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Abstract. For a given monic polynomialp(t) of degreen over a commutative ringk, the
splitting algebrais the universalk-algebra in whichp(t) hasn roots, or, more precisely, over
whichp(t) factors,

p(t) = (t − ξ1) · · · (t − ξn).

The symmetric groupSr for 1 ≤ r ≤ n acts on the splitting algebra by permuting the first
r rootsξ1, . . . , ξr . We give a natural, simple condition on the polynomialp(t) that holds if
and only if there are only trivial invariants under the actions. In particular, if the condition
onp(t) holds then the elements ofk are the only invariants under the action ofSn.

We show that for anyn ≥ 2 there is a polynomialp(t) of degreen for which the splitting
algebra contains a nontrivial element invariant underSn. The examples violate an assertion
by A. D. Barnard from 1974.

1. Introduction. Consider commutative algebras over a fixed commutative ringk 6= 0.
Fix a monic polynomialp(t) of degreen ≥ 1 with coefficients ink:

p(t) = a0t
n + a1t

n−1 + · · · + a1t + an, a0 = 1. (1.1)

For r = 0, 1, . . . , n let Splitr(p) = Splitr(p/k) be ther ’th splitting algebraof p(t),
universal with respect to factorizations,

p(t) = (t − ξ1) · · · (t − ξr )p̃(t), (1.2)

with r factors t − ξj . In other words, such a factorization exists in Splitr(p)[t ], with
elementsξ1, . . . , ξr in Splitr(p) and a polynomialp̃(t) ∈ Splitr(p)[t ], and if A is any
k-algebra over whichp(t) factors,

p(t) = (t − α1) · · · (t − αr)q(t), (1.3)
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then there is a uniquek-algebra homomorphism Splitr(p) → A such thatξj 7→ αj for
j = 1, . . . , r, and, consequently,̃p(t) is mapped toq(t). The (complete) splitting algebra
of p(t) is obtained whenr = n; thenp̃(t) in (1.2) andq(t) in (1.3) are equal to 1.

Clearly, ther ’th splitting algebra is generated by ther universal rootsξ1, . . . , ξr

in (1.2). It follows from the construction of Splitr(p) in Section 2 that the natural
map Splitr (p) → Splitn(p) is an injection, identifying Splitr(p) with the subalgebra
k[ξ1, . . . , ξr ] of Splitn(p) = k[ξ1, . . . , ξn].

Let 9p be the element ofk defined as the product9p =
∏

i<j (ξi + ξj ). The product
is a symmetric polynomial in the rootsξ1, . . . , ξn, and hence9p a polynomial in the
coefficientsaj of p(t). In particular,9p ∈ k. There is a simple determinantal formula for
9p , see Definition4.

It follows from the universal property that the symmetric groupSn acts on the complete
splitting algebra Splitn(p) by permuting the rootsξ1, . . . , ξn. Obviously, the elements of
the algebra Splitr (p) = k[ξ1, . . . , ξr ] are invariant (or fixed) under the action of the
subgroupS′

n−r consisting of permutations inSn fixing the numbers 1, . . . , r. The main
result of this paper is the following characterization, part of Theorem 7.

Result. The invariants are trivial:k[ξ1, . . . , ξn]S
′
n−r = k[ξ1, . . . , ξr ] for r = 0, . . . , n, if

and only ifAnnk 9p ∩ Annk 2 = (0).

In particular, the equalityk[ξ1, . . . , ξn]Sn = k holds if Annk 9p ∩ Annk 2 = (0).
Barnard [Ba, p. 289] asserted the equality forn ≥ 3 without any condition onp(t). We
show by a counterexample that the general assertion is not true.

Let p(r)(t) be the polynomial̃p(t) in (1.2). Then the factorization has the form,

p(t) = pr (t)p
(r)(t), wherepr (t) := (t − ξ1) . . . (t − ξr ). (1.4)

LetKr = Factr(p) be thek-subalgebra of Splitn(p) generated by the elementary symmet-
ric polynomials inξ1, . . . , ξr , or, equivalently, by the coefficients ofpr (t). Then both poly-
nomialsp(r)(t)andpr (t)havecoefficients inKr . Under thecondition Annk 9p∩Annk 2 =

(0) onp(t), we prove in Proposition 11 that the elements ofKr are the only invariants of
the action ofSr on ther ’th splitting algebra, that is,k[ξ1, . . . , ξr ]Sr = Kr .

2. Construction. A construction of the complete splitting algebra is given in[Ba, p. 286],
in [Bo, p. IV.67, §5], and in [PZ, p. 30]. We recall here the recursive construction of the
intermediate algebrasSr := Splitr (p) for r = 0, . . . , n:

Obviously,S0 = Split0(p) = k. For r = 1, the equation (1.3) holds if and only if
α1 ∈ A is a root ofp(t). The universal algebra in whichp(t) has a root is obtained by
adjoining formally a rootof p(t):

S1 = Split1(p) := k[x]/(p(x)), ξ1 := (x modp(t)).
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Assume thatSr := Splitr (p/k) has been defined in general, forr < n, with a factorization
(1.2). Then, clearly, we obtainSr+1 by adjoining formally a root ofp(r)(t), or, equivalently,
as ther ’th splitting algebra ofp(1)(t) overS1:

Splitr+1(p/k) := Split1(p(r)/Sr ) = Splitr (p(1)/S1).

3. Proposition. The monomialsξ i1
1 ξ

i2
2 · · · ξ

ir
r where0 ≤ iν ≤ n − ν for ν = 1, . . . , r

form ak-basis for ther ’th splitting algebraSplitr(p). In particular, Splitr(p) is free of
rankn(n − 1) · · · (n − r + 1) as ak-module, andSplitn(p) is free of rankn!.

Proof. The assertion follows by induction onr from the recursive definition of Splitr(p).

Note. It is an easy consequence of the Proposition that the rootsξ1, . . . , ξn aren different
elements in Splitn(p) except whenn = 2, a1 = 0, and 2= 0 in k.

4. Definition. Consider in Splitn(p) = k[ξ1, . . . , ξn] the Vandermonde determinant1p,

1p =
∏

i<j

(ξi − ξj ) =
∑

σ∈Sn

(signσ) σ
(

ξn−1
1 ξn−2

2 · · · ξn−1
)

,

and the two elements9p and Discrp,

9p =
∏

i<j

(ξi + ξj ) and Discrp =
∏

i<j

(ξi − ξj )
2.

The element Discrp = 12
p is of course thediscriminantof p(t).

The elements9p and Discrp are symmetric polynomials in the rootsξ1, . . . , ξn, and
consequently can be expressed as polynomials in the coefficients ofp(t). In particular,
the elements9p and Discrp belong tok.

It is well known that9p, as a polynomial in theξi , is a Schur polynomial, see [Mc,
Example 7, p. 46] or [Mu, formula 339 p. 334]. As a polynomial in the elementary
symmetric polynomialsej it is the determinant9 = det(e2i−j ), see [Mc, Formula (3.5),
p. 41]. In terms of the coefficientsai = (−1)iei of p(t) we obtain the expression9p =

(−1)n(n−1)/2 det(a2i−j ),

9p = (−1)n(n−1)/2
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In particular, in low degrees: Forn = 1: 9 = 1, for n = 2: 9 = −a1, for n = 3:
9 = a3 − a1a2, and forn = 4: 9 = a1a2a3 − a 2

1 a4 − a 2
3 .
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5. Lemma. Assume forn ≥ 2 thatF ∈ k[ξ1] isS2-invariant. Then:
(1) If n ≥ 3, thenF ∈ k.
(2) If n = 2, thenF = bξ1 + c, with b, c ∈ k and2b = 9pb = 0.

Proof. Let τ be the non-trivial permutation inS2, acting on the second splitting algebra
k[ξ1, ξ2] by interchangingξ1 andξ2. By assumption,F ∈ k[ξ1] and τF = F . Write
F in the formF = Q(ξ1), whereQ ∈ k[x] is a polynomial of degree less thann, say
Q = bxn−1 + cxn−2 + · · · . ThenQ(ξ2) = Q(ξ1). So the polynomialQ(x) − Q(ξ1) in
k[ξ1][x] hasξ2 as a root. HenceQ(x) − Q(ξ1) is a multiple ofp(1)(x). As p(1)(x) is
monic of degreen − 1 it follows by comparing the degrees and the leading coefficients
that

Q(x) − Q(ξ1) = bp(1)(x). (5.1)

After multiplication byx − ξ1, we obtain the following equation ink[ξ1][x]:
(

Q(x) − Q(ξ1)
)

(x − ξ1) = bp(x). (5.2)

Compare the coefficients ofxn−1 in the equation. Ifn ≥ 3 we obtain the equation
−bξ1 + c = ba1. In particular,bξ1 ∈ k, and henceb = 0. From (5.1) we conclude that
the polynomialQ(x) is a constant. HenceF = Q(ξ1) belongs tok. Thus Part (1) has
been proved.

The casen = 2 is easily treated directly. Alternatively we may use (5.2). Equating the
coefficients ofx gives the equation−2bξ1 = ba1. Herea1 = −(ξ1 + ξ2) = −9p, and
hence 2bξ1 = 9pb. Asξ1, 1 are linearly independent overk, it follows that 2b = 9pb = 0.
Thus Part (2) has been proved.

6. Proposition. Assume forn > r ≥ 1 thatF ∈ k[ξ1, . . . , ξr ] isSr+1-invariant. Then:
(1) If r ≤ n−2 thenF ∈ k.
(2) If r = n − 1 then2F ∈ k and9pF ∈ k.

Proof. SetSj := k[ξ1, . . . , ξj ]. ThenSj = Sj−1[ξj ] is thefirst splitting algebraofp(j−1)(t)

overSj−1. The degree ofp(j−1) is n − j + 1, and hence at least 3 ifj ≤ n − 2.
Therefore, under the assumptions in Part (1), it follows by repeated application Lemma

5(1) thatF ∈ Sj−1 for j = r, . . . , 1. With j = 1 it follows thatF ∈ k.
For Part (2), note first that the assertion forn = 2 follows from Lemma 5(2). Proceed

by induction onn ≥ 3. Note that Splitn(p) is the complete splitting algebra ofp(1)(t)

overk[ξ1]. Clearly

9p = 89p(1) where8 :=
∏

1<j≤n
(ξ1 + ξj ).

Moreover,8 ∈ k[ξ1]; in fact 8 = (−1)n−1p(1)(−ξ1). By induction, 2F and9p(1)F

belong tok[ξ1]. So both products 2F and9pF belong tok[ξ1]. As both products are
Sn-invariant, it follows from Lemma 6(1) that they belong tok.
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7. Theorem. Let S = Splitn(p/k) = k[ξ1, . . . , ξn] be the complete splitting algebra of
p(t). Assume thatn ≥ 2. Then the following conditions onp(t) are equivalent:

(i) Annk Discrp ∩ Annk 2 = (0).
(ii) Annk 9p ∩ Annk 2 = (0).

(iii) SS
′
2 = k[ξ1, . . . , ξn−2].

(iv) SS
′
n−r = k[ξ1, . . . , ξr ] for r = 0, 1, . . . , n − 2, whereS′

n−r denotes the subgroup
of permutations inSn fixing the numbers1, . . . , r.

Proof. For an elementF ∈ S and a subsetV ⊆ S denote byF |V the restriction toV of
multiplication byF . Consider withI := AnnS 2 the following three conditions:

(i*) Ker Discrp |I = (0), (ii*) Ker 9p|I = (0), (iii*) Ker (ξn−1+ξn)|I = (0).

The algebraS is free as ak-module and the elements9p and Discrp belongk. Hence (i)
is equivalent to (i*) and (ii) is equivalent to (ii*). SetSr−2 = k[ξ1, . . . , ξr−2]. ThenS

is the complete splitting algebra overk[ξ1, . . . , ξn−1] of the degree 2-polynomialp(n−2).
By Lemma 5(2), (iii) holds if and only if AnnSn−2 2∩ AnnSn−2(ξn−1 + ξn) = (0). Again,
asS is free overSn−2, the latter condition holds if and only if (iii*) holds.

SinceI = AnnS 2 it follows that9p|I = 1p|I . Hence Discrp |I = (9p|I)2. Conse-
quently9p|I is injective if and only if Discrp |I is injective. Hence (i*)⇐⇒ (ii*).

Again,9p|I is the product of the factors(ξi +ξj )|I for i < j . Hence, if9|I is injective,
then the factor(ξn−1+ξn)|I is injective. Assume conversely that the factor(ξn−1+ξn)|I

is injective. Then, since the groupSn acts by automorphisms ofS, every factor(ξi+ξj )|I

(with i < j ) is injective, and hence the product9|I is injective. Hence (ii*)⇐⇒ (iii*).
Obviously (iii) is part of the conditions in (iv), and hence (iv)⇒(iii). Clearly, to finish

the proof it suffices to show that (ii) implies that the equality in (iv) for r = 0 holds. So
assume thatF ∈ S isSn-invariant. Then, by Proposition 6 we have the relations 2F = 0
and9pF = 0. The relations mean that ifF is expanded in terms of the basis in Proposition
3 then all coefficients to base elements different from 1 are annihilated by 2 and by9p.
Therefore, if (ii) holds then all these coefficients vanish,that is,F ∈ k.

8. Corollary. If any of the three elements:2, or Discrp, or 9p, is a non-zero divisor ink,
then the conditions of the Theorem hold. In particular, then

k[ξ1, . . . , ξn]Sn = k. (8.1)

Proof. Clearly, under the given assumptions either (i) or (ii) of the Theorem holds. Hence
(iv) holds, and in particular (8.1) which is the special caser = 0 of (iv) holds.
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9. Notes.The results in the Corollary for the elements 2 and Discrp were proved by Pohst
and Zassenhaus [PZ, (2.18d), p.46 and (3.6), p.49] and, witha different proof, by Laksov
and Ekedahl [EL, Theorem 5.1 and Remark 5.3, p. 13–14]. Pohstand Zassenhaus also
proved the assertion in Proposition 6 (2), but with9p replaced by Discrp.

It was asserted by Barnard [Ba, Proposition 4, p. 289] that the equality (8.1) holds for
all n > 2. However, a simple counterexample shows that the assertion cannot hold in the
stated generality: Consider the splitting algebra of the polynomialp(t) = tn (n ≥ 2). It is
easy to see, by induction onr = 1, . . . , n − 2, thatξn−1

1 · · · ξn−r
r ξr = 0. It follows easily

for σ ∈ Sn that

σ
(

ξn−1
1 ξn−2

2 · · · ξn−1
)

= (signσ)ξn−1
1 ξn−2

2 · · · ξn−1.

Hence forz ∈ Annk 2 the elementzξn−1
1 ξn−2

2 · · · ξn−1 is invariant, and it is non-trivial if
z 6= 0. A second family of non-trivial invariants is given in Example 10.

It is an open question, at least to the knowledge of the author, whether the equality (8.1)
implies the stronger conditions in Theorem 7.

10. Example.A natural idea to construct invariants in Splitn(p) (n ≥ 2) is to write the
Vandermonde determinant1p as the difference,

1p = 1+ − 1−, 1+ =
∑

σ∈An

σ
(

ξn−1
1 ξn−2

2 · · · ξn−1
)

,

where the sum is over all even permutations. Then1+ and1− are invariant under even
permutations and interchanged by odd permutations. In particular, if z ∈ k thenz1+ is
invariant underSn if and only ifz is in the kernel of multiplication by1p as a mapk → S.
But naturally, even ifz 6= 0 andz1p = 0, it may happen thatz1+ = 0.

In particular, assume thatz ∈ Annk 2. Then, as noted above,z1p = z9p, and hence
z1+

p is invariant if and only ifz ∈ Annk 9p. For n = 2 or n = 3 it is easy to see that
the invariants of the complete splitting algebra are the elementsc + z1+

p for c ∈ k and
z ∈ Annk 2 ∩ Annk 9p.

11. Proposition. Fix r with 1 ≤ r ≤ n and letK = Factr(p) be thek-subalgebra of
Splitn(p) generated by the elementary symmetric polynomials in the firstr rootsξ1, . . . , ξr ,
or, equivalently, by the coefficients of the polynomialpr (t) := (t − ξ1) · · · (t − ξr ). Then,
in K[t ] we have the factorization,

p(t) = pr (t)p
(r)(t), (11.1)

ofp(t) into two monic factors, the first of degreer and the second of degreen−r. Moreover,
the k-algebra K is universal with respect to this property. Furthermore, the algebra



ON THE INVARIANTS OF THE SPLITTING ALGEBRA 7

Splitr(p) = k[ξ1, . . . , ξr ] is the complete splitting algebra of the degree-r polynomial
pr (t) overK:

Splitr (p/k) = Splitr(pr/K). (11.2)

Finally, if the equivalent conditions of Theorem7 hold forp(t), then

k[ξ1, . . . , ξr ]Sr = K. (11.3)

Proof. The equation (11.1) is simply (1.2). The polynomialpr (t) has, by construction,
coefficients inK. Therefore, by (11.1), so hasp(r)(t).

Obviously, the polynomialpr (t) ∈ K[t ] splits completely overSr := k[ξ1, . . . , ξr ].
To prove (11.2), we verify that the splitting is universal. So assume thatϕ0 : K → A is an
algebra such thatpr (t) factors completely overA with r factorst −αj . Then we obtain in
A[t ] the factorization (1.3) whereq(t) is the image inA[t ] of p(r)(t). So, by the universal
property ofSr = Splitr (p/k), there is a uniquek-algebra homomorphismϕ : Sr → A

such thatϕ(ξj ) = αj for j = 1, . . . , r. It remains to prove thatϕ is a mapK-algebras,
that is,ϕ is equal toϕ0 on thek-subalgebraK of Sr . The equality results from the fact that
under both maps the coefficients ofpr (t) are mapped to the signed elementary symmetric
polynomials of theαj . So the two maps agree on the coefficients ofpr (t), and sinceK is
generated as ak-algebra by these coefficients, the two maps agree onK.

The universal property ofK with respect to factorizationsp(t) = q̃(t)q(t) with two
factors of degreesr andn − r is proved similarly: Assume that such a factorization exists
over ak-algebraA. SinceK is generated by the coefficients ofpr (t) there is at most
onek-algebra homomorphismK → A under whichpr (t) is mapped tõq(t). To prove
the existence, consider the complete splitting algebraTr of q̃(t) overA. Then there is a
k-algebra homomorphismSr → Tr such that theξj are mapped to the roots ofq̃(t). In
particular,pr (t) is mapped tõq(t). AsK is generated by the coefficients ofpr(t), and the
coefficients ofq̃(t) belong toA, we obtain the mapK → A as the restriction of the map
Sr → Tr .

To prove the final assertion, consider the equivalent conditions of Theorem 7. Assume
that they hold forp(t). Note that the factors defining the product9pr are also factors of
9p . Therefore,

AnnK 2 ∩ AnnK 9pr ⊆ AnnSr 2 ∩ AnnSr 9p.

SinceSr is free overk, condition (ii) for p(t) implies that the right hand intersection is
trivial. Therefore the left hand intersection is is trivial, that is, condition (ii) holds for
pr (t) in K[t ]. Moreover,k[ξ1, . . . , ξr ] is the complete splitting algebra ofpr(t) overK
by (11.2). Therefore, by the Theorem, condition (iv) holds for pr (t); in particular (11.3)
holds.
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12. Note. The algebra Splitr(p) is free overk of rank n(n − 1) · · · (n − r + 1) by
construction, and it is free overK = Factr (p) of rank r! by (11.2). We showed in the
paper with D. Laksov [LT] thatK = Factr(p) is in factk-free of rank

(

n
r

)

, generated by
suitable Schur polynomials inξ1, . . . , ξr . The paper describes in addition the connection
between splitting algebras and intersection rings of Grassmannians (Schubert Calculus).
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