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1. Conditional independence

Problem 1.1 Suppose that there are functions (of sets) fz and gz such that
for all sets A and B we have

P{X ∈ A, Y ∈ B|Z = z} = fz(A)gz(B)

for every z. Show that X and Y are conditionally independent given Z.

Problem 1.2 Use the result of the previous problem to show, or show
directly, that if

P{X = x, Y = y, Z = z} = f(x, z) · g(y, z)

for some functions f and g then X and Y are conditionally independent given
Z.

Problem 1.3 Show that X and Y are conditionally independent given Z if
and only if

P{X ∈ A|Y = y, Z = z} = P{X ∈ A|Z = z}

for every (measurable) set A and ((Y, Z)(P )-almost) every (y, z).
Thus if X and Y are conditionally independent given Z, then X is inde-

pendent of Y given Z.

Problem 1.4 Suppose that X, Y and Z are independent random variables.
Show that

(a) X and Y are conditionally independent given Z

(b) X and X + Y + Z are conditionally independent given X + Y

Problem 1.5 Let X0, U1 and U2 be independent random variables and let
F : R

2 → R be a measurable function. Put

Xn = F (Xn−1, Un) n = 1, 2

Show that X0 and X2 are conditionally independent given X1. May F depend
on n?

Problem 1.6 Assuming that X is independent of Y and X is conditionally
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independent of Z given Y , show that X is independent of (Y, Z). (Recall

that independence of X and Y and of X and Z does not ensure independence

of X and (Y, Z))

Problem 1.7 Suppose that the probability mass function of (X, Y, Z) is
strictly positive.

(a) Show that if X and Y are conditionally independent given Z and X
and Z are conditionally independent given Y then X is independent of
(Y, Z).

(b) Show that the result in question (a) is not necessarily correct without
the assumption on the probability mass function (consider the case
where X = Y = Z is non-degenerate).

Problem 1.8 Let (Xi)i∈I be a (at most countable) collection of random
variables. Make a graph by writing down all the random variables Xi and
connecting Xi and Xj if and only if the conditional distribution of Xi given
(Xk)k∈I\{i} depends on Xj. (The correct mathematical way of saying this is
that there should be an edge (a connection) between Xi and Xj unless

P{Xi ∈ A|Xk = xk, k ∈ I \ {i}}

may be chosen so that is does not depend xj for any A.)
The resulting graph is called the conditional independence graph. The Xis

are called the vertices and the connections between two vertices are called
the edges. If we can “go” from Xi to Xj by following a sequence of edges,
we say there is a path between Xi and Xj.

(a) Show that this is well-defined, i.e. that if the conditional distribution of
Xi given (Xk)k∈I\{i} depends on Xj , then the conditional distribution
of Xj given (Xk)k∈I\{j} depends on Xi.

(b) Sketch the conditional independence graph for a Markov chain.

(c) Show that if there is no edge between Xi and Xj then they are condi-
tionally independent given the rest.

(d) Define the neighbours of Xi to be the variables that are connected to
Xi by an edge. Let

N c
i = {j ∈ I \ {i} : Xj is not a neighbour of Xi}

Show that Xi are conditionally independent of (Xj)j∈Nc
i

given the
neighbours of Xi
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A conditional independence graph

1 2

3 4

In the graph above, the variables marked 1 and 2 are conditionally indepen-
dent given the rest, and given the variable marked 3, the variable marked 2
is independent of the rest (3 is the only neighbour of 2).

We would like to have the following result: Let I1, I2 and I3 be disjoint

subsets of I and suppose that every path form a variable in I1 to a variable

in I2 passes through I3, then (Xi)i∈I1 and (Xi)i∈I2 are conditionally inde-

pendent given (Xi)i∈I3. (If I3 = ∅ then read independent for conditionally
independent). For instance, this would imply that 1 and 2 are conditionally
independent given 3 and that 2 and 4 are independent. This is true under
additional assumptions, for instance if (Xi)i∈I has a strictly positive joint
density wrt a product measure.

Conditional independence graphs are important in a class of statistical
models known as graphical models.
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2. Discrete time homogeneous Markov chains.

Problem 2.1 (Random Walks). Let Y0, Y1, . . . be a sequence of independent,
identically distributed random variables on Z. Let

Xn =
n
∑

j=0

Yj n = 0, 1, . . .

Show that {Xn}n≥0 is a homogeneous Markov chain.

Problem 2.2 Let Y0, Y1, . . . be a sequence of independent, identically dis-
tributed random variables on N0. Let X0 = Y0 and

Xn =

{

Xn−1 − Yn if Xn−1 > 0

Xn−1 + Yn if Xn−1 ≤ 0
n = 0, 1, . . .

Show that {Xn}n≥0 is a homogeneous Markov chain.

Problem 2.3 (Branching processes). Let Ui,j, i = 0, 1, . . . , j = 1, 2, . . . be
a sequence of independent, identically distributed random variables on N0,
and let X0 be a random variable independent of the Ui,js. Let

Xn =















Xn−1
∑

j=1

Un−1,j if Xn−1 > 0

0 if Xn−1 = 0

n = 1, 2, . . .

Show that {Xn}n≥0 is a homogeneous Markov chain.

Problem 2.4 Let {Xn}n≥0 be a homogeneous Markov chain with count-
able state space S and transition probabilities pij , i, j ∈ S. Let N be a
random variable independent of {Xn}n≥0 with values in N0. Let

Nn = N + n

Yn = (Xn, Nn)

for all n ∈ N0.

(a) Show that {Yn}n≥0 is a homogeneous Markov chain, and determine the
transition probabilities.
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(b) Instead of assuming that N is independent of {Xn}n≥0, it is now only
assumed that N is conditional independent of {Xn}n≥0 given X0 i.e.

P ((X1, . . . , Xn) = (i1, . . . , in), N = j |X0 = i0)

=P ((X1, . . . , Xn) = (i1, . . . , in) |X0 = i0) · P (N0 = j |X0 = i0)

for all i1, . . . , in ∈ S, n ∈ N, j ∈ N0, and all i0 ∈ S with P (X0 = i0) > 0.
Show that {Yn}n≥0 is a homogeneous Markov chain and determine the
transition probabilities.

Problem 2.5 Let {Xn}n≥0 be a stochastic process on a countable state space
S. Suppose that there exists a k ∈ N0 such that

P (Xn = j |X1 = i1, . . . , Xn−1 = in−1)

=P (Xn = j |Xn−k = in−k, . . . , Xn−1 = in−1)

for all n ≥ k and all i0, . . . , in−1, j ∈ S for which

P (X0 = i0, . . . , Xn−1 = in−1) > 0

Such a process is called a k-dependent chain. The theory for these processes
can be handled within the theory for Markov chains by the following con-
struction:
Let

Yn = (Xn, . . . , Xn+k−1) n ∈ N0.

Then {Yn}n≥0 is a stochastic process with countable state space Sk, some-
times refered to as the snake chain. Show that {Yn}n≥0 is a homogeneous
Markov chain.

Problem 2.6 An urn holds b black and r red marbles, b, r ∈ N. Con-
sider the experiment of successively drawing one marble at random from the
urn and replacing it with c+1 marbles of the same colour, c ∈ N. Define the
stochastic process {Xn}n≥1 by

Xn =

{

1 if the n’th marble drawn is black

0 if the n’th marble drawn is red
n = 1, 2, . . .

Show that {Xn}n≥1 is not a homogeneous Markov chain.
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Problem 2.7 Let Y0, Y1, . . . be a sequence of independent, identically dis-
tributed random variables on Z such that

P (Yn = 1) = P (Yn = −1) = 1/2 n = 0, 1, . . .

Consider the stochastic process {Xn}n≥0 given by

Xn =
Yn + Yn+1

2
n = 0, 1, . . .

(a) Find the transition probabilities

pjk(m, n) = P (Xn = k |Xm = j)

for m < n and j, k = −1, 0, 1.

(b) Show that the Chapman-Kolmogorov equations are not satisfied, and
that consequently {Xn}n≥0 is not a homogeneous Markov chain.
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3. Transient and recurrent states.

Problem 3.1 Below a series of transition matrices for homogeneous Markov
chains is given. Draw (or sketch) the transition graphs and examine whether
the chains are irreducible. Classify the states.

(a)




1 0 0
0 1 0

1/3 1/3 1/3





(b)




0 1/2 1/2
1 0 0
1 0 0





(c)




0 1 0
0 0 1

1/2 1/2 0





(d)




1 0 0
0 1/2 1/2
0 1/2 1/2





(e)












1/2 0 1/2 0 0
1/3 1/3 1/3 0 0
1/2 0 1/2 0 0
0 0 0 1/2 1/2
0 0 0 1/2 1/2













(f)
















0 1/2 1/2 0 0 0
0 0 0 1/3 1/3 1/3
0 0 0 1/3 1/3 1/3
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1/2 1/2
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(g)














1 0 0 0 · · ·
1 − p p 0 0 · · ·

0 1 − p p 0 · · ·
0 0 1 − p p · · ·
...

...
...

...
. . .















(h)










1 − p 0 p 0 0 · · ·
1 − p 0 0 p 0 · · ·
1 − p 0 0 0 p · · ·

...
...

...
...

...
. . .











Problem 3.2 Let there be given r empty urns, r ∈ N, and consider a se-
quence of independent trials, each consisting of placing a marble in an urn
chosen at random. Let Xn be the number of empty urns after n trials, n ∈ N.
Show that {Xn}n≥1 is a homogeneous Markov chain, find the transition ma-
trix and classify the states.

Problem 3.3 Consider a homogeneous Markov chain with state space N0

and transition probabilities pij, i, j ∈ N0 given by

pij =















1 i = j = 0
p i = j > 0
q i − j = 1
0 otherwise

where p + q = 1, p, q > 0. Find f
(n)
j0 = Pj{T0 = n} for j ∈ N, and show that

Ej(T0) = j

q
, where T0 is the first return time to state 0.

Problem 3.4 (Random Walks). Let Y0, Y1, . . . be a sequence of indepen-
dent, identically distributed random variables on Z. Let

Xn =
n
∑

j=0

Yj n = 0, 1, . . .

and let pij, i, j,∈ Z be the transition probabilities for the Markov chain
{Xn}n≥0. Define further for all i, j ∈ Z

G
(n)
ij =

n
∑

k=0

p
(k)
ij n = 1, 2, . . .
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(a) Show that G
(n)
ij ≤ G

(n)
00 for all i, j ∈ Z and n ∈ N.

(b) Establish for all m ∈ N the inequalities

(2m + 1)G
(n)
00 ≥

∑

j:
|j|≤m

G
(n)
0j ≥

n
∑

k=0

∑

j:

| j

k
|≤m

n

p
(k)
0j

Assume now that E(Y ) = 0.

(c) Use the Law of Large Numbers to show that

∀a > 0 : lim
n→∞

∑

j:
|j|<na

p
(n)
0j = 1

(d) Show that {Xn}n≥0 is recurrent if it is irreducible
(Hint: Use (b) with m = an, a > 0)

It can be shown that if µ 6= 0 then {Xn}n≥0 is transient. Furthermore, it can
be shown that a recurrent RW cannot be positive - see e.g. Karlin(1966): A
first course in stochastic processes.
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4. Positive states and invariant distributions

Problem 4.1 Consider the Markov chains in problem 3.1 (g)+(h). Decide
whether there exists positive respectively null recurrent states. Find the in-
variant distributions for the positive classes.

Problem 4.2 (Ehrenfest’s diffusion model). Let two urns A and B contain
r marbles in total. Consider a sequence of trials, each consisting of choosing
a marble at random amongst the r marples and transferring it to the other
urn. Let Xn denote the number of marbles in A after n trials, n ∈ N. Find
the transition matrix for the homogeneous Markov chain {Xn}n≥1. Show
that the chain is irreducible and positive, and that the stationary initial
distribution (aj)

r
j=0 is given by

aj =

(

r

j

)

1

2r
j = 0, . . . , r.

Problem 4.3 (Bernoulli-Laplace’s diffusion model). Let two urns A and
B consist of r red respectively r white marbles. Consider a sequence of trials
each consisting in drawing one marble from each urn and switching them.
Let Xn be the number of red marbles in urn A after n trials, n ∈ N. Find the
transition matrix for the homogeneous Markov chain {Xn}n≥1, and classify
the states. Find the stationary initial distribution (it is a hypergeometric
distribution).

Problem 4.4 Consider a homogeneous Markov chain with transition ma-
trix











q1 p1 0 0 0 · · ·
q2 0 p2 0 0 · · ·
q3 0 0 p3 0 · · ·
...

...
...

...
...

. . .











where pi = 1 − qi and pi, qi ≥ 0, i ∈ N. The chain is irreducible if 0 < pi < 1
for all i ∈ N. Find the necessary and sufficient conditions for transience,
positive recurrence, null recurrence respectively.

Problem 4.5 Consider a homogeneous Markov chain with transition ma-
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trix














p1 p2 p3 p4 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .















where
∑

pi = 1 and pi > 0 for all i ∈ N. Show that the chain is irreducible
and recurrent. Find a necessary and sufficient condition for the chain to be
positive. Find the stationary initial distribution when it exists.
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5. Absorption probabilities

Problem 5.1 Consider the Markov chains in problem 3.1. Find the absorp-
tion probabilities

αj(C) = Pj{∃n ∈ N0 : Xn ∈ C},

if there exists transient states, j, and recurrent subclasses, C

Problem 5.2 Let there be given two individuals with genotype Aa. Consider
a sequence of trials, each consisting of drawing two individuals at random
from the offsprings of the previous generation. Let Xn state the genotypes for
the individuals drawn in the n’th trial, n ∈ N. Thus Xn can take 6 different
values

E1 = {AA, AA} E2 = {AA, Aa} E3 = {Aa, Aa}

E4 = {Aa, aa} E5 = {aa, aa} E6 = {AA, aa}

Assume that the probability for A respectively a is 1/2. Find the transition
matrix and classify the states for this homogeneous Markov chain. Determin
the absorption probabilities αj(C) for all transient states j and C = {E1}
respectively C = {E5}.

Problem 5.3 Consider a game of tennis between two players A and B.
Let us assume that A wins the points with probability p, and that points are
won independent. In a game there is essentially 17 different states: 0-0, 15-0,
30-0, 40-0, 15-15, 30-15, 40-15, 0-15, 0-30, 0-40, 15-30, 15-40, advantage
A, advantage B, game A, game B, deuce since 30-30 and deuce, respectively
30-40 and advantage B, respectively 40-30 and advantage A may be consid-
ered to be the same state.

Show that the probability for A winning the game, pA, is

pA = p4 + 4p4q +
10p4q2

1 − 2pq
=















p4(1 − 16q4)

p4 − q4
p 6= q

1

2
p = q

where q = 1 − p.
(Hint: It is sufficient to look at the Markov chain consisting of the 5 states:
advantage A, advantage B, game A, game B, deuce).

Problem 5.4 (Martingales). Let {Xn}n≥0 be a homogeneous Markov chain
with state space S = {0, . . . , N} and transition probabilities pij , i, j ∈ S.
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Assume that

Ej(X1) =
N
∑

k=0

kpjk = j j = 0, . . . , N

Thus, in average the chain will neither increase nor decrease. Then {Xn}n≥0

is a martingale. It follows immediately that p00 = pNN = 1, i.e. 0 and N are
absorbing states. We assume that the other states are all transient.

(a) Show that Ej(Xn) = j for all n ∈ N.

(b) Show that the probability for absorption in N is given by

αj({N}) =
j

N
j = 0, . . . , N.

Problem 5.5 (Waiting times to absorption). Consider a homogeneous Markov
chain with state space S, and let C ′ ⊆ S denote the set of transient states.
Let T be the first time a recurrent state is visited and let

dj =
∞
∑

k=0

kPj(T = k) j ∈ C ′

Assume that Pj(T = ∞) = 0 for all j ∈ S.

(a) Show that (dj)j∈C′ satisfies the system of equations

dj = 1 +
∑

i∈C′

pjidi j ∈ C ′ (∗)

(b) Show that (dj)j∈C′ is the smallest non-negative solution to (∗), i.e. if
(zj)j∈C′ is a solution to (∗) with zj ∈ [0,∞], j ∈ C ′, then

zj ≥ dj j ∈ C ′.

(c) Assume that S is finite. Show that (dj)j∈C′ is the only solution to (∗).
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6. Convergence of transition probabilities.

Problem 6.1 A transition matrix P = (pij)i,j∈S for a homogeneous Markov
chain with state space S, is called doubly stochastic if it is stochastic and

∑

i∈S

pij = 1 j ∈ S

(a) Assume that S = {0, . . . , n}, n ∈ N. Show that if P is irreducible
and doubly stochastic, then the Markov chain is positive. Find the
stationary initial distribution.

(b) Assume that S = N and that P is irreducible, aperiodic and doubly
stochastic. Show that the Markov chain is not positive.
(Hint: Use that the equation

∞
∑

j=1

p
(n)
jk ≥

N
∑

j=1

p
(n)
jk

is valid for all n, N ∈ N).

Problem 6.2 Let P = (pij)i,j∈S be an irreducible transition matrix for a ho-
mogeneous Markov chain with state space S. Suppose that P is idempotent,
i.e.

P n = P n = 2, 3, . . .

(a) Show that all states are recurrent and aperiodic.

(b) Show that the chain is positive

(c) Show that
∀i, j ∈ S : pij = pjj

i.e. the rows in P are identical.

Problem 6.3 Let {Xn}n≥0 be a homogeneous Markov chain with state space
S and transition matrix P = (pij)i,j∈S. Let C ⊆ S be a non-empty, aperiodic
recurrent subclass.
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(a) Show that

πj = lim
n→∞

p
(n)
jj < ∞ j ∈ C.

Let i ∈ S \ C and k ∈ C and let

αik(C, n) =Pi(X1 /∈ C, . . . , Xn−1 /∈ C, Xn = k)

αi(C, n) =Pi(X1 /∈ C, . . . , Xn−1 /∈ C, Xn ∈ C)

Πi(C) =Pi(∃n ∈ N∀k > n : Xk ∈ C)

(b) Show that for any ǫ > 0 there exists a finite subset C̃ ⊆ C and an
Nǫ ∈ N such that

∀n > Nǫ : |αi(C, n) −
n
∑

ν=1

∑

k∈C̃

αik(C, ν)| < ǫ

(c) Let j ∈ C. Show that

p
(n)
ij =

n
∑

ν=1

∑

k∈C

p
(n−ν)
kj αik(C, ν)

(d) Show that

|p
(n)
ij − πj

n
∑

ν=1

∑

k∈C̃

αik(C, ν)| ≤|
n
∑

ν=1

∑

k∈C̃

αik(C, ν)(p
(n−ν)
kj − πj)|

+ |
n
∑

ν=N+1

∑

k∈C̃

αik(C, ν)(p
(n−ν)
kj − πj)|

+

n
∑

ν=1

∑

k∈C\C̃

p
(n−ν)
kj αik(C, ν)

(e) Now show that

lim
n→∞

p
(n)
ij = Πi(C)πj

(Hint: Use (b) to bound the terms in (d)).
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7. Markov chains with finite state space

Problem 7.1 Consider the Markov chains in problem 3.1 (a)-(f). Decide
whether or not there exists positive states. If so, find the stationary initial
distributions for the positive classes.

Problem 7.2 Consider a homogeneous Markov chain with state space S =
{1, . . . , n} and transition matrix



















q p 0 0 0 · · · 0
q 0 p 0 0 · · · 0
0 q 0 p 0 · · · 0
...

...
...

...
...

. . .
...

0 · · · 0 0 q 0 p
0 · · · 0 0 0 q p



















Show that the chain is positive and find the stationary initial distribution.
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8. Examples of Markov chains

Problem 8.1 Consider a usual p-q Random Walk, starting in 0, and let
a, b ∈ N

(a) Show that the probability α(a), that a is reached before −b is

α(a) =



























(

q

p

)b

− 1
(

q

p

)a+b

− 1
p 6= q

b

a + b
p = q

(b) Let a = b = n, n ∈ N, and let p > q. Find

lim
n→∞

α(n)

Problem 8.2 A gambler is playing the roulette, placing a bet of 1 counter
on black in each game. When she wins, she receives a total of two counters.
The ongoing capital size is thus a usual p-q Random Walk with state space
N0 and with 0 as an absorbing barrier. Find the probability of the gambler
having a capital of n + k counters, k ∈ N, at some time given that her initial
capital is n counters.

Problem 8.3 Consider a p-q Random Walk with absorbing barriers 0 and
N, N ∈ N. Find the expected waiting time dj until absorption in 0 or N ,
j = 1, . . . , N − 1.
(Hint: Use the result from problem 5.5 and that the complete solution to
the inhomogeneous system of equations is equal to a partial solution plus the
complete solution for the homogeneous system of equations).

Problem 8.4 Consider a p-q Random Walk with state space N0 and with 0
as an absorbing wall. Find the mean waiting time dj until absorption in 0,
j ∈ N.
(Hint: Use the result from problem 5.5(b))

Problem 8.5 Let {Xn}n≥0 be a usual p-q Random Walk starting in 0.

(a) Find the probability

α(0) = P (Xn = 0 for at least one n ∈ N)

19



of the event that {Xn}n≥0 visits 0.

Let Q0 denote the number of times {Xn}n≥0 visits 0.

(b) Find the distribution of Q0.
(Hint: Use that

P (Q0 = k) =

∞
∑

n=1

P (X1 6= 0, . . . , Xn−1 6= 0, Xn = 0,

∞
∑

j=n+1

1{Xj=0} = k−1) )

Problem 8.6 Consider a branching process {Xn}n≥0 with X0 = 1 and off-
spring distribution given by

p0(k) =

{

bck−1 k ≥ 1
1 − b

1−c
k = 0

where b, c > 0 and b + c ≤ 1. This is known as a modified geometric distri-
bution.

(a) Find the generating function for the offspring distribution.

(b) Find the extinction probability and the mean of the offspring distribu-
tion.

(c) Find the generating function for Xn and use this to find the distribu-
tion of Xn. Note that the distribution is of the same type (modified
geometric distribution) as the actual offspring distribution.
(Hint: Start with n = 2 and n = 3 and try to guess the general expres-
sion).

Problem 8.7 Let N be a random variable, which is Poisson distributed
with parameter λ ∈ R+. Consider N independent Markov chains with state
space Z, starting in 0, and all with the same transition matrix P = (pij)i,j∈Z.

Let Z
(n)
k be the number of Markov chains that after n steps are in state

k, n ∈ N, k ∈ Z. Show that Z
(n)
k is Poisson distributed with parameter

λp
(n)
0k , λ ∈ R, k ∈ Z.
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9. Definition of homogeneous Markov chains in continuous time.

Problem 9.1 Let T be exponentially distributed with mean λ. Define the
stochastic process {X(t)}t≥0 by X(t) = 1{T≤t}, t ≥ 0. Show that {X(t)}t≥0

is a homogeneous Markov process and find P (t), t ≥ 0.

Problem 9.2 Let T be a non-negative continuous random variable. Consider
the stochastic process {X(t)}t≥0 given by X(t) = 1{T≤t}, t ≥ 0. Show that
unless T is exponentially distributed, {X(t)}t≥0 cannot be a continuous time
homogeneous Markov chain.

Problem 9.3 Let {P (t)}t≥0 be substochastic on a countable state space S,
i.e.

pij(t) ≥ 0 and Si(t) =
∑

j∈S

pij(t) ≤ 1,

such that {P (t)}t≥0 satisfies the Chapman-Kolmogorov equations and P (0) =
I. Assume that pik(t) > 0 for all i, k ∈ S, t > 0. Show that either is
Si(t) = 1, ∀i ∈ S, ∀t > 0 or Si(t) < 1, ∀i ∈ S, ∀t > 0.

Problem 9.4 Let T and U be two independent exponentially distributed
random variables with parameter α respectively β. Consider the following
process: At time 0 an individual is in state 0. Afterwards it can move to in
either state 1 or 2, and then remain in that state. The individual moves to
state 1 at time T if T < U , and to state 2 at time U if U < T . Show that
Xt = ”State at time t”, t ≥ 0 is a homogeneous Markov process and find the
transition probabilities.
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10. Construction of homogeneous Markov chains

Problem 10.1 Let {X(t)}t≥0 be a regular jump process on the state space
S = {1, . . . , N} with intensity matrix Q = (qij)i,j∈S, that satisfies qij =
qji, i, j ∈ S. Define

E(t) = −
N
∑

k=1

pik(t) log(pik(t))

with x log x = 0 for x = 0.

(a) Show that p′ik(t) =

N
∑

j=1

qkj(pij(t) − pik(t))

(b) Show that

E ′(t) =
1

2

N
∑

j,k=1

qkj(pij(t) − pik(t))(log pij(t) − log pik(t))

(c) Finally show that E(t) is a nondecreasing function of t ≥ 0.

Problem 10.2 Let {X(t)}t≥0 be a homogeneous Markov chain with state
space Z, 0 as the initial value and parameters (λ, Π), where λi = λ > 0 for
all i, and πij only depends on j − i for all i, j ∈ Z.

(a) The increase of the process over an interval [t, t + h[, t ≥ 0, h > 0, is
defined as the random variable X(t+h)−X(t). Show that the increases
corresponding to disjoint intervals are independent.

(b) Find the characteristic function for X(t)’s distribution, expressed by
the characteristic function of the distribution F, which is determined
by the probability masses (π0j)j∈Z.

(c) Show that E(X(t))k exists if F has k’th moments, and find the first
and second order moments of X(t) expressed by first and second order
moments of F.

(d) Examine in particular the case where {X(t)}t≥0 is a Poisson process.

(e) Examine in particular the case where Π is the transition matrix for a
Random Walk.
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Problem 10.3 Consider the following infinitesimal generator

Q =

[

−α α
β −β

]

α, β > 0

(a) Find the corresponding jump matrix, Π, and the intensities of waiting
times between jumps, λ

(b) Show that a HMC with infinitesimal generator Q is uniformisable and
construct the corresponding uniform Markov chain

(c) Find the transition probabilities.

Hint: Q is diagonalisable:

Q = V ΛU⊤

with

Λ =

[

0 0
0 −(α + β)

]

V =
1

α + β

[

α α
α −β

]

and U⊤ =

[

β/α 1
1 −1

]

(d) Write down the forward and backward differential equations and use
them to verify your solution from question 3.

(e) Find limt→∞ P (t)

Problem 10.4 Consider the matrix

Q =





−3 1 2
0 −1 1
0 0 0





(a) Verify that Q is an infinitesimal generator.

Let (Xt)t≥0 be a Markov chain on {1, 2, 3} with infinitesimal generator Q and
initial distribution µ = (1, 0, 0)⊤.
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(b) Find the jump matrix Π.

(c) 3 of the transition probaibilties pi,j(t) are 0 for all t ≥ 0. Which ones?

(d) Find the remaining transition proababilities:

1. Find the forward differential equation for p3,3(t) and solve it.

2. Find the forward differential equation for p2,2(t) and solve it.

3. Find p2,3(t).

4. Find the forward differential equation for p1,1(t) and solve it.

5. Find the forward differential equation for p1,2(t) and solve it.

6. Find p1,3(t).

(e) Find P{Xt = 3}.

(f) Give a suggestion of how to find P{Xt = 3} if the initial distribution
is µ = (1/2, 1/2, 0)⊤.

Problem 10.5 Consider a Markov chain (Xt)t≥0 on {1, 2, 3} with infinites-
imal generator

Q =





−3 1 2
1 −1 0
1 0 −1





and initial distribution µ = (1, 0, 0)⊤.

(a) Find P{τ1 > t} where τ1 denotes the first transition time of the chain.

(b) Let τ2 be the second transition time of the chain. Write an integral
expression for P{τ2 ≤ t}

(c) Find the invariant distribution of the embedded Markov chain.

(d) Suggest an invariant distribution for the Markov chain (Xt)t≥0.
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11. The Poisson process

Problem 11.1 Let {X(t)}t≥0 be a Poisson process starting in 0 and with
parameter λ > 0. Assume that each jump ”is recorded” with probability
p ∈]0, 1[ independent of the other jumps. Let {Y (t)}t≥0 be the recording
process. Show that {Y (t)}t≥0 is a Poisson process with parameter λp.

Problem 11.2 Consider a Poisson process, starting in 0 and with parameter
λ > 0. Given that n jumps has occurred, n ∈ N0, at time t > 0, show that
the density for the time of the r’th jump (r < n) is the following

f(s) =











n!sr−1

(r − 1)!(n − r)!tr

(

1 −
s

t

)n−r

0 < s < t

0 s ≥ t

Problem 11.3 Consider two independent Poisson processes {X(t)}t≥0 and
{Y (t)}t≥0, both starting in 0 and where E(X(t)) = λt and E(Y (t)) = µt
with λ, µ > 0. Let T and T ′, T ′ > T , be two successive jumps of the X(t)t≥0

process such that X(t) = X(T ) for T ≤ t < T ′ and X(T ′) = X(T ) + 1. Let
N = Y (T ′) − Y (T ), i.e. the number of jumps the process {Y (t)}t≥0 makes
in the time interval ]T, T ′[. Show that N is geometrically distributed with
parameter λ

λ+µ
.

Problem 11.4 Consider a Poisson process {X(t)}t≥0, starting in 0 and with
parameter λ > 0. Let T be the time until the first jump and let N(T

k
) be the

number of jumps in the next T
k

time units. Find the mean and variance of
T · N(T

k
).

Problem 11.5 Consider a detector measuring electric shocks. The shocks
are all of size 1 (measured on a suitable scale) and arrive at random times,
such that the number of shocks, seen at time t, is given by the Poisson process
{N(t)}t≥0, starting in 0 and with parameter λ > 0, i.e. the waiting times
between the shocks are independent exponential distributed with mean λ.
The output of the detector at time t for a shock, arriving at the random time
Si is

[exp{−β(t − Si)}]+ =

{

0 t < Si

exp{−β(t − Si)} t ≥ Si

where β > 0, i.e. the effect from a shock is exponentially decreasing. We
now assume that the detector is linear, so that the total output at time t is
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given by:

α(t) =

N(t)
∑

i=1

[exp{−β(t − Si)}]+

We wish to find the characteristic function s → φt(s) for the process α(t).

(a) Show that given N(t) = n, i.e. there has been n shocks in the interval
]0, t], the arrival S1, . . . , Sn of the shocks, are distributed as the or-
dered values of n independent uniformly distributed random variables
X1, . . . , Xn on [0, t].

Let Yt(i) = [exp{−β(t − Xi)}]+, i = 1, . . . , n. Note that given N(t) = n,
Yt(i), i = 1, . . . , n are independent and identically distributed.

(b) Find the characteristic function s → θt(s) of Yt(i)

(c) Determine now the characteristic function of α(t) expressed by θt(s)

(d) Use e.g. (c) to find the mean and variance for α(t)

Problem 11.6 Arrivals of the Number 1 bus form a Poisson process with
rate 1 bus per hour, and arrivals of the Number 7 bus form an independent
Poisson process of rate seven buses per hour.

(a) What is the probability that exactly three buses pass by in one hour?

(b) What is the probability that exactly three Number 7 buses pass by
while I am waiting for a Number 1 bus?

(c) When the maintenance depot goes on strike half the buses break down
before they reach my stop. What, then, is the probability that I wait
for 30 minutes without seeing a single bus?

Problem 11.7 A radioactive source emits particles in a Poisson process of
rate λ. The particles are each emitted in an independent random direction.
A Geiger counter placed near the source records a fraction p of the particles
emitted. What is the distribution of the number of particles recorded in time
t?
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12. Birth and death processes

Problem 12.1 Consider a birth process with λ0 = a > 0, λn = b > 0 for
n ∈ N where a < b. Find the transition probabilities.

Problem 12.2 Consider a birth process where λi > 0 for all i ∈ S

(a) Show for an arbitrary fixed n ∈ N the function

t → pi,i+n(t) i ∈ S

first is increasing, next decreasing towards 0 and if tn is the maximum,
then show: t1 < t2 < t3 < . . .
(Hint: Use induction and Kolmogorov’s forward differential system.)

(b) Show that if

∞
∑

n=0

1

λn

= ∞ then tn → ∞.

Problem 12.3 (Exploding birth processes). In a population a new individ-
ual is born with probability p ∈]0, 1], each time two individuals collide. The
collision between two given individuals in a time interval of length t, hap-
pens with probability αt + o(t), α > 0. The number of possible collisions
between k individuals is

(

k

2

)

, and it seems reasonable to describe the size of
the population by a birth process with waiting time parameters

λi =

(

i

2

)

αp i = 0, 1, 2, . . .

with λ0 = λ1 = 0. Show that the process explodes and find Ei(S∞), i =
2, 3, . . .. The model has been used to describe the growth of lemmings.

Problem 12.4 Consider two independent linear death processes both with
same death intensity λi = iµ. One of the populations consists of m men and
k women. Determine the expected number of women left, when the men dies
out.

Problem 12.5 Consider a birth and death process on the state space M, M+
1, . . . , N with

λn = αn(N − n) µn = βn(n − M)
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where M < N are interpreted as the upper and lower limits for the popula-
tion. Show that the stationary distribution is proportional to

1

j

(

N − M

j − M

)(

α

β

)j−M

j = M, M + 1, . . . , N.

Problem 12.6 Consider a system consisting of N components, all working
independent of each other, and with life spans of each component exponen-
tially distributed with mean λ−1. When a component breaks down, repair
of the component starts immediately and independent of whether any other
component has broken down. The repair time of each component is expo-
nentially distributed with mean µ−1. The system is in state n at time t, if
there is exactly n components under repair at time t. This is a birth and
death process.

(a) Determine the intensity matrix.

(b) Find the stationary initial distribution.

(c) Let λ = µ and assume that all N components are working. Find the
distribution function F (t) of the first time, when 2 components does
not work.

Problem 12.7 Consider the linear birth and death process, i.e. the birth
and death intensities are βi = iβ and δi = iδ. Let

G1 = G1(θ, t) =

∞
∑

n=0

p1n(t)θn

G2 = G2(θ, t) =
∞
∑

n=0

p2n(t)θn

(a) Show that G2(θ, t) = (G1(θ, t))
2.

(b) Write the backwards differential equations for p1n, n ≥ 1 and p10.

(c) Show that
∂G1

∂t
= −(β + δ)G1 + βG2

1 + δ
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(d) Show that for δ > β

∂

∂t
log

(

βG1 − δ

G1 − 1

)

= δ − β

(e) Show that for δ > β

G1(θ, t) =
δ(1 − θ) − (δ − βθ)e(δ−β)t

β(1 − θ) − (δ − βθ)e(δ−β)t)

This can also be shown for δ < β.

(f) Show that for δ 6= β is

p10(t) =
δ − δe(δ−β)t)

β − βe(δ−β)t)

and find lim
t→∞

p10(t).

(g) Show that

p10(t) =
βt

1 + βt
for β = δ

(Hint: Taylor expand p10(t) from (f)).

(h) From (f) it is known that for δ > β the process will reach state 0 (the
population dies out) at some time. Let T0 be the waiting time for this
event. Find the distribution and mean of T0.

(i) Show that for δ = β it holds that

G1(θ, t) =
βt + θ(1 − βt)

1 + βt − θβt

and consequently that

p1n(t) =
(βt)n−1

(1 + βt)n+1
n ≥ 1

(Hint: Use e.g. Taylor expansion of G1(θ, t) from (e)).

(j) Calculate pn0(t), n ≥ 2.

(k) Let Fm be the distribution function for
T

(m)
0

m
, where T

(m)
0 is the waiting

time until the population has died out when it starts with m individuals.
Show that

lim
n→∞

Fn(t) = exp

(

−
1

t

)
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13. Queuing processes

Problem 13.1 The modified Bessel function of order n is given by

In(y) =
∞
∑

j=0

(y

2
)n+2j

j!(n + j)!

Put

Φn(t) = exp(−(β + δ)t)

(

β

δ

)
n
2

In(2t
√

δβ)

for δ, β > 0.

The explicit specification of the transition probabilities for M/M/1-queues
is a mathematically complicated matter. For n ≥ 1 and with arrival and
service times respectively β and δ, it holds that

p0n(t) =

∞
∑

k=0

(

(

β

δ

)−k

Φn+k(t) −

(

β

δ

)−k−1

Φn+k+2(t)

)

Show that p0n(t) satisfies the forward equations.
(Hint: Use, without proving it, that

d

dy
(In(y)) =

1

2
(In−1(y) + In+1(y)) ).

Problem 13.2 Consider a M/M/1-queue with parameters (β, δ), where it is
assumed that β < δ and that the stationary initial distribution is used. The
total waiting time for a customer is the waiting time in the queue plus the
service time. Show that the total waiting time for a customer is exponentially
distributed with mean (δ − β)−1.

Problem 13.3 Consider a M/M/1-queue with parameters (β, δ) and with
the change that customers are not going into the queue, unless they are being
attended to immediately. Hence p00(t), p01(t), p10(t) and p11(t) are the only
transition probabilities not equal to zero.

(a) Show that

d

dt
(exp((β + δ)t)p01(t)) = β exp((β + δ)t)

use the forward equations and that P(t) is a stochastic matrix.
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(b) Find p01(t) and find lim
t→∞

p01(t).

Problem 13.4 We shall in this problem consider a M/M/s-queue, s ∈ N, i.e.
instead of one service station, there is now s service stations. Assume that the
stations work independently of each other, and that the service times at all
stations are independent and identical exponentially distributed with mean
δ−1. The customers arrives according to a Poisson process with intensity β.
We assume that the service stations are optimally used, such that a customer
is not queuing at a busy station if another station is available. Assume that
ρ = β

sδ
< 1.

(a) Show that the stationary initial distribution {πn}n∈N0 is given by

π0 =

(

(sρ)s

s!(1 − ρ)
+

s−1
∑

i=0

(sρ)i

i!

)−1

πn =















(sρ)n

n!
a0 1 ≤ n ≤ s

ρnss

s!
a0 s < n < ∞

Let Q = max(Xt − s, 0), n = 0, 1, . . . be the size of the queue, not count-
ing those being served at the moment. Assume that the stationary initial
distribution is used.

(b) Show that

γ = P (Q = 0) =

s
∑

i=0

(sρ)i

i!
s
∑

i=0

(sρ)i

i!
+

(sρ)sρ

s!(1 − ρ)

(c) Show that E(Q) =
1 − γ

1 − ρ
.

Problem 13.5 Consider a M/M/∞-queue, i.e. a birth and death process
with birth intensities given by βi = α and death intensities by δi = iδ. Let

G(θ, t) =
∞
∑

n=1

pmn(t)θn
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for fixed m > 0.

(a) Write the forward differential equations for pmn(t), n ≥ 0, m fixed,
where pm,−1(t) ≡ 0.

(b) Show that

∂G

∂t
= −

(

αG + δθ
∂G

∂θ

)

+ δ
∂G

∂θ
+ αθG (∗)

(c) Show that

G(θ, t) = exp
{α

δ
(θ − 1)[1 − exp(−δt)]

}

[1 + (θ − 1) exp(−δt)]m

is the solution of (∗). (Hint: Use the boundary conditions pmn(0) =
0 (n 6= m) and pmm(0) = 1.)

(d) Determine pm0(t).

(e) Show that

p0n(t) =

(α

δ
[1 − exp(δt)]

)n

n!
exp

(

−
(α

δ
[1 − exp(δt)]

))

(f) Consider a linear death process with death intensity δi = iδ, with
transition probabilities p⋆

ij(t). Show that

pmn(t) =

∞
∑

i=0

p0i(t)p
⋆
m,n−i(t)

in the M/M/∞-queue.
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14. Markov chains in continuous time with finite state space.

Problem 14.1 Consider 2 cables, A and B, transmitting signals across the
Atlantic. The waiting times until cable A or cable B breaks are independent,
exponential distributed with mean λ−1. We assume that as soon as a cable
breaks, the repair starts immediately. The repair times for cable A and B
are independent exponential distributed random variables with mean µ−1.
This is a homogeneous Markov chaining continuous time with 3 states: 1
= {Both cables function}, 2 = {Exactly one cable functions}, 3 = {Neither
cable functions}.

(a) Show that Π =





0 1 0
µ

µ+λ
0 λ

µ+λ

0 1 0



 and (λi)i∈S = (2λ, λ + µ, 2µ)

(b) Given that both cables work at time 0, show that the probability of
both cables working at time t > 0 is

µ2

(µ + λ)2
+

λ2 exp{−2(µ + λ)t}

(µ + λ)2
+

2µλ

(µ + λ)2
exp{−(µ + λ)t}

(c) Find the stationary initial distribution for the number of cables out of
order and show that it has mean 2λ

µ+λ

Problem 14.2 Let (Xt)t≥0 be a (regular jump) homogeneous continuous-
time Markov chain on

E = {1, 2, 3}2 = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}

The corresponding infinitesimal generator has

q(i,j),(k,l) =

{

1 if |i − k| + |j − l| = 1

0 if |i − k| + |j − l| > 1

Thus the local characteristics are exactly 1 when there is an arrow in the
graph below:
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Note that q(i,j),(i,j) is neither 0 or 1 but must be found from the rest.

(a) Find the transition matrix for the embedded discrete-time Markov
chain (Yn)n∈N.

(b) Find the invariant distribution for the embedded discrete time Markov
chain.

(c) Find the invariant distribution for (Xt)t≥0.

Let f and g be functions defined on E by

f((i, j)) = i g((i, j)) = j (i, j) ∈ E

and let Ut = f(Xt) and Vt = g(Xt). Hence Xt = (Ut, Vt). One may show
that (Ut)t≥0 is a Markov chain with infinitesimal generator

AU =





−1 1 0
1 −2 1
0 1 −1





Let pi,j(t) = P{Ut = j|U0 = i} and note that by symmetry

p1,1(t) = p3,3(t) p1,2(t) = p3,2(t) p1,3(t) = p3,1(t) p2,1(t) = p2,3(t)

(d) Find p2,2(t).

(e) Find the remaining transition probabilities.
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Assume that the initial distribution of (Xt)t≥0 is such that

P{X0 = (i, j)} = P{(U0, V0) = (i, j)} = P{U0 = i}P{V0 = j} (i, j) ∈ E

Then one may show (Ut)t≥0 and (Vt)t≥0 are independent, i.e. that

P{Ut1 = i1, . . . , Utk = ik, Vt1 = j1, . . . , Vtk = jk}

= P{Ut1 = i1, . . . , Utk = ik}P{Vt1 = j1, . . . , Vtk = jk}

for any k ∈ N, 0 ≤ t1 ≤ tk, i1, . . . , ik, j1, . . . , jk ∈ {1, 2, 3}. Use this to find
the transition probabilities for (Xt)t≥0.

(f) Are the discrete time Markov chains (f(Yn))n∈N0 and (g(Yn))n∈N0 inde-
pendent? I.e. is

P{f(Y0) = i0, . . . , f(Yk) = ik, g(Y0) = i0, . . . , g(Yk) = ik}

= P{f(Y0) = i0, . . . , f(Yk) = ik}P{g(Y0) = i0, . . . , g(Yk) = ik}

for all k ∈ N0,i0, . . . , ik, j0, . . . , jk ∈ {1, 2, 3}.
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