a triangular subclassQ of K such that
(1) any complexx ofK admits a quasi-isomorphism into a complexq ofQ and (2) ifq is an
acyclic complex inQ, thenhom(a, q) is acyclic.

Clearly, it suffices to prove the special case (2.4.2). Moreover, by (1), it suffices to verify
(2.4.2) whenx = q belongs toQ. AsRhom(x, q) = hom(x, q), the left hand side of (2.4.2)
is equal toH0hom(a, q) = Hot(a, q). Thus it suffices to prove, forq inQ, that the canonical
map is an isomorphism,

Hot(a, q)→ HomD(a, q).

By definition,HomD(a, q) is the direct limit of Hot(a, q ′) over the index category whose
objects are pairsa → q ′ ← q whereq → q ′ is a quasi-isomorphism. By the hypothesis on
K, we may restrict to pairs withq ′ in K, and by (1) we may even restrict to pairs withq ′ in
Q. However, by (2), the direct system is constant on the restricted category; hence the direct
limit is equalt to Hot(a, q), as asserted.

(2.6) Example. Let T be a left exact functor defined onA. Assume thatT is derivable, that
is, assume that there is an additive subclassQ of A such that (1) any object ofA admits an
embedding into an object ofQ and (2) ifQ′ is a subobject ofQ andQ′ andQ belongs to
Q, thenQ′′ := Q′/Q belongs toQ andTQ → TQ′′ is an epimorphism. Then, as is well
known, the functorT is derivable onHot+(A). Assume that the derived functorRT is of
finite dimension, that is, assume that there is an integerd such that for any objectA of A, we
have thatRnT (A) = 0 for n > d. Then the functorT is derivable on all of Hot(A). In fact,
consider the class of objectsQ such thatRnT (Q) = 0 for all n > 0. It contains the classQ
and, clearly, it has the properties (1) and (2). So we may replaceQ with the class of objects
such thatRnT (Q) = 0 for n > 0. ThenQ has the following addtional property: (3) given a
exact sequence,

0→ A→ Q0→ Q1→ · · · → Qd → B → 0.

If all theQn belongs toQ, thenB belongs toQ.
Now it follows easily from (1) and (3) that any complex has a finite right resolution of

length at mostd with complexes of objects ofQ. It follows that any complex admits a quasi-
isomorphism into a complex of objects fromQ. Moreover, ifq is an acyclic complex of
objects fromQ, then the complexT q is acyclic. Indeed, from (3) it follows that the cocycle
objects ofq are inQ. As T is short exact onQ by (2), it follows thatT q is acyclic.
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